1932

Abstract

Natural killer (NK) cells have vital functions in human immunity and reproduction. In the innate and adaptive immune responses to infection, particularly by viruses, NK cells respond by secreting inflammatory cytokines and killing infected cells. In reproduction, NK cells are critical for genesis of the placenta, the organ that controls the supply of oxygen and nutrients to the growing fetus. Controlling NK cell functions are interactions of HLA class I with inhibitory NK cell receptors. First evolved was the conserved interaction of HLA-E with CD94:NKG2A; later established were diverse interactions of HLA-A, -B, and -C with killer cell immunoglobulin-like receptors. Characterizing the latter interactions is rapid evolution, which distinguishes human populations and all species of higher primate. Driving this evolution are the different and competing selections imposed by pathogens on NK cell–mediated immunity and by the constraints of human reproduction on NK cell–mediated placentation. Promoting rapid evolution is independent segregation of polymorphic receptors and ligands throughout human populations.

Keyword(s): evolutionKIRMHCNK cellsreproduction
Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042617-053149
2018-04-26
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/immunol/36/1/annurev-immunol-042617-053149.html?itemId=/content/journals/10.1146/annurev-immunol-042617-053149&mimeType=html&fmt=ahah

Literature Cited

  1. Waggoner SN, Reighard SD, Gyurova IE, Cranert SA, Mahl SE. 1.  et al. 2016. Roles of natural killer cells in antiviral immunity. Curr. Opin. Virol. 16:15–23 [Google Scholar]
  2. Bulmer JN, Lash GE. 2.  2015. The role of uterine NK cells in normal reproduction and reproductive disorders. Adv. Exp. Med. Biol 868:95–126 [Google Scholar]
  3. Moffett A, Colucci F. 3.  2014. Uterine NK cells: active regulators at the maternal-fetal interface. J. Clin. Investig. 124:1872–79 [Google Scholar]
  4. Villmoare B, Kimbel WH, Seyoum C, Campisano CJ, DiMaggio EN. 4.  et al. 2015. Paleoanthropology: early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science 347:1352–55 [Google Scholar]
  5. Anfossi N, Andre P, Guia S, Falk CS, Roetynck S. 5.  et al. 2006. Human NK cell education by inhibitory receptors for MHC class I. Immunity 25:331–42 [Google Scholar]
  6. Malmberg KJ, Sohlberg E, Goodridge JP, Ljunggren HG. 6.  2017. Immune selection during tumor checkpoint inhibition therapy paves way for NK-cell “missing self” recognition. Immunogenetics 69:547–56 [Google Scholar]
  7. Kiessling R, Klein E, Pross H, Wigzell H. 7.  1975. “Natural” killer cells in the mouse: II. Cytotoxic cells with specificity for mouse Moloney leukemia cells; characteristics of the killer cell. Eur. J. Immunol. 5:117–21 [Google Scholar]
  8. Kiessling R, Klein E, Wigzell H. 8.  1975. “Natural” killer cells in the mouse: I. Cytotoxic cells with specificity for mouse Moloney leukemia cells; specificity and distribution according to genotype. Eur. J. Immunol. 5:112–17 [Google Scholar]
  9. Herberman RB, Holden HT. 9.  1978. Natural cell-mediated immunity. Adv. Cancer Res. 27:305–77 [Google Scholar]
  10. Herberman RB. 10.  1986. Natural killer cells. Annu. Rev. Med. 37:347–52 [Google Scholar]
  11. Mikulski SM. 11.  1977. Hypothetical considerations: alloimmunization and cancer immunotherapy. Cancer Immunol. Immunother. 3:73–74 [Google Scholar]
  12. Welsh RM Jr. 12.  1978. Mouse natural killer cells: induction specificity, and function. J. Immunol. 121:1631–35 [Google Scholar]
  13. Ciccone E, Pende D, Viale O, Di Donato C, Tripodi G. 13.  et al. 1992. Evidence of a natural killer (NK) cell repertoire for (allo) antigen recognition: definition of five distinct NK-determined allospecificities in humans. J. Exp. Med. 175:709–18 [Google Scholar]
  14. Yu YY, Kumar V, Bennett M. 14.  1992. Murine natural killer cells and marrow graft rejection. Annu. Rev. Immunol. 10:189–213 [Google Scholar]
  15. Karre K, Ljunggren HG, Piontek G, Kiessling R. 15.  1986. Selective rejection of H–2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675–78 [Google Scholar]
  16. Storkus WJ, Howell DN, Salter RD, Dawson JR, Cresswell P. 16.  1987. NK susceptibility varies inversely with target cell class I HLA antigen expression. J. Immunol. 138:1657–59 [Google Scholar]
  17. Ljunggren HG, Karre K. 17.  1990. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol. Today 11:237–44 [Google Scholar]
  18. Miller-Kittrell M, Sparer TE. 18.  2009. Feeling manipulated: cytomegalovirus immune manipulation. Virol. J. 6:4 [Google Scholar]
  19. Garrido F, Aptsiauri N, Doorduijn EM, Garcia Lora AM, van Hall T. 19.  2016. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol. 39:44–51 [Google Scholar]
  20. Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. 20.  2013. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu. Rev. Immunol. 31:227–58 [Google Scholar]
  21. Yokoyama WM, Jacobs LB, Kanagawa O, Shevach EM, Cohen DI. 21.  1989. A murine T lymphocyte antigen belongs to a supergene family of type II integral membrane proteins. J. Immunol. 143:1379–86 [Google Scholar]
  22. Karlhofer FM, Ribaudo RK, Yokoyama WM. 22.  1992. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358:66–70 [Google Scholar]
  23. Hoglund P, Sundback J, Olsson-Alheim MY, Johansson M, Salcedo M. 23.  et al. 1997. Host MHC class I gene control of NK-cell specificity in the mouse. Immunol. Rev. 155:11–28 [Google Scholar]
  24. Raulet DH, Held W, Correa I, Dorfman JR, Wu MF, Corral L. 24.  1997. Specificity, tolerance and developmental regulation of natural killer cells defined by expression of class I-specific Ly49 receptors. Immunol. Rev. 155:41–52 [Google Scholar]
  25. Yokoyama WM, Daniels BF, Seaman WE, Hunziker R, Margulies DH, Smith HR. 25.  1995. A family of murine NK cell receptors specific for target cell MHC class I molecules. Semin. Immunol. 7:89–101 [Google Scholar]
  26. Lanier LL, Phillips JH. 26.  1995. NK cell recognition of major histocompatibility complex class I molecules. Semin. Immunol. 7:75–82 [Google Scholar]
  27. Moretta A, Bottino C, Vitale M, Pende D, Biassoni R. 27.  et al. 1996. Receptors for HLA class-I molecules in human natural killer cells. Annu. Rev. Immunol. 14:619–48 [Google Scholar]
  28. Wagtmann N, Biassoni R, Cantoni C, Verdiani S, Malnati MS. 28.  et al. 1995. Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity 2:439–49 [Google Scholar]
  29. Colonna M, Samaridis J. 29.  1995. Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science 268:405–8 [Google Scholar]
  30. Trowsdale J, Barten R, Haude A, Stewart CA, Beck S, Wilson MJ. 30.  2001. The genomic context of natural killer receptor extended gene families. Immunol. Rev. 181:20–38 [Google Scholar]
  31. Trowsdale J, Knight JC. 31.  2013. Major histocompatibility complex genomics and human disease. Annu. Rev. Genom. Hum. Genet. 14:301–23 [Google Scholar]
  32. Yokoyama WM, Plougastel BF. 32.  2003. Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 3:304–16 [Google Scholar]
  33. Yokoyama WM, Seaman WE. 33.  1993. The Ly-49 and NKR-P1 gene families encoding lectin-like receptors on natural killer cells: the NK gene complex. Annu. Rev. Immunol. 11:613–35 [Google Scholar]
  34. Barrow AD, Trowsdale J. 34.  2008. The extended human leukocyte receptor complex: diverse ways of modulating immune responses. Immunol. Rev. 224:98–123 [Google Scholar]
  35. Martin AM, Kulski JK, Witt C, Pontarotti P, Christiansen FT. 35.  2002. Leukocyte Ig-like receptor complex (LRC) in mice and men. Trends Immunol 23:81–88 [Google Scholar]
  36. Shiina T, Hosomichi K, Inoko H, Kulski JK. 36.  2009. The HLA genomic loci map: expression, interaction, diversity and disease. J. Hum. Genet. 54:15–39 [Google Scholar]
  37. de Groot NG, Blokhuis JH, Otting N, Doxiadis GG, Bontrop RE. 37.  2015. Co-evolution of the MHC class I and KIR gene families in rhesus macaques: ancestry and plasticity. Immunol. Rev. 267:228–45 [Google Scholar]
  38. Braud VM, Allan DS, O'Callaghan CA, Soderstrom K, D'Andrea A. 38.  et al. 1998. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391:795–99 [Google Scholar]
  39. Kaiser BK, Pizarro JC, Kerns J, Strong RK. 39.  2008. Structural basis for NKG2A/CD94 recognition of HLA-E. PNAS 105:6696–701 [Google Scholar]
  40. Joly E, Rouillon V. 40.  2006. The orthology of HLA-E and H2-Qa1 is hidden by their concerted evolution with other MHC class I molecules. Biol. Direct. 1:2 [Google Scholar]
  41. Zeng L, Sullivan LC, Vivian JP, Walpole NG, Harpur CM. 41.  et al. 2012. A structural basis for antigen presentation by the MHC class Ib molecule, Qa-1b. J. Immunol. 188:302–10 [Google Scholar]
  42. Meredith RW, Janecka JE, Gatesy J, Ryder OA, Fisher CA. 42.  et al. 2011. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334:521–24 [Google Scholar]
  43. Horowitz A, Djaoud Z, Nemat-Gorgani N, Blokhuis J, Hilton HG. 43.  et al. 2016. Class I HLA haplotypes form two schools that educate NK cells in different ways. Sci. Immunol. 1:eaag1672 [Google Scholar]
  44. David G, Djaoud Z, Willem C, Legrand N, Rettman P. 44.  et al. 2013. Large spectrum of HLA-C recognition by killer Ig-like receptor (KIR)2DL2 and KIR2DL3 and restricted C1 specificity of KIR2DS2: dominant impact of KIR2DL2/KIR2DS2 on KIR2D NK cell repertoire formation. J. Immunol. 191:4778–88 [Google Scholar]
  45. Fauriat C, Ivarsson MA, Ljunggren HG, Malmberg KJ, Michaelsson J. 45.  2010. Education of human natural killer cells by activating killer cell immunoglobulin-like receptors. Blood 115:1166–74 [Google Scholar]
  46. Yawata M, Yawata N, Draghi M, Little AM, Partheniou F, Parham P. 46.  2006. Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J. Exp. Med. 203:633–45 [Google Scholar]
  47. Yawata M, Yawata N, Draghi M, Partheniou F, Little AM, Parham P. 47.  2008. MHC class I-specific inhibitory receptors and their ligands structure diverse human NK-cell repertoires toward a balance of missing self-response. Blood 112:2369–80 [Google Scholar]
  48. Wilson MJ, Torkar M, Haude A, Milne S, Jones T. 48.  et al. 2000. Plasticity in the organization and sequences of human KIR/ILT gene families. PNAS 97:4778–83 [Google Scholar]
  49. Torkar M, Norgate Z, Colonna M, Trowsdale J, Wilson MJ. 49.  1998. Isotypic variation of novel immunoglobulin-like transcript/killer cell inhibitory receptor loci in the leukocyte receptor complex. Eur. J. Immunol. 28:3959–67 [Google Scholar]
  50. Jones DC, Kosmoliaptsis V, Apps R, Lapaque N, Smith I. 50.  et al. 2011. HLA class I allelic sequence and conformation regulate leukocyte Ig-like receptor binding. J. Immunol. 186:2990–97 [Google Scholar]
  51. Willcox BE, Thomas LM, Bjorkman PJ. 51.  2003. Crystal structure of HLA-A2 bound to LIR-1, a host and viral major histocompatibility complex receptor. Nat. Immunol. 4:913–19 [Google Scholar]
  52. Maruoka T, Nagata T, Kasahara M. 52.  2004. Identification of the rat IgA Fc receptor encoded in the leukocyte receptor complex. Immunogenetics 55:712–16 [Google Scholar]
  53. Welch AY, Kasahara M, Spain LM. 53.  2003. Identification of the mouse killer immunoglobulin-like receptor-like (Kirl) gene family mapping to chromosome X. Immunogenetics 54:782–90 [Google Scholar]
  54. Rahim MM, Makrigiannis AP. 54.  2015. Ly49 receptors: evolution, genetic diversity, and impact on immunity. Immunol. Rev. 267:137–47 [Google Scholar]
  55. Berry R, Rossjohn J, Brooks AG. 55.  2014. The Ly49 natural killer cell receptors: a versatile tool for viral self-discrimination. Immunol. Cell Biol. 92:214–20 [Google Scholar]
  56. Westgaard IH, Berg SF, Orstavik S, Fossum S, Dissen E. 56.  1998. Identification of a human member of the Ly-49 multigene family. Eur. J. Immunol. 28:1839–46 [Google Scholar]
  57. Tormo J, Natarajan K, Margulies DH, Mariuzza RA. 57.  1999. Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature 402:623–31 [Google Scholar]
  58. Boyington JC, Motyka SA, Schuck P, Brooks AG, Sun PD. 58.  2000. Crystal structure of an NK cell immunoglobulin-like receptor in complex with its class I MHC ligand. Nature 405:537–43 [Google Scholar]
  59. Fan QR, Long EO, Wiley DC. 59.  2001. Crystal structure of the human natural killer cell inhibitory receptor KIR2DL1-HLA-Cw4 complex. Nat. Immunol. 2:452–60 [Google Scholar]
  60. Guethlein LA, Norman PJ, Hilton HG, Parham P. 60.  2015. Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol. Rev. 267:259–82 [Google Scholar]
  61. Guethlein LA, Abi-Rached L, Hammond JA, Parham P. 61.  2007. The expanded cattle KIR genes are orthologous to the conserved single-copy KIR3DX1 gene of primates. Immunogenetics 59:517–22 [Google Scholar]
  62. Futas J, Horin P. 62.  2013. Natural killer cell receptor genes in the family Equidae: not only Ly49. PLOS ONE 8:e64736 [Google Scholar]
  63. Bimber BN, Evans DT. 63.  2015. The killer-cell immunoglobulin-like receptors of macaques. Immunol. Rev. 267:246–58 [Google Scholar]
  64. Walter L, Ansari AA. 64.  2015. MHC and KIR polymorphisms in rhesus macaque SIV infection. Front. Immunol. 6:540 [Google Scholar]
  65. Walter L, Petersen B. 65.  2017. Diversification of both KIR and NKG2 natural killer cell receptor genes in macaques—implications for highly complex MHC-dependent regulation of natural killer cells. Immunology 150:139–45 [Google Scholar]
  66. Cadavid LF, Lun CM. 66.  2009. Lineage-specific diversification of killer cell Ig-like receptors in the owl monkey, a New World primate. Immunogenetics 61:27–41 [Google Scholar]
  67. Cadavid LF, Palacios C, Lugo JS. 67.  2013. Bimodal evolution of the killer cell Ig-like receptor (KIR) family in New World primates. Immunogenetics 65:725–36 [Google Scholar]
  68. Garzon-Ospina D, Lopez C, Cadavid LF, Patarroyo ME, Patarroyo MA. 68.  2013. Identification and diversity of killer cell Ig-like receptors in Aotus vociferans, a New World monkey. PLOS ONE 8:e79731 [Google Scholar]
  69. Kono A, Brameier M, Roos C, Suzuki S, Shigenari A. 69.  et al. 2014. Genomic sequence analysis of the MHC class I G/F segment in common marmoset (Callithrix jacchus). J. Immunol. 192:3239–46 [Google Scholar]
  70. Lugo JS, Cadavid LF. 70.  2015. Patterns of MHC-G-like and MHC-B diversification in New World monkeys. PLOS ONE 10:e0131343 [Google Scholar]
  71. Neehus AL, Wistuba J, Ladas N, Eiz-Vesper B, Schlatt S, Muller T. 71.  2016. Gene conversion of the major histocompatibility complex class I Caja-G in common marmosets (Callithrix jacchus). Immunology 149:343–52 [Google Scholar]
  72. van der Wiel MK, Otting N, de Groot NG, Doxiadis GG, Bontrop RE. 72.  2013. The repertoire of MHC class I genes in the common marmoset: evidence for functional plasticity. Immunogenetics 65:841–49 [Google Scholar]
  73. Schafer JL, Colantonio AD, Neidermyer WJ, Dudley DM, Connole M. 73.  et al. 2014. KIR3DL01 recognition of Bw4 ligands in the rhesus macaque: maintenance of Bw4 specificity since the divergence of apes and Old World monkeys. J. Immunol. 192:1907–17 [Google Scholar]
  74. Guethlein LA, Older Aguilar AM, Abi-Rached L, Parham P. 74.  2007. Evolution of killer cell Ig-like receptor (KIR) genes: Definition of an orangutan KIR haplotype reveals expansion of lineage III KIR associated with the emergence of MHC-C. J. Immunol. 179:491–504 [Google Scholar]
  75. Pyo CW, Wang R, Vu Q, Cereb N, Yang SY. 75.  et al. 2013. Recombinant structures expand and contract inter and intragenic diversification at the KIR locus. BMC Genom 14:89 [Google Scholar]
  76. Hansasuta P, Dong T, Thananchai H, Weekes M, Willberg C. 76.  et al. 2004. Recognition of HLA-A3 and HLA-A11 by KIR3DL2 is peptide-specific. Eur. J. Immunol. 34:1673–79 [Google Scholar]
  77. Dohring C, Scheidegger D, Samaridis J, Cella M, Colonna M. 77.  1996. A human killer inhibitory receptor specific for HLA-A1,2. J. Immunol. 156:3098–101 [Google Scholar]
  78. Cella M, Longo A, Ferrara GB, Strominger JL, Colonna M. 78.  1994. NK3-specific natural killer cells are selectively inhibited by Bw4-positive HLA alleles with isoleucine 80. J. Exp. Med. 180:1235–42 [Google Scholar]
  79. Gumperz JE, Litwin V, Phillips JH, Lanier LL, Parham P. 79.  1995. The Bw4 public epitope of HLA-B molecules confers reactivity with natural killer cell clones that express NKB1, a putative HLA receptor. J. Exp. Med. 181:1133–44 [Google Scholar]
  80. Blokhuis JH, van der Wiel MK, Doxiadis GG, Bontrop RE. 80.  2010. The mosaic of KIR haplotypes in rhesus macaques. Immunogenetics 62:295–306 [Google Scholar]
  81. Kruse PH, Rosner C, Walter L. 81.  2010. Characterization of rhesus macaque KIR genotypes and haplotypes. Immunogenetics 62:281–93 [Google Scholar]
  82. Moreland AJ, Guethlein LA, Reeves RK, Broman KW, Johnson RP. 82.  et al. 2011. Characterization of killer immunoglobulin-like receptor genetics and comprehensive genotyping by pyrosequencing in rhesus macaques. BMC Genom 12:295 [Google Scholar]
  83. Bonhomme M, Doxiadis GG, Heijmans CM, Vervoort V, Otting N. 83.  et al. 2008. Genomic plasticity of the immune-related MHC class I B region in macaque species. BMC Genom 9:514 [Google Scholar]
  84. Doxiadis GG, de Groot N, Otting N, Blokhuis JH, Bontrop RE. 84.  2011. Genomic plasticity of the MHC class I A region in rhesus macaques: extensive haplotype diversity at the population level as revealed by microsatellites. Immunogenetics 63:73–83 [Google Scholar]
  85. Karl JA, Bohn PS, Wiseman RW, Nimityongskul FA, Lank SM. 85.  et al. 2013. Major histocompatibility complex class I haplotype diversity in Chinese rhesus macaques. G3 3:1195–201 [Google Scholar]
  86. Naruse TK, Chen Z, Yanagida R, Yamashita T, Saito Y. 86.  et al. 2010. Diversity of MHC class I genes in Burmese-origin rhesus macaques. Immunogenetics 62:601–11 [Google Scholar]
  87. Colantonio AD, Bimber BN, Neidermyer WJ Jr., Reeves RK, Alter G. 87.  et al. 2011. KIR polymorphisms modulate peptide-dependent binding to an MHC class I ligand with a Bw6 motif. PLOS Pathog 7:e1001316 [Google Scholar]
  88. Rosner C, Kruse PH, Hermes M, Otto N, Walter L. 88.  2011. Rhesus macaque inhibitory and activating KIR3D interact with Mamu-A-encoded ligands. J. Immunol. 186:2156–63 [Google Scholar]
  89. Fukami-Kobayashi K, Shiina T, Anzai T, Sano K, Yamazaki M. 89.  et al. 2005. Genomic evolution of MHC class I region in primates. PNAS 102:9230–34 [Google Scholar]
  90. Khakoo SI, Rajalingam R, Shum BP, Weidenbach K, Flodin L. 90.  et al. 2000. Rapid evolution of NK cell receptor systems demonstrated by comparison of chimpanzees and humans. Immunity 12:687–98 [Google Scholar]
  91. Hershberger KL, Shyam R, Miura A, Letvin NL. 91.  2001. Diversity of the killer cell Ig-like receptors of rhesus monkeys. J. Immunol. 166:4380–90 [Google Scholar]
  92. Sambrook JG, Bashirova A, Palmer S, Sims S, Trowsdale J. 92.  et al. 2005. Single haplotype analysis demonstrates rapid evolution of the killer immunoglobulin-like receptor (KIR) loci in primates. Genome Res 15:25–35 [Google Scholar]
  93. Adams EJ, Thomson G, Parham P. 93.  1999. Evidence for an HLA-C-like locus in the orangutan Pongo pygmaeus. . Immunogenetics 49:865–71 [Google Scholar]
  94. Guethlein LA, Flodin LR, Adams EJ, Parham P. 94.  2002. NK cell receptors of the orangutan (Pongo pygmaeus): a pivotal species for tracking the coevolution of killer cell Ig-like receptors with MHC-C. J. Immunol. 169:220–29 [Google Scholar]
  95. Winter CC, Long EO. 95.  1997. A single amino acid in the p58 killer cell inhibitory receptor controls the ability of natural killer cells to discriminate between the two groups of HLA-C allotypes. J. Immunol. 158:4026–28 [Google Scholar]
  96. Guethlein LA, Norman PJ, Heijmans CM, de Groot NG, Hilton HG. 96.  et al. 2017. Two orangutan species have evolved different KIR alleles and haplotypes. J. Immunol. 198:3157–69 [Google Scholar]
  97. Cisneros E, Moraru M, Gomez-Lozano N, Lopez-Botet M, Vilches C. 97.  2012. KIR2DL5: An orphan inhibitory receptor displaying complex patterns of polymorphism and expression. Front. Immunol. 3:289 [Google Scholar]
  98. Older Aguilar AM, Guethlein LA, Adams EJ, Abi-Rached L, Moesta AK, Parham P. 98.  2010. Coevolution of killer cell Ig-like receptors with HLA-C to become the major variable regulators of human NK cells. J. Immunol. 185:4238–51 [Google Scholar]
  99. Winter CC, Gumperz JE, Parham P, Long EO, Wagtmann N. 99.  1998. Direct binding and functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C allotype recognition. J. Immunol. 161:571–77 [Google Scholar]
  100. Abi-Rached L, Moesta AK, Rajalingam R, Guethlein LA, Parham P. 100.  2010. Human-specific evolution and adaptation led to major qualitative differences in the variable receptors of human and chimpanzee natural killer cells. PLOS Genet 6:e1001192 [Google Scholar]
  101. Moesta AK, Abi-Rached L, Norman PJ, Parham P. 101.  2009. Chimpanzees use more varied receptors and ligands than humans for inhibitory killer cell Ig-like receptor recognition of the MHC-C1 and MHC-C2 epitopes. J. Immunol. 182:3628–37 [Google Scholar]
  102. Moesta AK, Graef T, Abi-Rached L, Older Aguilar AM, Guethlein LA, Parham P. 102.  2010. Humans differ from other hominids in lacking an activating NK cell receptor that recognizes the C1 epitope of MHC class I. J. Immunol. 185:4233–37 [Google Scholar]
  103. Older Aguilar AM, Guethlein LA, Abi-Rached L, Parham P. 103.  2011. Natural variation at position 45 in the D1 domain of lineage III killer cell immunoglobulin-like receptors (KIR) has major effects on the avidity and specificity for MHC class I. Immunogenetics 63:543–47 [Google Scholar]
  104. Graef T, Moesta AK, Norman PJ, Abi-Rached L, Vago L. 104.  et al. 2009. KIR2DS4 is a product of gene conversion with KIR3DL2 that introduced specificity for HLA-A*11 while diminishing avidity for HLA-C. J. Exp. Med. 206:2557–72 [Google Scholar]
  105. Langergraber KE, Prufer K, Rowney C, Boesch C, Crockford C. 105.  et al. 2012. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. PNAS 109:15716–21 [Google Scholar]
  106. Hawks J. 106.  2012. Longer time scale for human evolution. PNAS 109:15531–32 [Google Scholar]
  107. Diogo R, Molnar JL, Wood B. 107.  2017. Bonobo anatomy reveals stasis and mosaicism in chimpanzee evolution, and supports bonobos as the most appropriate extant model for the common ancestor of chimpanzees and humans. Sci. Rep. 7:608 [Google Scholar]
  108. Robson SL, Wood B. 108.  2008. Hominin life history: reconstruction and evolution. J. Anat. 212:394–425 [Google Scholar]
  109. Young NM, Capellini TD, Roach NT, Alemseged Z. 109.  2015. Fossil hominin shoulders support an African ape-like last common ancestor of humans and chimpanzees. PNAS 112:11829–34 [Google Scholar]
  110. Duda P, Zrzavy J. 110.  2013. Evolution of life history and behavior in Hominidae: towards phylogenetic reconstruction of the chimpanzee-human last common ancestor. J. Hum. Evol. 65:424–46 [Google Scholar]
  111. McGrew WC. 111.  2010. In search of the last common ancestor: new findings on wild chimpanzees. Philos. Trans. R. Soc. Lond. B 365:3267–76 [Google Scholar]
  112. Pyo CW, Guethlein LA, Vu Q, Wang R, Abi-Rached L. 112.  et al. 2010. Different patterns of evolution in the centromeric and telomeric regions of group A and B haplotypes of the human killer cell Ig-like receptor locus. PLOS ONE 5:e15115 [Google Scholar]
  113. Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K. 113.  et al. 1997. Human diversity in killer cell inhibitory receptor genes. Immunity 7:753–63 [Google Scholar]
  114. Valiante NM, Uhrberg M, Shilling HG, Lienert-Weidenbach K, Arnett KL. 114.  et al. 1997. Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 7:739–51 [Google Scholar]
  115. Hollenbach JA, Augusto DG, Alaez C, Bubnova L, Fae I. 115.  et al. 2013. 16: (. th ) IHIW: population global distribution of killer immunoglobulin-like receptor (KIR) and ligands. Int. J. Immunogenet. 40:39–45 [Google Scholar]
  116. Single RM, Martin MP, Gao X, Meyer D, Yeager M. 116.  et al. 2007. Global diversity and evidence for coevolution of KIR and HLA. Nat. Genet. 39:1114–19 [Google Scholar]
  117. Kulkarni S, Martin MP, Carrington M. 117.  2008. The Yin and Yang of HLA and KIR in human disease. Semin. Immunol. 20:343–52 [Google Scholar]
  118. Takeshita LY, Gonzalez-Galarza FF, dos Santos EJ, Maia MH, Rahman MM. 118.  et al. 2013. A database for curating the associations between killer cell immunoglobulin-like receptors and diseases in worldwide populations. Database 2013:bat021 [Google Scholar]
  119. Kennedy PR, Chazara O, Gardner L, Ivarsson MA, Farrell LE. 119.  et al. 2016. Activating KIR2DS4 is expressed by uterine NK cells and contributes to successful pregnancy. J. Immunol. 197:4292–300 [Google Scholar]
  120. Hilton HG, Guethlein LA, Goyos A, Nemat-Gorgani N, Bushnell DA. 120.  et al. 2015. Polymorphic HLA-C receptors balance the functional characteristics of KIR haplotypes. J. Immunol. 195:3160–70 [Google Scholar]
  121. Blokhuis JH, Hilton HG, Guethlein LA, Norman PJ, Nemat-Gorgani N. 121.  et al. 2017. KIR2DS5 allotypes that recognize the C2 epitope of HLA-C are common among Africans and absent from Europeans. Immun. Inflamm. Dis. 5:461–68 [Google Scholar]
  122. Nakimuli A, Chazara O, Hiby SE, Farrell L, Tukwasibwe S. 122.  et al. 2015. A KIR B centromeric region present in Africans but not Europeans protects pregnant women from pre-eclampsia. PNAS 112:845–50 [Google Scholar]
  123. Hilton HG, Blokhuis JH, Guethlein LA, Norman PJ, Parham P. 123.  2017. Resurrecting KIR2DP1: a key intermediate in the evolution of human inhibitory NK cell receptors that recognize HLA-C. J. Immunol. 198:1961–73 [Google Scholar]
  124. Braud V, Jones EY, McMichael A. 124.  1997. The human major histocompatibility complex class Ib molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at positions 2 and 9. Eur. J. Immunol. 27:1164–69 [Google Scholar]
  125. Strong RK, Holmes MA, Li P, Braun L, Lee N, Geraghty DE. 125.  2003. HLA-E allelic variants: correlating differential expression, peptide affinities, crystal structures, and thermal stabilities. J. Biol. Chem. 278:5082–90 [Google Scholar]
  126. Bachanova V, Weisdorf DJ, Wang T, Marsh SG, Trachtenberg E. 126.  et al. 2016. Donor KIR B genotype improves progression-free survival of non-Hodgkin lymphoma patients receiving unrelated donor transplantation. Biol. Blood Marrow Transplant 22:1602–7 [Google Scholar]
  127. Cooley S, Trachtenberg E, Bergemann TL, Saeteurn K, Klein J. 127.  et al. 2009. Donors with group B KIR haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia. Blood 113:726–32 [Google Scholar]
  128. Merino AM, Sabbaj S, Easlick J, Goepfert P, Kaslow RA, Tang J. 128.  2013. Dimorphic HLA-B signal peptides differentially influence HLA-E- and natural killer cell-mediated cytolysis of HIV-1-infected target cells. Clin. Exp. Immunol. 174:414–23 [Google Scholar]
  129. Merino AM, Song W, He D, Mulenga J, Allen S. 129.  et al. 2012. HLA-B signal peptide polymorphism influences the rate of HIV-1 acquisition but not viral load. J. Infect. Dis. 205:1797–805 [Google Scholar]
  130. Koller BH, Geraghty DE, DeMars R, Duvick L, Rich SS, Orr HT. 130.  1989. Chromosomal organization of the human major histocompatibility complex class I gene family. J. Exp. Med. 169:469–80 [Google Scholar]
  131. Horton R, Gibson R, Coggill P, Miretti M, Allcock RJ. 131.  et al. 2008. Variation analysis and gene annotation of eight MHC haplotypes: the MHC Haplotype Project. Immunogenetics 60:1–18 [Google Scholar]
  132. Abi-Rached L, Jobin MJ, Kulkarni S, McWhinnie A, Dalva K. 132.  et al. 2011. The shaping of modern human immune systems by multiregional admixture with archaic humans. Science 334:89–94 [Google Scholar]
  133. Kulkarni S, Savan R, Qi Y, Gao X, Yuki Y. 133.  et al. 2011. Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature 472:495–98 [Google Scholar]
  134. Yunis EJ, Romero V, Diaz-Giffero F, Zuniga J, Koka P. 134.  2007. Natural Killer cell receptor NKG2A/HLA-E interaction dependent differential thymopoiesis of hematopoietic progenitor cells influences the outcome of HIV Infection. J. Stem Cells 2:237–48 [Google Scholar]
  135. Jiang W, Johnson C, Jayaraman J, Simecek N, Noble J. 135.  et al. 2012. Copy number variation leads to considerable diversity for B but not A haplotypes of the human KIR genes encoding NK cell receptors. Genome Res 22:1845–54 [Google Scholar]
  136. Roe D, Vierra-Green C, Pyo CW, Eng K, Hall R. 136.  et al. 2017. Revealing complete complex KIR haplotypes phased by long-read sequencing technology. Genes Immun 18:127–34 [Google Scholar]
  137. Burian A, Wang KL, Finton KA, Lee N, Ishitani A. 137.  et al. 2016. HLA-F and MHC-I open conformers bind natural killer cell Ig-like receptor KIR3DS1. PLOS ONE 11:e0163297 [Google Scholar]
  138. Garcia-Beltran WF, Holzemer A, Martrus G, Chung AW, Pacheco Y. 138.  et al. 2016. Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat. Immunol. 17:1067–74 [Google Scholar]
  139. Robinson J, Guethlein LA, Cereb N, Yang SY, Norman PJ. 139.  et al. 2017. Distinguishing functional polymorphism from random variation in the sequences of >10,000 HLA-A, -B and -C alleles. PLOS Genet 13:e1006862 [Google Scholar]
  140. Piontkivska H, Nei M. 140.  2003. Birth-and-death evolution in primate MHC class I genes: divergence time estimates. Mol. Biol. Evol. 20:601–9 [Google Scholar]
  141. Parham P, Moffett A. 141.  2013. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat. Rev. Immunol. 13:133–44 [Google Scholar]
  142. Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X. 142.  et al. 2004. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305:872–74 [Google Scholar]
  143. Gardiner CM. 143.  2015. NK cell function and receptor diversity in the context of HCV infection. Front. Microbiol. 6:1061 [Google Scholar]
  144. Pollmann J, Rolle A, Hofmann M, Cerwenka A. 144.  2017. Hepatitis C virus and human cytomegalovirus-natural killer cell subsets in persistent viral infections. Front. Immunol. 8:566 [Google Scholar]
  145. Hiby SE, Walker JJ, O'Shaughnessy KM, Redman CW, Carrington M. 145.  et al. 2004. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J. Exp. Med. 200:957–65 [Google Scholar]
  146. King A, Burrows T, Loke YW. 146.  1996–1997. Human uterine natural killer cells. Nat Immun 15:41–52 [Google Scholar]
  147. Bulmer JN, Lash GE. 147.  2005. Human uterine natural killer cells: a reappraisal. 2005. Mol. Immunol. 42:511–21 [Google Scholar]
  148. Moffett A, Colucci F. 148.  2015. Co-evolution of NK receptors and HLA ligands in humans is driven by reproduction. Immunol. Rev. 267:283–97 [Google Scholar]
  149. Hackmon R, Pinnaduwage L, Zhang J, Lye SJ, Geraghty DE, Dunk CE. 149.  2017. Definitive class I human leukocyte antigen expression in gestational placentation: HLA-F, HLA-E, HLA-C, and HLA-G in extravillous trophoblast invasion on placentation, pregnancy, and parturition. Am. J. Reprod. Immunol. 77:e12643 [Google Scholar]
  150. Kuroki K, Mio K, Takahashi A, Matsubara H, Kasai Y. 150.  et al. 2017. Cutting edge: class II-like structural features and strong receptor binding of the nonclassical HLA-G2 isoform homodimer. J. Immunol. 198:3399–403 [Google Scholar]
  151. Shiroishi M, Kuroki K, Rasubala L, Tsumoto K, Kumagai I. 151.  et al. 2006. Structural basis for recognition of the nonclassical MHC molecule HLA-G by the leukocyte Ig-like receptor B2 (LILRB2/LIR2/ILT4/CD85d). PNAS 103:16412–17 [Google Scholar]
  152. Rajagopalan S, Bryceson YT, Kuppusamy SP, Geraghty DE, van der Meer A. 152.  et al. 2006. Activation of NK cells by an endocytosed receptor for soluble HLA-G. PLOS Biol 4:e9 [Google Scholar]
  153. Boyson JE, Erskine R, Whitman MC, Chiu M, Lau JM. 153.  et al. 2002. Disulfide bond-mediated dimerization of HLA-G on the cell surface. PNAS 99:16180–85 [Google Scholar]
  154. Clements CS, Kjer-Nielsen L, McCluskey J, Rossjohn J. 154.  2007. Structural studies on HLA-G: implications for ligand and receptor binding. Hum. Immunol. 68:220–26 [Google Scholar]
  155. Moradi S, Berry R, Pymm P, Hitchen C, Beckham SA. 155.  et al. 2015. The structure of the atypical killer cell immunoglobulin-like receptor, KIR2DL4. J. Biol. Chem. 290:10460–71 [Google Scholar]
  156. Rajagopalan S. 156.  2014. HLA-G-mediated NK cell senescence promotes vascular remodeling: implications for reproduction. Cell Mol. Immunol. 11:460–66 [Google Scholar]
  157. Hilton HG, McMurtrey CP, Han AS, Djaoud Z, Guethlein LA. 157.  et al. 2017. The Intergenic recombinant HLA-B *46:01 has a distinctive peptidome that includes KIR2DL3 ligands. Cell Rep 19:1394–405 [Google Scholar]
  158. Hilton HG, Parham P. 158.  2017. Missing or altered self: human NK cell receptors that recognize HLA-C. Immunogenetics 69:567–79 [Google Scholar]
  159. Sharkey AM, Xiong S, Kennedy PR, Gardner L, Farrell LE. 159.  et al. 2015. Tissue-specific education of decidual NK cells. J. Immunol. 195:3026–32 [Google Scholar]
  160. Norman PJ, Hollenbach JA, Nemat-Gorgani N, Guethlein LA, Hilton HG. 160.  et al. 2013. Co-evolution of human leukocyte antigen (HLA) class I ligands with killer-cell immunoglobulin-like receptors (KIR) in a genetically diverse population of sub-Saharan Africans. PLOS Genet 9:e1003938 [Google Scholar]
  161. Carter AM, Enders AC, Pijnenborg R. 161.  2015. The role of invasive trophoblast in implantation and placentation of primates. Philos. Trans. R. Soc. Lond. B 370:20140070 [Google Scholar]
  162. Pijnenborg R, Vercruysse L, Carter AM. 162.  2011. Deep trophoblast invasion and spiral artery remodelling in the placental bed of the chimpanzee. Placenta 32:400–8 [Google Scholar]
  163. Vercruysse L, Carter AM, Pijnenborg R. 163.  2017. The role of the placenta in the initiation of spiral artery remodelling in an early pregnant chimpanzee uterus. Placenta 53:83–91 [Google Scholar]
  164. Pijnenborg R, Vercruysse L, Carter AM. 164.  2011. Deep trophoblast invasion and spiral artery remodelling in the placental bed of the lowland gorilla. Placenta 32:586–91 [Google Scholar]
  165. Carter AM, Pijnenborg R. 165.  2016. Emil Selenka on the embryonic membranes of the mouse and placentation in gibbons and orangutans. Placenta 37:65–71 [Google Scholar]
  166. Fan S, Hansen ME, Lo Y, Tishkoff SA. 166.  2016. Going global by adapting local: a review of recent human adaptation. Science 354:54–59 [Google Scholar]
  167. Beltrame MH, Rubel MA, Tishkoff SA. 167.  2016. Inferences of African evolutionary history from genomic data. Curr. Opin. Genet. Dev. 41:159–66 [Google Scholar]
  168. Tishkoff SA, Verrelli BC. 168.  2003. Patterns of human genetic diversity: implications for human evolutionary history and disease. Annu. Rev. Genom. Hum. Genet. 4:293–340 [Google Scholar]
  169. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK. 169.  et al. 2002. Genetic structure of human populations. Science 298:2381–85 [Google Scholar]
  170. Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A. 170.  et al. 2009. The genetic structure and history of Africans and African Americans. Science 324:1035–44 [Google Scholar]
  171. Wang S, Lewis CM, Jakobsson M, Ramachandran S, Ray N. 171.  et al. 2007. Genetic variation and population structure in Native Americans. PLOS Genet 3:e185 [Google Scholar]
  172. Li JZ, Absher DM, Tang H, Southwick AM, Casto AM. 172.  et al. 2008. Worldwide human relationships inferred from genome-wide patterns of variation. Science 319:1100–4 [Google Scholar]
  173. Parham P, Norman PJ, Abi-Rached L, Guethlein LA. 173.  2012. Human-specific evolution of killer cell immunoglobulin-like receptor recognition of major histocompatibility complex class I molecules. Philos. Trans. R. Soc. Lond. B 367:800–11 [Google Scholar]
  174. Augusto DG, Petzl-Erler ML. 174.  2015. KIR and HLA under pressure: evidences of coevolution across worldwide populations. Hum. Genet. 134:929–40 [Google Scholar]
  175. Prugnolle F, Manica A, Charpentier M, Guegan JF, Guernier V, Balloux F. 175.  2005. Pathogen-driven selection and worldwide HLA class I diversity. Curr. Biol. 15:1022–27 [Google Scholar]
  176. Kidd JM, Sharpton TJ, Bobo D, Norman PJ, Martin AR. 176.  et al. 2014. Exome capture from saliva produces high quality genomic and metagenomic data. BMC Genom 15:262 [Google Scholar]
  177. Hilton HG, Norman PJ, Nemat-Gorgani N, Goyos A, Hollenbach JA. 177.  et al. 2015. Loss and gain of natural killer cell receptor function in an African hunter-gatherer population. PLOS Genet 11:e1005439 [Google Scholar]
  178. Gendzekhadze K, Norman PJ, Abi-Rached L, Graef T, Moesta AK. 178.  et al. 2009. Co-evolution of KIR2DL3 with HLA-C in a human population retaining minimal essential diversity of KIR and HLA class I ligands. PNAS 106:18692–97 [Google Scholar]
  179. Kubinak JL, Ruff JS, Cornwall DH, Middlebrook EA, Hasenkrug KJ, Potts WK. 179.  2013. Experimental viral evolution reveals major histocompatibility complex polymorphisms as the primary host factors controlling pathogen adaptation and virulence. Genes Immun 14:365–72 [Google Scholar]
  180. Payne R, Muenchhoff M, Mann J, Roberts HE, Matthews P. 180.  et al. 2014. Impact of HLA-driven HIV adaptation on virulence in populations of high HIV seroprevalence. PNAS 111:E5393–400 [Google Scholar]
  181. Raberg L. 181.  2014. How to live with the enemy: understanding tolerance to parasites. PLOS Biol 12:e1001989 [Google Scholar]
  182. Rosenberg K, Trevathan W. 182.  2002. Birth, obstetrics and human evolution. BJOG 109:1199–206 [Google Scholar]
  183. Scally A, Durbin R. 183.  2012. Revising the human mutation rate: implications for understanding human evolution. Nat. Rev. Genet. 13:745–53 [Google Scholar]
  184. Havlicek J, Roberts SC. 184.  2009. MHC-correlated mate choice in humans: a review. Psychoneuroendocrinology 34:497–512 [Google Scholar]
  185. Kamiya T, O'Dwyer K, Westerdahl H, Senior A, Nakagawa S. 185.  2014. A quantitative review of MHC-based mating preference: the role of diversity and dissimilarity. Mol. Ecol. 23:5151–63 [Google Scholar]
  186. Milinski M. 186.  2014. Arms races, ornaments and fragrant genes: the dilemma of mate choice in fishes. Neurosci. Biobehav. Rev. 46:Part 4567–72 [Google Scholar]
  187. Roberts SC, Little AC. 187.  2008. Good genes, complementary genes and human mate preferences. Genetica 134:31–43 [Google Scholar]
  188. Hoare HL, Sullivan LC, Clements CS, Ely LK, Beddoe T. 188.  et al. 2008. Subtle changes in peptide conformation profoundly affect recognition of the non-classical MHC class I molecule HLA-E by the CD94-NKG2 natural killer cell receptors. J. Mol. Biol. 377:1297–303 [Google Scholar]
  189. Vales-Gomez M, Reyburn HT, Erskine RA, Lopez-Botet M, Strominger JL. 189.  1999. Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E. EMBO J 18:4250–60 [Google Scholar]
  190. Albrecht V, Zweiniger C, Surendranath V, Lang K, Schofl G. 190.  et al. 2017. Dual redundant sequencing strategy: Full-length gene characterisation of 1056 novel and confirmatory HLA alleles. HLA 90:79–87 [Google Scholar]
  191. Hosomichi K, Shiina T, Tajima A, Inoue I. 191.  2015. The impact of next-generation sequencing technologies on HLA research. J. Hum. Genet. 60:665–73 [Google Scholar]
  192. Schofl G, Lang K, Quenzel P, Bohme I, Sauter J. 192.  et al. 2017. 2.7 million samples genotyped for HLA by next generation sequencing: lessons learned. BMC Genom 18:161 [Google Scholar]
  193. Yin Y, Lan JH, Nguyen D, Valenzuela N, Takemura P. 193.  et al. 2016. Application of high-throughput next-generation sequencing for HLA typing on buccal extracted DNA: results from over 10,000 donor recruitment samples. PLOS ONE 11:e0165810 [Google Scholar]
  194. Klitz W, Hedrick P, Louis EJ. 194.  2012. New reservoirs of HLA alleles: pools of rare variants enhance immune defense. Trends Genet 28:480–86 [Google Scholar]
  195. Averdam A, Petersen B, Rosner C, Neff J, Roos C. 195.  et al. 2009. A novel system of polymorphic and diverse NK cell receptors in primates. PLOS Genet 5:e1000688 [Google Scholar]
  196. Abi-Rached L, Kuhl H, Roos C, ten Hallers B, Zhu B. 196.  et al. 2010. A small, variable, and irregular killer cell Ig-like receptor locus accompanies the absence of MHC-C and MHC-G in gibbons. J. Immunol. 184:1379–91 [Google Scholar]
  197. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M. 197.  et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–49 [Google Scholar]
  198. Kumar S, Stecher G, Tamura K. 198.  2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870–74 [Google Scholar]
  199. Martin MP, Bashirova A, Traherne J, Trowsdale J, Carrington M. 199.  2003. Cutting edge: expansion of the KIR locus by unequal crossing over. J. Immunol. 171:2192–95 [Google Scholar]
  200. Hsu KC, Liu XR, Selvakumar A, Mickelson E, O'Reilly RJ, Dupont B. 200.  2002. Killer Ig-like receptor haplotype analysis by gene content: evidence for genomic diversity with a minimum of six basic framework haplotypes, each with multiple subsets. J. Immunol. 169:5118–29 [Google Scholar]
  201. Norman PJ, Abi-Rached L, Gendzekhadze K, Hammond JA, Moesta AK. 201.  et al. 2009. Meiotic recombination generates rich diversity in NK cell receptor genes, alleles, and haplotypes. Genome Res 19:757–69 [Google Scholar]
/content/journals/10.1146/annurev-immunol-042617-053149
Loading
/content/journals/10.1146/annurev-immunol-042617-053149
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error