1932

Abstract

Signaling through the T cell antigen receptor (TCR) activates a series of tyrosine kinases. Directly associated with the TCR, the SRC family kinase LCK and the SYK family kinase ZAP-70 are essential for all downstream responses to TCR stimulation. In contrast, the TEC family kinase ITK is not an obligate component of the TCR cascade. Instead, ITK functions as a tuning dial, to translate variations in TCR signal strength into differential programs of gene expression. Recent insights into TEC kinase structure have provided a view into the molecular mechanisms that generate different states of kinase activation. In resting lymphocytes, TEC kinases are autoinhibited, and multiple interactions between the regulatory and kinase domains maintain low activity. Following TCR stimulation, newly generated signaling modules compete with the autoinhibited core and shift the conformational ensemble to the fully active kinase. This multidomain control over kinase activation state provides a structural mechanism to account for ITK's ability to tune the TCR signal.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042617-053344
2018-04-26
2025-04-26
Loading full text...

Full text loading...

/deliver/fulltext/immunol/36/1/annurev-immunol-042617-053344.html?itemId=/content/journals/10.1146/annurev-immunol-042617-053344&mimeType=html&fmt=ahah

Literature Cited

  1. Tkach K, Altan-Bonnet G. 1.  2013. T cell responses to antigen: hasty proposals resolved through long engagements. Curr. Opin. Immunol. 25120–25 [Google Scholar]
  2. Roybal KT, Lim WA. 2.  2017. Synthetic immunology: hacking immune cells to expand their therapeutic capabilities. Annu. Rev. Immunol. 35229–53 [Google Scholar]
  3. Chakraborty AK. 3.  2017. A perspective on the role of computational models in immunology. Annu. Rev. Immunol. 35403–39 [Google Scholar]
  4. Vodovotz Y, Xia A, Read EL, Bassaganya-Riera J, Hafler DA. 4.  et al. 2017. Solving immunology?. Trends Immunol 38116–27 [Google Scholar]
  5. Eckhart W, Hutchinson MA, Hunter T. 5.  1979. An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates. Cell 18925–33 [Google Scholar]
  6. Sefton BM, Hunter T, Beemon K, Eckhart W. 6.  1980. Evidence that the phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell 20807–16 [Google Scholar]
  7. Cohen P. 7.  2002. The origins of protein phosphorylation. Nat. Cell Biol. 4E127–30 [Google Scholar]
  8. Fischer EH. 8.  2010. Phosphorylase and the origin of reversible protein phosphorylation. Biol. Chem. 391131–37 [Google Scholar]
  9. Hunter T. 9.  2015. Discovering the first tyrosine kinase. PNAS 1127877–82 [Google Scholar]
  10. Berg LJ, Finkelstein LD, Lucas JA, Schwartzberg PL. 10.  2005. Tec family kinases in T lymphocyte development and function. Annu. Rev. Immunol. 23549–600 [Google Scholar]
  11. Gibson S, Leung B, Squire JA, Hill M, Arima N. 11.  et al. 1993. Identification, cloning, and characterization of a novel human T-cell-specific tyrosine kinase located at the hematopoietin complex on chromosome 5q. Blood 821561–72 [Google Scholar]
  12. Heyeck SD, Berg LJ. 12.  1993. Developmental regulation of a murine T-cell-specific tyrosine kinase gene, Tsk. PNAS 90669–73 [Google Scholar]
  13. Siliciano JD, Morrow TA, Desiderio SV. 13.  1992. itk, a T-cell-specific tyrosine kinase gene inducible by interleukin 2. PNAS 8911194–98 [Google Scholar]
  14. Tanaka N, Asao H, Ohtani K, Nakamura M, Sugamura K. 14.  1993. A novel human tyrosine kinase gene inducible in T cells by interleukin 2. FEBS Lett 3241–5 [Google Scholar]
  15. Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A. 15.  et al. 1993. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361226–33 [Google Scholar]
  16. Yamada N, Kawakami Y, Kimura H, Fukamachi H, Baier G. 16.  et al. 1993. Structure and expression of novel protein-tyrosine kinases, Emb and Emt, in hematopoietic cells. Biochem. Biophys. Res. Commun. 192231–40 [Google Scholar]
  17. Bruton OC. 17.  1952. Agammaglobulinemia. Pediatrics 9722–28 [Google Scholar]
  18. Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE. 18.  et al. 2013. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J. Clin. Oncol. 3188–94 [Google Scholar]
  19. Byrd JC, Harrington B, O'Brien S, Jones JA, Schuh A. 19.  et al. 2016. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374323–32 [Google Scholar]
  20. Smith CI. 20.  2017. From identification of the BTK kinase to effective management of leukemia. Oncogene 362045–53 [Google Scholar]
  21. Davis MM, Krogsgaard M, Huse M, Huppa J, Lillemeier BF, Li QJ. 21.  2007. T cells as a self-referential, sensory organ. Annu. Rev. Immunol. 25681–95 [Google Scholar]
  22. Klein L, Kyewski B, Allen PM, Hogquist KA. 22.  2014. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat. Rev. Immunol. 14377–91 [Google Scholar]
  23. Brazin KN, Mallis RJ, Das DK, Feng Y, Hwang W. 23.  et al. 2015. Structural features of the αβTCR mechanotransduction apparatus that promote pMHC discrimination. Front. Immunol. 6441 [Google Scholar]
  24. Govern CC, Paczosa MK, Chakraborty AK, Huseby ES. 24.  2010. Fast on-rates allow short dwell time ligands to activate T cells. PNAS 1078724–29 [Google Scholar]
  25. Glaichenhaus N, Shastri N, Littman DR, Turner JM. 25.  1991. Requirement for association of p56lck with CD4 in antigen-specific signal transduction in T cells. Cell 64511–20 [Google Scholar]
  26. Chakraborty AK, Weiss A. 26.  2014. Insights into the initiation of TCR signaling. Nat. Immunol. 15798–807 [Google Scholar]
  27. Deindl S, Kadlecek TA, Brdicka T, Cao X, Weiss A, Kuriyan J. 27.  2007. Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. Cell 129735–46 [Google Scholar]
  28. Brdicka T, Kadlecek TA, Roose JP, Pastuszak AW, Weiss A. 28.  2005. Intramolecular regulatory switch in ZAP-70: analogy with receptor tyrosine kinases. Mol. Cell Biol. 254924–33 [Google Scholar]
  29. Yan Q, Barros T, Visperas PR, Deindl S, Kadlecek TA. 29.  et al. 2013. Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker. Mol. Cell Biol. 332188–201 [Google Scholar]
  30. Balagopalan L, Kortum RL, Coussens NP, Barr VA, Samelson LE. 30.  2015. The linker for activation of T cells (LAT) signaling hub: from signaling complexes to microclusters. J. Biol. Chem. 29026422–29 [Google Scholar]
  31. Chapman NM, Yoder AN, Barbon KM, Bilal MY, Connolly SF, Houtman JC. 31.  2015. Proline-rich tyrosine kinase 2 controls PI3-kinase activation downstream of the T cell antigen receptor in human T cells. J. Leukoc. Biol. 97285–96 [Google Scholar]
  32. Shim EK, Jung SH, Lee JR. 32.  2011. Role of two adaptor molecules SLP-76 and LAT in the PI3K signaling pathway in activated T cells. J. Immunol. 1862926–35 [Google Scholar]
  33. Helou YA, Petrashen AP, Salomon AR. 33.  2015. Vav1 regulates T-cell activation through a feedback mechanism and crosstalk between the T-cell receptor and CD28. J. Proteome Res. 142963–75 [Google Scholar]
  34. Perez-Villar JJ, Whitney GS, Sitnick MT, Dunn RJ, Venkatesan S. 34.  et al. 2002. Phosphorylation of the linker for activation of T-cells by Itk promotes recruitment of Vav. Biochemistry 4110732–40 [Google Scholar]
  35. Pawson T, Nash P. 35.  2003. Assembly of cell regulatory systems through protein interaction domains. Science 300445–52 [Google Scholar]
  36. Heyeck SD, Wilcox HM, Bunnell SC, Berg LJ. 36.  1997. Lck phosphorylates the activation loop tyrosine of the Itk kinase domain and activates Itk kinase activity. J. Biol. Chem. 27225401–8 [Google Scholar]
  37. Wilcox HM, Berg LJ. 37.  2003. Itk phosphorylation sites are required for functional activity in primary T cells. J. Biol. Chem. 27837112–21 [Google Scholar]
  38. Noh DY, Shin SH, Rhee SG. 38.  1995. Phosphoinositide-specific phospholipase C and mitogenic signaling. Biochim. Biophys. Acta 124299–113 [Google Scholar]
  39. Guy CS, Vignali DA. 39.  2009. Organization of proximal signal initiation at the TCR:CD3 complex. Immunol. Rev. 2327–21 [Google Scholar]
  40. Smith-Garvin JE, Koretzky GA, Jordan MS. 40.  2009. T cell activation. Annu. Rev. Immunol. 27591–619 [Google Scholar]
  41. Jun JE, Rubio I, Roose JP. 41.  2013. Regulation of ras exchange factors and cellular localization of ras activation by lipid messengers in T cells. Front. Immunol. 4239 [Google Scholar]
  42. Hogan PG, Lewis RS, Rao A. 42.  2010. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu. Rev. Immunol. 28491–533 [Google Scholar]
  43. Brownlie RJ, Zamoyska R. 43.  2013. T cell receptor signalling networks: branched, diversified and bounded. Nat. Rev. Immunol. 13257–69 [Google Scholar]
  44. Hogan PG. 44.  2017. Calcium-NFAT transcriptional signalling in T cell activation and T cell exhaustion. Cell Calcium 6366–69 [Google Scholar]
  45. Gerondakis S, Fulford TS, Messina NL, Grumont RJ. 45.  2014. NF-κB control of T cell development. Nat. Immunol. 1515–25 [Google Scholar]
  46. Babich A, Burkhardt JK. 46.  2013. Coordinate control of cytoskeletal remodeling and calcium mobilization during T-cell activation. Immunol. Rev. 25680–94 [Google Scholar]
  47. Comrie WA, Burkhardt JK. 47.  2016. Action and traction: cytoskeletal control of receptor triggering at the immunological synapse. Front. Immunol. 768 [Google Scholar]
  48. Cantrell D. 48.  2015. Signaling in lymphocyte activation. Cold Spring Harb. Perspect. Biol. 7a018788 [Google Scholar]
  49. Zehn D, King C, Bevan MJ, Palmer E. 49.  2012. TCR signaling requirements for activating T cells and for generating memory. Cell Mol. Life Sci. 691565–75 [Google Scholar]
  50. Zehn D, Lee SY, Bevan MJ. 50.  2009. Complete but curtailed T-cell response to very low-affinity antigen. Nature 458211–14 [Google Scholar]
  51. Taylor MJ, Husain K, Gartner ZJ, Mayor S, Vale RD. 51.  2017. A DNA-based T cell receptor reveals a role for receptor clustering in ligand discrimination. Cell 169108–19.e20 [Google Scholar]
  52. Moran AE, Hogquist KA. 52.  2012. T-cell receptor affinity in thymic development. Immunology 135261–67 [Google Scholar]
  53. Daniels MA, Teixeiro E. 53.  2015. TCR signaling in T cell memory. Front. Immunol. 6617 [Google Scholar]
  54. Joshi NS, Cui W, Chandele A, Lee HK, Urso DR. 54.  et al. 2007. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27281–95 [Google Scholar]
  55. Kaech SM, Cui W. 55.  2012. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12749–61 [Google Scholar]
  56. Man K, Kallies A. 56.  2015. Synchronizing transcriptional control of T cell metabolism and function. Nat. Rev. Immunol. 15574–84 [Google Scholar]
  57. Man K, Miasari M, Shi W, Xin A, Henstridge DC. 57.  et al. 2013. The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat. Immunol. 141155–65 [Google Scholar]
  58. Nayar R, Schutten E, Bautista B, Daniels K, Prince AL. 58.  et al. 2014. Graded levels of IRF4 regulate CD8+ T cell differentiation and expansion, but not attrition, in response to acute virus infection. J. Immunol. 1925881–93 [Google Scholar]
  59. Yao S, Buzo BF, Pham D, Jiang L, Taparowsky EJ. 59.  et al. 2013. Interferon regulatory factor 4 sustains CD8+ T cell expansion and effector differentiation. Immunity 39833–45 [Google Scholar]
  60. King CG, Koehli S, Hausmann B, Schmaler M, Zehn D, Palmer E. 60.  2012. T cell affinity regulates asymmetric division, effector cell differentiation, and tissue pathology. Immunity 37709–20 [Google Scholar]
  61. Zehn D, Roepke S, Weakly K, Bevan MJ, Prlic M. 61.  2014. Inflammation and TCR signal strength determine the breadth of the T cell response in a bim-dependent manner. J. Immunol. 192200–5 [Google Scholar]
  62. Chen JL, Morgan AJ, Stewart-Jones G, Shepherd D, Bossi G. 62.  et al. 2010. Ca2+ release from the endoplasmic reticulum of NY-ESO-1-specific T cells is modulated by the affinity of TCR and by the use of the CD8 coreceptor. J. Immunol. 1841829–39 [Google Scholar]
  63. Miller AT, Wilcox HM, Lai Z, Berg LJ. 63.  2004. Signaling through Itk promotes T helper 2 differentiation via negative regulation of T-bet. Immunity 2167–80 [Google Scholar]
  64. Wulfing C, Rabinowitz JD, Beeson C, Sjaastad MD, McConnell HM, Davis MM. 64.  1997. Kinetics and extent of T cell activation as measured with the calcium signal. J. Exp. Med. 1851815–25 [Google Scholar]
  65. Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI. 65.  1997. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386855–58 [Google Scholar]
  66. Dolmetsch RE, Xu K, Lewis RS. 66.  1998. Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392933–36 [Google Scholar]
  67. Martinez GJ, Pereira RM, Aijo T, Kim EY, Marangoni F. 67.  et al. 2015. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 42265–78 [Google Scholar]
  68. Rosette C, Werlen G, Daniels MA, Holman PO, Alam SM. 68.  et al. 2001. The impact of duration versus extent of TCR occupancy on T cell activation: a revision of the kinetic proofreading model. Immunity 1559–70 [Google Scholar]
  69. Das J, Ho M, Zikherman J, Govern C, Yang M. 69.  et al. 2009. Digital signaling and hysteresis characterize ras activation in lymphoid cells. Cell 136337–51 [Google Scholar]
  70. Altan-Bonnet G, Germain RN. 70.  2005. Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLOS Biol 3e356 [Google Scholar]
  71. Kingeter LM, Paul S, Maynard SK, Cartwright NG, Schaefer BC. 71.  2010. Cutting edge: TCR ligation triggers digital activation of NF-κB. J. Immunol. 1854520–24 [Google Scholar]
  72. Donnadieu E, Lang V, Bismuth G, Ellmeier W, Acuto O. 72.  et al. 2001. Differential roles of Lck and Itk in T cell response to antigen recognition revealed by calcium imaging and electron microscopy. J. Immunol. 1665540–49A prescient paper revealing the tuning and amplification roles of ITK in T cells. [Google Scholar]
  73. Conley JM, Gallagher MP, Berg LJ. 73.  2016. T cells and gene regulation: the switching on and turning up of genes after T cell receptor stimulation in CD8 T cells. Front. Immunol. 776 [Google Scholar]
  74. Nayar R, Enos M, Prince A, Shin H, Hemmers S. 74.  et al. 2012. TCR signaling via Tec kinase ITK and interferon regulatory factor 4 (IRF4) regulates CD8+ T-cell differentiation. PNAS 109E2794–802This paper demonstrates the exquisite tuning of IRF4 expression by modulating ITK kinase activity. [Google Scholar]
  75. Atherly LO, Lucas JA, Felices M, Yin CC, Reiner SL, Berg LJ. 75.  2006. The Tec family tyrosine kinases Itk and Rlk regulate the development of conventional CD8+ T cells. Immunity 2579–91 [Google Scholar]
  76. Broussard C, Fleischacker C, Horai R, Chetana M, Venegas AM. 76.  et al. 2006. Altered development of CD8+ T cell lineages in mice deficient for the Tec kinases Itk and Rlk. Immunity 2593–104 [Google Scholar]
  77. Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT. 77.  et al. 2005. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 61236–44 [Google Scholar]
  78. Gomez-Rodriguez J, Meylan F, Handon R, Hayes ET, Anderson SM. 78.  et al. 2016. Itk is required for Th9 differentiation via TCR-mediated induction of IL-2 and IRF4. Nat. Commun. 710857 [Google Scholar]
  79. Huang W, Solouki S, Koylass N, Zheng SG, August A. 79.  2017. ITK signalling via the Ras/IRF4 pathway regulates the development and function of Tr1 cells. Nat. Commun. 815871 [Google Scholar]
  80. Fowell DJ, Shinkai K, Liao XC, Beebe AM, Coffman RL. 80.  et al. 1999. Impaired NFATc translocation and failure of Th2 development in Itk-deficient CD4+ T cells. Immunity 11399–409 [Google Scholar]
  81. Liao XC, Littman DR. 81.  1995. Altered T cell receptor signaling and disrupted T cell development in mice lacking Itk. Immunity 3757–69 [Google Scholar]
  82. Liu KQ, Bunnell SC, Gurniak CB, Berg LJ. 82.  1998. T cell receptor-initiated calcium release is uncoupled from capacitative calcium entry in Itk-deficient T cells. J. Exp. Med. 1871721–27 [Google Scholar]
  83. Grasis JA, Tsoukas CD. 83.  2011. Itk: the rheostat of the T cell response. J. Signal. Transduct. 2011297868 [Google Scholar]
  84. Schaeffer EM, Broussard C, Debnath J, Anderson S, McVicar DW, Schwartzberg PL. 84.  2000. Tec family kinases modulate thresholds for thymocyte development and selection. J. Exp. Med. 192987–1000 [Google Scholar]
  85. Molina TJ, Kishihara K, Siderovski DP, van Ewijk W, Narendran A. 85.  et al. 1992. Profound block in thymocyte development in mice lacking p56lck. Nature 357161–64 [Google Scholar]
  86. Berg LJ. 86.  2012. Signaling pathways that regulate T cell development and differentiation. J. Immunol. 1895487–88 [Google Scholar]
  87. Brugge JS, Erikson RL. 87.  1977. Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 269346–48 [Google Scholar]
  88. Purchio AF, Erikson E, Brugge JS, Erikson RL. 88.  1978. Identification of a polypeptide encoded by the avian sarcoma virus src gene. PNAS 751567–71 [Google Scholar]
  89. Courtneidge SA, Fumagalli S, Koegl M, Superti-Furga G, Twamley-Stein GM. 89.  1993. The Src family of protein tyrosine kinases: regulation and functions. Dev. Suppl. 199357–64 [Google Scholar]
  90. Levinson AD, Courtneidge SA, Bishop JM. 90.  1981. Structural and functional domains of the Rous sarcoma virus transforming protein (pp60src). PNAS 781624–28 [Google Scholar]
  91. Sicheri F, Moarefi I, Kuriyan J. 91.  1997. Crystal structure of the Src family tyrosine kinase Hck. Nature 385602–9 [Google Scholar]
  92. Xu W, Harrison SC, Eck MJ. 92.  1997. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385595–602 [Google Scholar]
  93. Palacios EH, Weiss A. 93.  2004. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 237990–8000 [Google Scholar]
  94. Tan YX, Zikherman J, Weiss A. 94.  2013. Novel tools to dissect the dynamic regulation of TCR signaling by the kinase Csk and the phosphatase CD45. Cold Spring Harb. Symp. Quant. Biol. 78131–39 [Google Scholar]
  95. Chow LM, Fournel M, Davidson D, Veillette A. 95.  1993. Negative regulation of T-cell receptor signalling by tyrosine protein kinase p50csk. Nature 365156–60 [Google Scholar]
  96. Hardwick JS, Sefton BM. 96.  1995. Activation of the Lck tyrosine protein kinase by hydrogen peroxide requires the phosphorylation of Tyr-394. PNAS 924527–31 [Google Scholar]
  97. Xu H, Littman DR. 97.  1995. The kinase-dependent function of Lck in T-cell activation requires an intact site for tyrosine autophosphorylation. Ann. N. Y. Acad. Sci. 76699–116 [Google Scholar]
  98. Kim J, Ahuja LG, Chao FA, Xia Y, McClendon CL. 98.  et al. 2017. A dynamic hydrophobic core orchestrates allostery in protein kinases. Sci. Adv. 3e1600663 [Google Scholar]
  99. Kornev AP, Taylor SS, Ten Eyck LF. 99.  2008. A helix scaffold for the assembly of active protein kinases. PNAS 10514377–82 [Google Scholar]
  100. Taylor SS, Shaw AS, Kannan N, Kornev AP. 100.  2015. Integration of signaling in the kinome: architecture and regulation of the αC Helix. Biochim. Biophys. Acta 18541567–74 [Google Scholar]
  101. Meharena HS, Fan X, Ahuja LG, Keshwani MM, McClendon CL. 101.  et al. 2016. Decoding the interactions regulating the active state mechanics of eukaryotic protein kinases. PLOS Biol 14e2000127 [Google Scholar]
  102. Zoller MJ, Nelson NC, Taylor SS. 102.  1981. Affinity labeling of cAMP-dependent protein kinase with p-fluorosulfonylbenzoyl adenosine: covalent modification of lysine 71. J. Biol. Chem. 25610837–42 [Google Scholar]
  103. Nolen B, Taylor S, Ghosh G. 103.  2004. Regulation of protein kinases: controlling activity through activation segment conformation. Mol. Cell 15661–75 [Google Scholar]
  104. Joseph RE, Xie Q, Andreotti AH. 104.  2010. Identification of an allosteric signaling network within Tec family kinases. J. Mol. Biol. 403231–42 [Google Scholar]
  105. Joseph RE, Kleino I, Wales TE, Xie Q, Fulton DB. 105.  et al. 2013. Activation loop dynamics determine the different catalytic efficiencies of B cell- and T cell-specific tec kinases. Sci. Signal. 6ra76 [Google Scholar]
  106. Joseph RE, Min L, Andreotti AH. 106.  2007. The linker between SH2 and kinase domains positively regulates catalysis of the Tec family kinases. Biochemistry 465455–62 [Google Scholar]
  107. Wang Q, Vogan EM, Nocka LM, Rosen CE, Zorn JA. 107.  et al. 2015. Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate. eLife 4e06074The first structural insights into multidomain fragments of any TEC family kinase. [Google Scholar]
  108. Hansson H, Mattsson PT, Allard P, Haapaniemi P, Vihinen M. 108.  et al. 1998. Solution structure of the SH3 domain from Bruton's tyrosine kinase. Biochemistry 372912–24 [Google Scholar]
  109. Mallis RJ, Brazin KN, Fulton DB, Andreotti AH. 109.  2002. Structural characterization of a proline-driven conformational switch within the Itk SH2 domain. Nat. Struct. Biol. 9900–5 [Google Scholar]
  110. Hyvonen M, Saraste M. 110.  1997. Structure of the PH domain and Btk motif from Bruton's tyrosine kinase: molecular explanations for X-linked agammaglobulinaemia. EMBO J 163396–404 [Google Scholar]
  111. Xie Q, Fulton DB, Andreotti AH. 111.  2015. A selective NMR probe to monitor the conformational transition from inactive to active kinase. ACS Chem. Biol. 10262–68 [Google Scholar]
  112. Joseph RE, Wales TE, Fulton DB, Engen JR, Andreotti AH. 112.  2017. Achieving a graded immune response: BTK adopts range of active/inactive conformations dictated by multiple interdomain contacts. Structure 251481–94.e4Solution-based structural analyses of BTK demonstrating the multiple conformational states that drive activation status. [Google Scholar]
  113. Hunter T. 113.  2012. Why nature chose phosphate to modify proteins. Philos. Trans. R. Soc. Lond. B 3672513–16 [Google Scholar]
  114. Devkota S, Joseph RE, Boyken SE, Fulton DB, Andreotti AH. 114.  2017. An autoinhibitory role for the pleckstrin homology domain of interleukin-2-inducible tyrosine kinase and its interplay with canonical phospholipid recognition. Biochemistry 562938–49Delineates the regulatory role of ITK PHTH and the balance between autoinhibition and phospholipid binding. [Google Scholar]
  115. Qi Q, August A. 115.  2009. The Tec family kinase Itk exists as a folded monomer in vivo. J. Biol. Chem. 28429882–92 [Google Scholar]
  116. Marquez JA, Smith CI, Petoukhov MV, Lo Surdo P, Mattsson PT. 116.  et al. 2003. Conformation of full-length Bruton tyrosine kinase (Btk) from synchrotron X-ray solution scattering. EMBO J 224616–24 [Google Scholar]
  117. August A, Sadra A, Dupont B, Hanafusa H. 117.  1997. Src-induced activation of inducible T cell kinase (ITK) requires phosphatidylinositol 3-kinase activity and the Pleckstrin homology domain of inducible T cell kinase. PNAS 9411227–32 [Google Scholar]
  118. Ching KA, Kawakami Y, Kawakami T, Tsoukas CD. 118.  1999. Emt/Itk associates with activated TCR complexes: role of the pleckstrin homology domain. J. Immunol. 1636006–13 [Google Scholar]
  119. Yang WC, Ching KA, Tsoukas CD, Berg LJ. 119.  2001. Tec kinase signaling in T cells is regulated by phosphatidylinositol 3-kinase and the Tec pleckstrin homology domain. J. Immunol. 166387–95 [Google Scholar]
  120. Wang X, Boyken SE, Hu J, Xu X, Rimer RP. 120.  et al. 2014. Calmodulin and PI(3,4,5)P(3) cooperatively bind to the Itk pleckstrin homology domain to promote efficient calcium signaling and IL-17A production. Sci. Signal. 7a74 [Google Scholar]
  121. Huang YH, Grasis JA, Miller AT, Xu R, Soonthornvacharin S. 121.  et al. 2007. Positive regulation of Itk PH domain function by soluble IP4. Science 316886–89 [Google Scholar]
  122. Dutta D, Barr VA, Akpan I, Mittelstadt PR, Singha LI. 122.  et al. 2017. Recruitment of calcineurin to the TCR positively regulates T cell activation. Nat. Immunol. 18196–204 [Google Scholar]
  123. Dombroski D, Houghtling RA, Labno CM, Precht P, Takesono A. 123.  et al. 2005. Kinase-independent functions for Itk in TCR-induced regulation of Vav and the actin cytoskeleton. J. Immunol. 1741385–92 [Google Scholar]
  124. Grasis JA, Browne CD, Tsoukas CD. 124.  2003. Inducible T cell tyrosine kinase regulates actin-dependent cytoskeletal events induced by the T cell antigen receptor. J. Immunol. 1703971–76 [Google Scholar]
  125. Labno CM, Lewis CM, You D, Leung DW, Takesono A. 125.  et al. 2003. Itk functions to control actin polymerization at the immune synapse through localized activation of Cdc42 and WASP. Curr. Biol. 131619–24 [Google Scholar]
  126. Mukherjee S, Rigaud S, Seok SC, Fu G, Prochenka A. 126.  et al. 2013. In silico modeling of Itk activation kinetics in thymocytes suggests competing positive and negative IP4 mediated feedbacks increase robustness. PLOS ONE 8e73937 [Google Scholar]
  127. Qi Q, Sahu N, August A. 127.  2006. Tec kinase Itk forms membrane clusters specifically in the vicinity of recruiting receptors. J. Biol. Chem. 28138529–34 [Google Scholar]
  128. Brazin KN, Fulton DB, Andreotti AH. 128.  2000. A specific intermolecular association between the regulatory domains of a Tec family kinase. J. Mol. Biol. 302607–23 [Google Scholar]
  129. Min L, Wu W, Joseph RE, Fulton DB, Berg L, Andreotti AH. 129.  2010. Disrupting the intermolecular self-association of Itk enhances T cell signaling. J. Immunol. 1844228–35 [Google Scholar]
  130. Baraldi E, Djinovic Carugo K, Hyvonen M, Surdo PL, Riley AM. 130.  et al. 1999. Structure of the PH domain from Bruton's tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. Structure 7449–60 [Google Scholar]
  131. Wu H. 131.  2013. Higher-order assemblies in a new paradigm of signal transduction. Cell 153287–92 [Google Scholar]
  132. Barr VA, Sherman E, Yi J, Akpan I, Rouquette-Jazdanian AK, Samelson LE. 132.  2016. Development of nanoscale structure in LAT-based signaling complexes. J. Cell Sci. 1294548–62 [Google Scholar]
  133. Coussens NP, Hayashi R, Brown PH, Balagopalan L, Balbo A. 133.  et al. 2013. Multipoint binding of the SLP-76 SH2 domain to ADAP is critical for oligomerization of SLP-76 signaling complexes in stimulated T cells. Mol. Cell Biol. 334140–51 [Google Scholar]
  134. Barda-Saad M, Shirasu N, Pauker MH, Hassan N, Perl O. 134.  et al. 2010. Cooperative interactions at the SLP-76 complex are critical for actin polymerization. EMBO J 292315–28 [Google Scholar]
  135. Houtman JC, Yamaguchi H, Barda-Saad M, Braiman A, Bowden B. 135.  et al. 2006. Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat. Struct. Mol. Biol. 13798–805 [Google Scholar]
  136. Wang X, Hills LB, Huang YH. 136.  2015. Lipid and protein co-regulation of PI3K effectors Akt and Itk in lymphocytes. Front. Immunol. 6117 [Google Scholar]
  137. Bunnell SC, Diehn M, Yaffe MB, Findell PR, Cantley LC, Berg LJ. 137.  2000. Biochemical interactions integrating Itk with the T cell receptor-initiated signaling cascade. J. Biol. Chem. 2752219–30 [Google Scholar]
  138. Bunnell SC, Henry PA, Kolluri R, Kirchhausen T, Rickles RJ, Berg LJ. 138.  1996. Identification of Itk/Tsk Src homology 3 domain ligands. J. Biol. Chem. 27125646–56 [Google Scholar]
  139. Andreotti AH, Bunnell SC, Feng S, Berg LJ, Schreiber SL. 139.  1997. Regulatory intramolecular association in a tyrosine kinase of the Tec family. Nature 38593–97 [Google Scholar]
  140. Laederach A, Cradic KW, Fulton DB, Andreotti AH. 140.  2003. Determinants of intra versus intermolecular self-association within the regulatory domains of Rlk and Itk. J. Mol. Biol. 3291011–20 [Google Scholar]
  141. Hao S, August A. 141.  2002. The proline rich region of the Tec homology domain of ITK regulates its activity. FEBS Lett 52553–58 [Google Scholar]
  142. Guimond DM, Cam NR, Hirve N, Duan W, Lambris JD. 142.  et al. 2013. Regulation of immune responsiveness in vivo by disrupting an early T-cell signaling event using a cell-permeable peptide. PLOS ONE 8e63645 [Google Scholar]
  143. Grasis JA, Guimond DM, Cam NR, Herman K, Magotti P. 143.  et al. 2010. In vivo significance of ITK-SLP-76 interaction in cytokine production. Mol. Cell Biol. 303596–609 [Google Scholar]
  144. Marengere LE, Okkenhaug K, Clavreul A, Couez D, Gibson S. 144.  et al. 1997. The SH3 domain of Itk/Emt binds to proline-rich sequences in the cytoplasmic domain of the T cell costimulatory receptor CD28. J. Immunol. 1593220–29 [Google Scholar]
  145. August A, Gibson S, Kawakami Y, Kawakami T, Mills GB, Dupont B. 145.  1994. CD28 is associated with and induces the immediate tyrosine phosphorylation and activation of the Tec family kinase ITK/EMT in the human Jurkat leukemic T-cell line. PNAS 919347–51 [Google Scholar]
  146. Bour-Jordan H, Esensten JH, Martinez-Llordella M, Penaranda C, Stumpf M, Bluestone JA. 146.  2011. Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family. Immunol. Rev. 241180–205 [Google Scholar]
  147. Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP. 147.  1992. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356607–9 [Google Scholar]
  148. Marelli-Berg FM, Okkenhaug K, Mirenda V. 148.  2007. A two-signal model for T cell trafficking. Trends Immunol 28267–73 [Google Scholar]
  149. Michel F, Attal-Bonnefoy G, Mangino G, Mise-Omata S, Acuto O. 149.  2001. CD28 as a molecular amplifier extending TCR ligation and signaling capabilities. Immunity 15935–45 [Google Scholar]
  150. Jain N, Miu B, Jiang JK, McKinstry KK, Prince A. 150.  et al. 2013. CD28 and ITK signals regulate autoreactive T cell trafficking. Nat. Med. 191632–37 [Google Scholar]
  151. Joseph RE, Fulton DB, Andreotti AH. 151.  2007. Mechanism and functional significance of Itk autophosphorylation. J. Mol. Biol. 3731281–92 [Google Scholar]
  152. Joseph RE, Severin A, Min L, Fulton DB, Andreotti AH. 152.  2009. SH2-dependent autophosphorylation within the Tec family kinase Itk. J. Mol. Biol. 391164–77 [Google Scholar]
  153. Su YW, Zhang Y, Schweikert J, Koretzky GA, Reth M, Wienands J. 153.  1999. Interaction of SLP adaptors with the SH2 domain of Tec family kinases. Eur. J. Immunol. 293702–11 [Google Scholar]
  154. Fang N, Motto DG, Ross SE, Koretzky GA. 154.  1996. Tyrosines 113, 128, and 145 of SLP-76 are required for optimal augmentation of NFAT promoter activity. J. Immunol. 1573769–73 [Google Scholar]
  155. Jordan MS, Sadler J, Austin JE, Finkelstein LD, Singer AL. 155.  et al. 2006. Functional hierarchy of the N-terminal tyrosines of SLP-76. J. Immunol. 1762430–38 [Google Scholar]
  156. Yablonski D, Kuhne MR, Kadlecek T, Weiss A. 156.  1998. Uncoupling of nonreceptor tyrosine kinases from PLC-γ1 in an SLP-76-deficient T cell. Science 281413–16 [Google Scholar]
  157. Jordan MS, Smith JE, Burns JC, Austin JE, Nichols KE. 157.  et al. 2008. Complementation in trans of altered thymocyte development in mice expressing mutant forms of the adaptor molecule SLP76. Immunity 28359–69 [Google Scholar]
  158. Ji Q, Ding Y, Salomon AR. 158.  2015. SRC homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) N-terminal tyrosine residues regulate a dynamic signaling equilibrium involving feedback of proximal T-cell receptor (TCR) signaling. Mol. Cell Proteom. 1430–40 [Google Scholar]
  159. Beach D, Gonen R, Bogin Y, Reischl IG, Yablonski D. 159.  2007. Dual role of SLP-76 in mediating T cell receptor-induced activation of phospholipase C-γ1. J. Biol. Chem. 2822937–46 [Google Scholar]
  160. Navarro MN, Feijoo-Carnero C, Arandilla AG, Trost M, Cantrell DA. 160.  2014. Protein kinase D2 is a digital amplifier of T cell receptor-stimulated diacylglycerol signaling in naive CD8+ T cells. Sci. Signal. 7ra99 [Google Scholar]
  161. Prehoda KE, Lim WA. 161.  2002. How signaling proteins integrate multiple inputs: a comparison of N-WASP and Cdk2. Curr. Opin. Cell Biol. 14149–54A detailed treatment of distinct switching mechanisms and signal integration. [Google Scholar]
  162. Chopra N, Wales TE, Joseph RE, Boyken SE, Engen JR. 162.  et al. 2016. Dynamic allostery mediated by a conserved tryptophan in the Tec family kinases. PLOS Comput. Biol. 12e1004826 [Google Scholar]
  163. Boyken SE, Chopra N, Xie Q, Joseph RE, Wales TE. 163.  et al. 2014. A conserved isoleucine maintains the inactive state of Bruton's tyrosine kinase. J. Mol. Biol. 4263656–69 [Google Scholar]
  164. Xie Q, Joseph RE, Fulton DB, Andreotti AH. 164.  2013. Substrate recognition of PLCγ1 via a specific docking surface on Itk. J. Mol. Biol. 425683–96 [Google Scholar]
  165. Ramer SE, Winkler DG, Carrera A, Roberts TM, Walsh CT. 165.  1991. Purification and initial characterization of the lymphoid-cell protein-tyrosine kinase p56lck from a baculovirus expression system. PNAS 886254–58 [Google Scholar]
  166. Housden HR, Skipp PJ, Crump MP, Broadbridge RJ, Crabbe T. 166.  et al. 2003. Investigation of the kinetics and order of tyrosine phosphorylation in the T-cell receptor zeta chain by the protein tyrosine kinase Lck. Eur. J. Biochem. 2702369–76 [Google Scholar]
  167. Bogin Y, Ainey C, Beach D, Yablonski D. 167.  2007. SLP-76 mediates and maintains activation of the Tec family kinase ITK via the T cell antigen receptor-induced association between SLP-76 and ITK. PNAS 1046638–43 [Google Scholar]
  168. Sela M, Bogin Y, Beach D, Oellerich T, Lehne J. 168.  et al. 2011. Sequential phosphorylation of SLP-76 at tyrosine 173 is required for activation of T and mast cells. EMBO J 303160–72 [Google Scholar]
  169. Devkota S, Joseph RE, Min L, Bruce Fulton D, Andreotti AH. 169.  2015. Scaffold protein SLP-76 primes PLCγ1 for activation by ITK-mediated phosphorylation. J. Mol. Biol. 4272734–47 [Google Scholar]
  170. Bunney TD, Esposito D, Mas-Droux C, Lamber E, Baxendale RW. 170.  et al. 2012. Structural and functional integration of the PLCγ interaction domains critical for regulatory mechanisms and signaling deregulation. Structure 202062–75 [Google Scholar]
  171. Liu BA, Jablonowski K, Shah EE, Engelmann BW, Jones RB, Nash PD. 171.  2010. SH2 domains recognize contextual peptide sequence information to determine selectivity. Mol. Cell Proteom. 92391–404 [Google Scholar]
  172. Braiman A, Barda-Saad M, Sommers CL, Samelson LE. 172.  2006. Recruitment and activation of PLCγ1 in T cells: a new insight into old domains. EMBO J 25774–84 [Google Scholar]
  173. Yablonski D, Kadlecek T, Weiss A. 173.  2001. Identification of a phospholipase C-γ1 (PLC-γ1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-γ1 and NFAT. Mol. Cell Biol. 214208–18 [Google Scholar]
  174. Min L, Joseph RE, Fulton DB, Andreotti AH. 174.  2009. Itk tyrosine kinase substrate docking is mediated by a nonclassical SH2 domain surface of PLCγ1. PNAS 10621143–48 [Google Scholar]
  175. DeBell K, Graham L, Reischl I, Serrano C, Bonvini E, Rellahan B. 175.  2007. Intramolecular regulation of phospholipase C-γ1 by its C-terminal Src homology 2 domain. Mol. Cell Biol. 27854–63 [Google Scholar]
  176. Cruz-Orcutt N, Vacaflores A, Connolly SF, Bunnell SC, Houtman JC. 176.  2014. Activated PLC-γ1 is catalytically induced at LAT but activated PLC-γ1 is localized at both LAT- and TCR-containing complexes. Cell Signal 26797–805 [Google Scholar]
  177. Mueller C, August A. 177.  2003. Attenuation of immunological symptoms of allergic asthma in mice lacking the tyrosine kinase ITK. J. Immunol. 1705056–63 [Google Scholar]
  178. Deakin A, Duddy G, Wilson S, Harrison S, Latcham J. 178.  et al. 2014. Characterisation of a K390R ITK kinase dead transgenic mouse—implications for ITK as a therapeutic target. PLOS ONE 9e107490 [Google Scholar]
  179. Readinger JA, Schiralli GM, Jiang JK, Thomas CJ, August A. 179.  et al. 2008. Selective targeting of ITK blocks multiple steps of HIV replication. PNAS 1056684–89 [Google Scholar]
  180. Schiralli Lester GM, Akiyama H, Evans E, Singh J, Gummuluru S, Henderson AJ. 180.  2013. Interleukin 2-inducible T cell kinase (ITK) facilitates efficient egress of HIV-1 by coordinating Gag distribution and actin organization. Virology 436235–43 [Google Scholar]
  181. Tarafdar S, Poe JA, Smithgall TE. 181.  2014. The accessory factor Nef links HIV-1 to Tec/Btk kinases in an Src homology 3 domain-dependent manner. J. Biol. Chem. 28915718–28 [Google Scholar]
  182. Dubovsky JA, Beckwith KA, Natarajan G, Woyach JA, Jaglowski S. 182.  et al. 2013. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood 1222539–49 [Google Scholar]
  183. Sagiv-Barfi I, Kohrt HE, Czerwinski DK, Ng PP, Chang BY, Levy R. 183.  2015. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. PNAS 112E966–72 [Google Scholar]
  184. Schutt SD, Fu J, Nguyen H, Bastian D, Heinrichs J. 184.  et al. 2015. Inhibition of BTK and ITK with Ibrutinib is effective in the prevention of chronic graft-versus-host disease in mice. PLOS ONE 10e0137641 [Google Scholar]
  185. Long M, Beckwith K, Do P, Mundy BL, Gordon A. 185.  et al. 2017. Ibrutinib treatment improves T cell number and function in CLL patients. J. Clin. Investig. 1273052–64 [Google Scholar]
  186. Vargas L, Hamasy A, Nore BF, Smith CI. 186.  2013. Inhibitors of BTK and ITK: state of the new drugs for cancer, autoimmunity and inflammatory diseases. Scand. J. Immunol. 78130–39 [Google Scholar]
  187. Zhong Y, Dong S, Strattan E, Ren L, Butchar JP. 187.  et al. 2015. Targeting interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK) using a novel covalent inhibitor PRN694. J. Biol. Chem. 2905960–78 [Google Scholar]
  188. Cho HS, Shin HM, Haberstock-Debic H, Xing Y, Owens TD. 188.  et al. 2015. A small molecule inhibitor of ITK and RLK impairs Th1 differentiation and prevents colitis disease progression. J. Immunol. 1954822–31 [Google Scholar]
  189. von Bonin A, Rausch A, Mengel A, Hitchcock M, Kruger M. 189.  et al. 2011. Inhibition of the IL-2-inducible tyrosine kinase (Itk) activity: a new concept for the therapy of inflammatory skin diseases. Exp. Dermatol. 2041–47 [Google Scholar]
  190. Guo W, Liu R, Ono Y, Ma AH, Martinez A. 190.  et al. 2012. Molecular characteristics of CTA056, a novel interleukin-2-inducible T-cell kinase inhibitor that selectively targets malignant T cells and modulates oncomirs. Mol. Pharmacol. 82938–47 [Google Scholar]
  191. Sun Y, Peng I, Webster JD, Suto E, Lesch J. 191.  et al. 2015. Inhibition of the kinase ITK in a mouse model of asthma reduces cell death and fails to inhibit the inflammatory response. Sci. Signal. 8ra122 [Google Scholar]
  192. Han S, Czerwinski RM, Caspers NL, Limburg DC, Ding W. 192.  et al. 2014. Selectively targeting an inactive conformation of interleukin-2-inducible T-cell kinase by allosteric inhibitors. Biochem. J. 460211–22 [Google Scholar]
  193. Huck K, Feyen O, Niehues T, Ruschendorf F, Hubner N. 193.  et al. 2009. Girls homozygous for an IL-2-inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J. Clin. Investig. 1191350–58 [Google Scholar]
  194. Cipe FE, Aydogmus C, Serwas NK, Tugcu D, Demirkaya M. 194.  et al. 2015. ITK deficiency: How can EBV be treated before lymphoma?. Pediatr. Blood Cancer 622247–48 [Google Scholar]
  195. Ghosh S, Bienemann K, Boztug K, Borkhardt A. 195.  2014. Interleukin-2-inducible T-cell kinase (ITK) deficiency—clinical and molecular aspects. J. Clin. Immunol. 34892–99 [Google Scholar]
  196. Linka RM, Risse SL, Bienemann K, Werner M, Linka Y. 196.  et al. 2012. Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia 26963–71 [Google Scholar]
  197. Vogel RM, Erez A, Altan-Bonnet G. 197.  2016. Dichotomy of cellular inhibition by small-molecule inhibitors revealed by single-cell analysis. Nat. Commun. 712428This study demonstrates graded versus all-or-none signal inhibition and corresponding implications for therapeutic approaches. [Google Scholar]
  198. Albeck JG, Mills GB, Brugge JS. 198.  2013. Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals. Mol. Cell 49249–61 [Google Scholar]
  199. Thill PA, Weiss A, Chakraborty AK. 199.  2016. Phosphorylation of a tyrosine residue on Zap70 by Lck and its subsequent binding via an SH2 domain may be a key gatekeeper of T cell receptor signaling in vivo. Mol. Cell. Biol. 362396–402 [Google Scholar]
/content/journals/10.1146/annurev-immunol-042617-053344
Loading
/content/journals/10.1146/annurev-immunol-042617-053344
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error