1932

Abstract

Malignant transformation of cells depends on accumulation of DNA damage. Over the past years we have learned that the T cell–based immune system frequently responds to the neoantigens that arise as a consequence of this DNA damage. Furthermore, recognition of neoantigens appears an important driver of the clinical activity of both T cell checkpoint blockade and adoptive T cell therapy as cancer immunotherapies. Here we review the evidence for the relevance of cancer neoantigens in tumor control and the biological properties of these antigens. We discuss recent technological advances utilized to identify neoantigens, and the T cells that recognize them, in individual patients. Finally, we discuss strategies that can be employed to exploit cancer neoantigens in clinical interventions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042617-053402
2019-04-26
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/immunol/37/1/annurev-immunol-042617-053402.html?itemId=/content/journals/10.1146/annurev-immunol-042617-053402&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Schreiber RD, Old LJ, Smyth MJ 2011. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331:1565–70
    [Google Scholar]
  2. 2.
    Dunn GP, Old LJ, Schreiber RD 2004. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22:329–60
    [Google Scholar]
  3. 3.
    Lotze MT, Frana LW, Sharrow SO, Robb RJ, Rosenberg SA 1985. In vivo administration of purified human interleukin 2. I. Half-life and immunologic effects of the Jurkat cell line-derived interleukin 2. J. Immunol. 134:157–66
    [Google Scholar]
  4. 4.
    Hinrichs CS, Rosenberg SA 2014. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol. Rev. 257:56–71
    [Google Scholar]
  5. 5.
    Dudley ME, Gross CA, Somerville RP, Hong Y, Schaub NP et al. 2013. Randomized selection design trial evaluating CD8+-enriched versus unselected tumor-infiltrating lymphocytes for adoptive cell therapy for patients with melanoma. J. Clin. Oncol. 31:2152–59
    [Google Scholar]
  6. 6.
    Tran E, Turcotte S, Gros A, Robbins PF, Lu YC et al. 2014. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344:641–45
    [Google Scholar]
  7. 7.
    Leach DR, Krummel MF, Allison JP 1996. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–36
    [Google Scholar]
  8. 8.
    Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA et al. 2010. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363:711–23
    [Google Scholar]
  9. 9.
    Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M et al. 2015. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373:1627–39
    [Google Scholar]
  10. 10.
    Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE et al. 2015. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373:123–35
    [Google Scholar]
  11. 11.
    Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP et al. 2017. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389:67–76
    [Google Scholar]
  12. 12.
    Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV et al. 2016. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387:1909–20
    [Google Scholar]
  13. 13.
    Le DT, Durham JN, Smith KN, Wang H, Bartlett BR et al. 2017. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409–13
    [Google Scholar]
  14. 14.
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H et al. 2015. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372:2509–20
    [Google Scholar]
  15. 15.
    Gordon SR, Maute RL, Dulken BW, Hutter G, George BM et al. 2017. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545:495–99
    [Google Scholar]
  16. 16.
    Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ et al. 2014. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–71
    [Google Scholar]
  17. 17.
    Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A et al. 2017. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Investig. 127:2930–40
    [Google Scholar]
  18. 18.
    Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ et al. 2017. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171:934–49.e15
    [Google Scholar]
  19. 19.
    Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N 2015. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61
    [Google Scholar]
  20. 20.
    Wölfel T, Hauer M, Schneider J, Serrano M, Wölfel C et al. 1995. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269:1281–84
    [Google Scholar]
  21. 21.
    Coulie PG, Lehmann F, Lethe B, Herman J, Lurquin C et al. 1995. A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. PNAS 92:7976–80
    [Google Scholar]
  22. 22.
    Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A et al. 2005. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. PNAS 102:16013–18
    [Google Scholar]
  23. 23.
    Novellino L, Castelli C, Parmiani G 2005. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol. Immunother. 54:187–207
    [Google Scholar]
  24. 24.
    Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R et al. 2012. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482:400–4
    [Google Scholar]
  25. 25.
    Castle JC, Kreiter S, Diekmann J, Lower M, van de Roemer N et al. 2012. Exploiting the mutanome for tumor vaccination. Cancer Res 72:1081–91
    [Google Scholar]
  26. 26.
    Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C et al. 2013. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat. Med. 19:747–52
    [Google Scholar]
  27. 27.
    van Rooij N, van Buuren MM, Philips D, Velds A, Toebes M et al. 2013. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol. 31:e439–42
    [Google Scholar]
  28. 28.
    Tran E, Robbins PF, Rosenberg SA 2017. ‘Final common pathway’ of human cancer immunotherapy: targeting random somatic mutations. Nat. Immunol. 18:255–62
    [Google Scholar]
  29. 29.
    Verdegaal EM, de Miranda NF, Visser M, Harryvan T, van Buuren MM et al. 2016. Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature 536:91–95
    [Google Scholar]
  30. 30.
    Linnemann C, van Buuren MM, Bies L, Verdegaal EM, Schotte R et al. 2015. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4 + T cells in human melanoma. Nat. Med. 21:81–85
    [Google Scholar]
  31. 31.
    Kvistborg P, van Buuren M, Philips D, van Rooij N, Velds A et al. 2017.Monitoring anti tumour T cell immunity Presented at ESMO Immuno-Oncology Congress Geneva:
  32. 32.
    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V et al. 2015. Cancer immunology: Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–28
    [Google Scholar]
  33. 33.
    Stevanovic S, Pasetto A, Helman SR, Gartner JJ, Prickett TD et al. 2017. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science 356:200–5
    [Google Scholar]
  34. 34.
    Tran E, Robbins PF, Lu YC, Prickett TD, Gartner JJ et al. 2016. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 375:2255–62
    [Google Scholar]
  35. 35.
    Martin SD, Wick DA, Nielsen JS, Little N, Holt RA, Nelson BH 2017. A library-based screening method identifies neoantigen-reactive T cells in peripheral blood prior to relapse of ovarian cancer. Oncoimmunology 7:e1371895
    [Google Scholar]
  36. 36.
    Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM et al. 2014. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371:2189–99
    [Google Scholar]
  37. 37.
    Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C et al. 2015. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350:207–11 Erratum. 2016 Science 352:aaf8264
    [Google Scholar]
  38. 38.
    Lauss M, Donia M, Harbst K, Andersen R, Mitra S et al. 2017. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat. Commun. 8:1738
    [Google Scholar]
  39. 39.
    Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L et al. 2017. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N. Engl. J. Med. 376:2415–26
    [Google Scholar]
  40. 40.
    Yarchoan M, Hopkins A, Jaffee EM 2017. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377:2500–1
    [Google Scholar]
  41. 41.
    McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R et al. 2016. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351:1463–69
    [Google Scholar]
  42. 42.
    Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Vodnala SK et al. 2017. Identification of essential genes for cancer immunotherapy. Nature 548:537–42
    [Google Scholar]
  43. 43.
    Pan D, Kobayashi A, Jiang P, Ferrari de Andrade L, Tay RE et al. 2018. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359:770–75
    [Google Scholar]
  44. 44.
    Kearney CJ, Vervoort SJ, Hogg SJ, Ramsbottom KM, Freeman AJ et al. 2018. Tumor immune evasion arises through loss of TNF sensitivity. Sci. Immunol. 3:eaar3451
    [Google Scholar]
  45. 45.
    Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W et al. 2016. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375:819–29
    [Google Scholar]
  46. 46.
    Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M et al. 2017. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8:1136
    [Google Scholar]
  47. 47.
    Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB et al. 2017. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547:413–18
    [Google Scholar]
  48. 48.
    Blank CU, Haanen JB, Ribas A, Schumacher TN 2016. The “cancer immunogram.”. Science 352:658–60
    [Google Scholar]
  49. 49.
    Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J et al. 2018. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554:538–43
    [Google Scholar]
  50. 50.
    Karpanen T, Olweus J 2017. The potential of donor T-cell repertoires in neoantigen-targeted cancer immunotherapy. Front. Immunol. 8:1718
    [Google Scholar]
  51. 51.
    Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M et al. 2015. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520:692–96 Erratum. 2015 Nature 523:370
    [Google Scholar]
  52. 52.
    Gubin MM, Zhang X, Schuster H, Caron E, Ward JP et al. 2014. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515:577–81
    [Google Scholar]
  53. 53.
    Zacharakis N, Chinnasamy H, Black M, Xu H, Lu YC et al. 2018. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat. Med. 24:724–30
    [Google Scholar]
  54. 54.
    Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM et al. 2011. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29:917–24
    [Google Scholar]
  55. 55.
    Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT et al. 2015. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med. 21:914–21
    [Google Scholar]
  56. 56.
    D'Angelo SP, Melchiori L, Merchant MS, Bernstein DB, Glod J et al. 2018. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 c259T cells in synovial sarcoma. Cancer Discov 8:944–57
    [Google Scholar]
  57. 57.
    Kvistborg P, Shu CJ, Heemskerk B, Fankhauser M, Thrue CA et al. 2012. TIL therapy broadens the tumor-reactive CD8+ T cell compartment in melanoma patients. Oncoimmunology 1:409–18
    [Google Scholar]
  58. 58.
    Schiavetti F, Thonnard J, Colau D, Boon T, Coulie PG 2002. A human endogenous retroviral sequence encoding an antigen recognized on melanoma by cytolytic T lymphocytes. Cancer Res 62:5510–16
    [Google Scholar]
  59. 59.
    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S et al. 2013. Signatures of mutational processes in human cancer. Nature 7463:415–21
    [Google Scholar]
  60. 60.
    Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM et al. 2017. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 1:34
    [Google Scholar]
  61. 61.
    Stratton MR, Campbell PJ, Futreal PA 2009. The cancer genome. Nature 458:719–24
    [Google Scholar]
  62. 62.
    Schumacher TN, Schreiber RD 2015. Neoantigens in cancer immunotherapy. Science 348:69–74
    [Google Scholar]
  63. 63.
    Stronen E, Toebes M, Kelderman S, van Buuren MM, Yang W et al. 2016. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science 352:1337–41
    [Google Scholar]
  64. 64.
    Yewdell JW, Bennink JR 1999. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol. 17:51–88
    [Google Scholar]
  65. 65.
    Slagter M, Fanchi LF, van Buuren MM, Calis JJA, Schouten PC et al. 2016.T cell recognition of human cancer Presented at Am. Assoc. Cancer Res. Annu. Meet. New Orleans, LA:
  66. 66.
    Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF et al. 2016. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22:433–38
    [Google Scholar]
  67. 67.
    Bobisse S, Genolet R, Roberti A, Tanyi JL, Racle J et al. 2018. Sensitive and frequent identification of high avidity neo-epitope specific CD8 + T cells in immunotherapy-naive ovarian cancer. Nat. Commun. 9:1092
    [Google Scholar]
  68. 68.
    Tran E, Ahmadzadeh M, Lu YC, Gros A, Turcotte S et al. 2015. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350:1387–90
    [Google Scholar]
  69. 69.
    Khodadoust MS, Olsson N, Wagar LE, Haabeth OA, Chen B et al. 2017. Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens. Nature 543:723–27
    [Google Scholar]
  70. 70.
    Ossendorp F, Mengede E, Camps M, Filius R, Melief CJ 1998. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J. Exp. Med. 187:693–702
    [Google Scholar]
  71. 71.
    Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M et al. 1998. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. PNAS 95:7556–61
    [Google Scholar]
  72. 72.
    Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J et al. 2017. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547:217–21
    [Google Scholar]
  73. 73.
    Spranger S, Dai D, Horton B, Gajewski TF 2017. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31:711–23.e4
    [Google Scholar]
  74. 74.
    Lazarski CA, Chaves FA, Jenks SA, Wu S, Richards KA et al. 2005. The kinetic stability of MHC class II:peptide complexes is a key parameter that dictates immunodominance. Immunity 23:29–40
    [Google Scholar]
  75. 75.
    Zamora AE, Crawford JC, Thomas PG 2018. Hitting the target: how T cells detect and eliminate tumors. J. Immunol. 200:392–99
    [Google Scholar]
  76. 76.
    Bihl F, Frahm N, Di Giammarino L, Sidney J, John M et al. 2006. Impact of HLA-B alleles, epitope binding affinity, functional avidity, and viral coinfection on the immunodominance of virus-specific CTL responses. J. Immunol. 176:4094–101
    [Google Scholar]
  77. 77.
    Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C et al. 2004. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432:769–75
    [Google Scholar]
  78. 78.
    Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P et al. 2017. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:222–26
    [Google Scholar]
  79. 79.
    Veatch JR, Lee SM, Fitzgibbon M, Chow IT, Jesernig B et al. 2018. Tumor-infiltrating BRAFV600E-specific CD4+ T cells correlated with complete clinical response in melanoma. J. Clin. Investig. 128:1563–68
    [Google Scholar]
  80. 80.
    Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B et al. 2014. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512:324–27
    [Google Scholar]
  81. 81.
    Marty R, Kaabinejadian S, Rossell D, Slifker MJ, van de Haar J et al. 2017. MHC-I genotype restricts the oncogenic mutational landscape. Cell 171:1272–83.e15
    [Google Scholar]
  82. 82.
    Birnbaum ME, Mendoza JL, Sethi DK, Dong S, Glanville J et al. 2014. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157:1073–87
    [Google Scholar]
  83. 83.
    Harkiolaki M, Holmes SL, Svendsen P, Gregersen JW, Jensen LT et al. 2009. T cell-mediated autoimmune disease due to low-affinity crossreactivity to common microbial peptides. Immunity 30:348–57
    [Google Scholar]
  84. 84.
    Schumacher TN, Kesmir C, van Buuren MM 2015. Biomarkers in cancer immunotherapy. Cancer Cell 27:12–14
    [Google Scholar]
  85. 85.
    Chan TA, Wolchok JD, Snyder A 2015. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 373:1984
    [Google Scholar]
  86. 86.
    Luksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD et al. 2017. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551:517–20
    [Google Scholar]
  87. 87.
    Balachandran VP, Luksza M, Zhao JN, Makarov V, Moral JA et al. 2017. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551:512–16
    [Google Scholar]
  88. 88.
    Granados DP, Yahyaoui W, Laumont CM, Daouda T, Muratore-Schroeder TL et al. 2012. MHC I-associated peptides preferentially derive from transcripts bearing miRNA response elements. Blood 119:e181–91
    [Google Scholar]
  89. 89.
    Yewdell JW 2006. Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity 25:533–43
    [Google Scholar]
  90. 90.
    Lundegaard C, Hoof I, Lund O, Nielsen M 2010. State of the art and challenges in sequence based T-cell epitope prediction. Immunome Res 6:Suppl. 2S3
    [Google Scholar]
  91. 91.
    Andreatta M, Nielsen M 2016. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32:511–17
    [Google Scholar]
  92. 92.
    Nielsen M, Andreatta M 2016. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med 8:33
    [Google Scholar]
  93. 93.
    Nielsen M, Lundegaard C, Lund O, Kesmir C 2005. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57:33–41
    [Google Scholar]
  94. 94.
    Larsen MV, Lundegaard C, Lamberth K, Buus S, Brunak S et al. 2005. An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur. J. Immunol. 35:2295–303
    [Google Scholar]
  95. 95.
    Jorgensen KW, Rasmussen M, Buus S, Nielsen M 2014. NetMHCstab—predicting stability of peptide-MHC-I complexes: impacts for cytotoxic T lymphocyte epitope discovery. Immunology 141:18–26
    [Google Scholar]
  96. 96.
    Abelin JG, Keskin DB, Sarkizova S, Hartigan CR, Zhang W et al. 2017. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46:315–26
    [Google Scholar]
  97. 97.
    Iwai LK, Yoshida M, Sidney J, Shikanai-Yasuda MA, Goldberg AC et al. 2003. In silico prediction of peptides binding to multiple HLA-DR molecules accurately identifies immunodominant epitopes from gp43 of Paracoccidioides brasiliensis frequently recognized in primary peripheral blood mononuclear cell responses from sensitized individuals. Mol. Med. 9:209–19
    [Google Scholar]
  98. 98.
    Kessels HW, de Visser KE, Tirion FH, Coccoris M, Kruisbeek AM, Schumacher TN 2004. The impact of self-tolerance on the polyclonal CD8+ T cell repertoire. J. Immunol. 172:2324–31
    [Google Scholar]
  99. 99.
    Calis JJ, de Boer RJ, Kesmir C 2012. Degenerate T-cell recognition of peptides on MHC molecules creates large holes in the T-cell repertoire. PLOS Comput. Biol. 8:e1002412
    [Google Scholar]
  100. 100.
    Calis JJ, Maybeno M, Greenbaum JA, Weiskopf D, De Silva AD et al. 2013. Properties of MHC class I presented peptides that enhance immunogenicity. PLOS Comput. Biol. 9:e1003266
    [Google Scholar]
  101. 101.
    Fritsch EF, Rajasagi M, Ott PA, Brusic V, Hacohen N, Wu CJ 2014. HLA-binding properties of tumor neoepitopes in humans. Cancer Immunol. Res. 2:522–29
    [Google Scholar]
  102. 102.
    Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT et al. 2007. Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J. Exp. Med. 204:49–55
    [Google Scholar]
  103. 103.
    Williams DB, Swiedler SJ, Hart GW 1985. Intracellular transport of membrane glycoproteins: Two closely related histocompatibility antigens differ in their rates of transit to the cell surface. J. Cell Biol. 101:725–34
    [Google Scholar]
  104. 104.
    Nat. Biotechnol. 2017. The problem with neoantigen prediction. Nat. Biotechnol. 35:97
    [Google Scholar]
  105. 105.
    Creech AL, Ting YS, Goulding SP, Sauld JFK, Barthelme D et al. 2018. The role of mass spectrometry and proteogenomics in the advancement of HLA epitope prediction. Proteomics 18:e170025
    [Google Scholar]
  106. 106.
    Murphy JP, Konda P, Kowalewski DJ, Schuster H, Clements D et al. 2017. MHC-I ligand discovery using targeted database searches of mass spectrometry data: implications for T-cell immunotherapies. J. Proteome Res. 16:1806–16
    [Google Scholar]
  107. 107.
    Liepe J, Marino F, Sidney J, Jeko A, Bunting DE et al. 2016. A large fraction of HLA class I ligands are proteasome-generated spliced peptides. Science 354:354–58
    [Google Scholar]
  108. 108.
    Hanada K, Yewdell JW, Yang JC 2004. Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature 427:252–56
    [Google Scholar]
  109. 109.
    Vigneron N, Stroobant V, Chapiro J, Ooms A, Degiovanni G et al. 2004. An antigenic peptide produced by peptide splicing in the proteasome. Science 304:587–90
    [Google Scholar]
  110. 110.
    Bassani-Sternberg M, Braunlein E, Klar R, Engleitner T, Sinitcyn P et al. 2016. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 7:13404
    [Google Scholar]
  111. 111.
    Lu YC, Yao X, Crystal JS, Li YF, El-Gamil M et al. 2014. Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin. Cancer Res. 20:3401–10
    [Google Scholar]
  112. 112.
    Hadrup SR, Toebes M, Rodenko B, Bakker AH, Egan DA et al. 2009. High-throughput T-cell epitope discovery through MHC peptide exchange. Methods Mol. Biol. 524:383–405
    [Google Scholar]
  113. 113.
    Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL et al. 2018. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557:575–79
    [Google Scholar]
  114. 114.
    Bentzen AK, Marquard AM, Lyngaa R, Saini SK, Ramskov S et al. 2016. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat. Biotechnol. 34:1037–45
    [Google Scholar]
  115. 115.
    Toebes M, Coccoris M, Bins A, Rodenko B, Gomez R et al. 2006. Design and use of conditional MHC class I ligands. Nat. Med. 12:246–51
    [Google Scholar]
  116. 116.
    Gros A, Robbins PF, Yao X, Li YF, Turcotte S et al. 2014. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Investig. 124:2246–59
    [Google Scholar]
  117. 117.
    Danilova L, Anagnostou V, Caushi JX, Sidhom J-W, Guo H et al. 2018. The Mutation-Associated Neoantigen Functional Expansion of Specific T Cells (MANAFEST) assay: a sensitive platform for monitoring antitumor immunity. Cancer Immunol. Res. 6:8888–99
    [Google Scholar]
  118. 118.
    Janetzki S, Britten CM, Kalos M, Levitsky HI, Maecker HT et al. 2009. “MIATA”—minimal information about T cell assays. Immunity 31:527–28
    [Google Scholar]
  119. 119.
    Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ et al. 2017. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 14:1345–56
    [Google Scholar]
  120. 120.
    Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR et al. 2018. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 378:1976–86
    [Google Scholar]
  121. 121.
    Blank CU, Rozeman CA, Fanchi LF, Sikorska K, van de Wiel B 2018. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 24:111655–61
    [Google Scholar]
  122. 122.
    Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM et al. 2009. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 361:1838–47
    [Google Scholar]
  123. 123.
    Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J et al. 2015. Cancer immunotherapy: A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348:803–8
    [Google Scholar]
  124. 124.
    Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A et al. 2018. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci. Transl. Med. 10:eaao5931
    [Google Scholar]
  125. 125.
    Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J et al. 2016. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354:1160–65
    [Google Scholar]
  126. 126.
    Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE et al. 2015. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11:1018–30
    [Google Scholar]
  127. 127.
    Verdegaal EM, Visser M, Ramwadhdoebe TH, van der Minne CE, van Steijn JA et al. 2011. Successful treatment of metastatic melanoma by adoptive transfer of blood-derived polyclonal tumor-specific CD4+ and CD8+ T cells in combination with low-dose interferon-alpha. Cancer Immunol. Immunother. 60:953–63
    [Google Scholar]
  128. 128.
    Thommen DS, Koelzer VH, Herzig P, Roller A, Trefny M et al. 2018. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24:994–1004
    [Google Scholar]
  129. 129.
    Schumacher TN 2002. T-cell-receptor gene therapy. Nat. Rev. Immunol. 2:512–19
    [Google Scholar]
  130. 130.
    Chodon T, Comin-Anduix B, Chmielowski B, Koya RC, Wu Z et al. 2014. Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin. Cancer Res. 20:2457–65
    [Google Scholar]
  131. 131.
    Linnemann C, Mezzadra R, Schumacher TN 2014. TCR repertoires of intratumoral T-cell subsets. Immunol. Rev. 257:72–82
    [Google Scholar]
  132. 132.
    Foley EJ 1953. Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res 13:835–37
    [Google Scholar]
  133. 133.
    De Plaen E, Lurquin C, Van Pel A, Mariame B, Szikora JP et al. 1988. Immunogenic (tum) variants of mouse tumor P815: cloning of the gene of tum antigen P91A and identification of the tum mutation. PNAS 85:2274–78
    [Google Scholar]
  134. 134.
    Monach PA, Meredith SC, Siegel CT, Schreiber H 1995. A unique tumor antigen produced by a single amino acid substitution. Immunity 2:45–59
    [Google Scholar]
  135. 135.
    Robbins PF, El-Gamil M, Li YF, Kawakami Y, Loftus D et al. 1996. A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J. Exp. Med. 183:1185–92
    [Google Scholar]
  136. 136.
    Novellino L, Renkvist N, Rini F, Mazzocchi A, Rivoltini L et al. 2003. Identification of a mutated receptor-like protein tyrosine phosphatase kappa as a novel, class II HLA-restricted melanoma antigen. J. Immunol. 170:6363–70
    [Google Scholar]
  137. 137.
    Huang J, El-Gamil M, Dudley ME, Li YF, Rosenberg SA, Robbins PF 2004. T cells associated with tumor regression recognize frameshifted products of the CDKN2A tumor suppressor gene locus and a mutated HLA class I gene product. J. Immunol. 172:6057–64
    [Google Scholar]
  138. 138.
    Brandle D, Brasseur F, Weynants P, Boon T, Van den Eynde B 1996. A mutated HLA-A2 molecule recognized by autologous cytotoxic T lymphocytes on a human renal cell carcinoma. J. Exp. Med. 183:2501–8
    [Google Scholar]
  139. 139.
    Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD et al. 2008. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456:66–72
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-042617-053402
Loading
/content/journals/10.1146/annurev-immunol-042617-053402
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error