- Home
- A-Z Publications
- Annual Review of Immunology
- Previous Issues
- Volume 37, 2019
Annual Review of Immunology - Volume 37, 2019
Volume 37, 2019
-
-
Sixty Years of Discovery
Vol. 37 (2019), pp. 1–17More LessEach of us is a story. Mine is a story of doing science for 60 years, and I am honored to be asked to tell it. Even though this autobiography was written for the Annual Review of Immunology, I have chosen to describe my whole career in science because the segment that was immunology is so intertwined with all else I was doing. This article is an elongation and modification of a talk I gave at my 80th birthday celebration at Caltech on March 23, 2018.
-
-
-
Neuro–Immune Cell Units: A New Paradigm in Physiology
Vol. 37 (2019), pp. 19–46More LessThe interplay between the immune and nervous systems has been acknowledged in the past, but only more recent studies have started to unravel the cellular and molecular players of such interactions. Mounting evidence indicates that environmental signals are sensed by discrete neuro–immune cell units (NICUs), which represent defined anatomical locations in which immune and neuronal cells colocalize and functionally interact to steer tissue physiology and protection. These units have now been described in multiple tissues throughout the body, including lymphoid organs, adipose tissue, and mucosal barriers. As such, NICUs are emerging as important orchestrators of multiple physiological processes, including hematopoiesis, organogenesis, inflammation, tissue repair, and thermogenesis. In this review we focus on the impact of NICUs in tissue physiology and how this fast-evolving field is driving a paradigm shift in our understanding of immunoregulation and organismal physiology.
-
-
-
Tuft Cells—Systemically Dispersed Sensory Epithelia Integrating Immune and Neural Circuitry
Vol. 37 (2019), pp. 47–72More LessTuft cells—rare solitary chemosensory cells in mucosal epithelia—are undergoing intense scientific scrutiny fueled by recent discovery of unsuspected connections to type 2 immunity. These cells constitute a conduit by which ligands from the external space are sensed via taste-like signaling pathways to generate outputs unique among epithelial cells: the cytokine IL-25, eicosanoids associated with allergic immunity, and the neurotransmitter acetylcholine. The classic type II taste cell transcription factor POU2F3 is lineage defining, suggesting a conceptualization of these cells as widely distributed environmental sensors with effector functions interfacing type 2 immunity and neural circuits. Increasingly refined single-cell analytics have revealed diversity among tuft cells that extends from nasal epithelia and type II taste cells to ex-Aire-expressing medullary thymic cells and small-intestine cells that mediate tissue remodeling in response to colonizing helminths and protists.
-
-
-
Neuroinflammation During RNA Viral Infections
Vol. 37 (2019), pp. 73–95More LessNeurotropic RNA viruses continue to emerge and are increasingly linked to diseases of the central nervous system (CNS) despite viral clearance. Indeed, the overall mortality of viral encephalitis in immunocompetent individuals is low, suggesting efficient mechanisms of virologic control within the CNS. Both immune and neural cells participate in this process, which requires extensive innate immune signaling between resident and infiltrating cells, including microglia and monocytes, that regulate the effector functions of antiviral T and B cells as they gain access to CNS compartments. While these interactions promote viral clearance via mainly neuroprotective mechanisms, they may also promote neuropathology and, in some cases, induce persistent alterations in CNS physiology and function that manifest as neurologic and psychiatric diseases. This review discusses mechanisms of RNA virus clearance and neurotoxicity during viral encephalitis with a focus on the cytokines essential for immune and neural cell inflammatory responses and interactions. Understanding neuroimmune communications in the setting of viral infections is essential for the development of treatments that augment neuroprotective processes while limiting ongoing immunopathological processes that cause ongoing CNS disease.
-
-
-
Antigen Receptor Function in the Context of the Nanoscale Organization of the B Cell Membrane
Vol. 37 (2019), pp. 97–123More LessThe B cell antigen receptor (BCR) plays a central role in the self/nonself selection of B lymphocytes and in their activation by cognate antigen during the clonal selection process. It was long thought that most cell surface receptors, including the BCR, were freely diffusing and randomly distributed. Since the advent of superresolution techniques, it has become clear that the plasma membrane is compartmentalized and highly organized at the nanometer scale. Hence, a complete understanding of the precise conformation and activation mechanism of the BCR must take into account the organization of the B cell plasma membrane. We review here the recent literature on the nanoscale organization of the lymphocyte membrane and discuss how this new information influences our view of the conformational changes that the BCR undergoes during activation.
-
-
-
The Platelet Napoleon Complex—Small Cells, but Big Immune Regulatory Functions
Vol. 37 (2019), pp. 125–144More LessPlatelets have dual physiologic roles as both cellular mediators of thrombosis and immune modulatory cells. Historically, the thrombotic function of platelets has received significant research and clinical attention, but emerging research indicates that the immune regulatory roles of platelets may be just as important. We now know that in addition to their role in the acute thrombotic event at the time of myocardial infarction, platelets initiate and accelerate inflammatory processes that are part of the pathogenesis of atherosclerosis and myocardial infarction expansion. Furthermore, it is increasingly apparent from recent studies that platelets impact the pathogenesis of many vascular inflammatory processes such as autoimmune diseases, sepsis, viral infections, and growth and metastasis of many types of tumors. Therefore, we must consider platelets as immune cells that affect all phases of immune responses.
-
-
-
Emerging Cellular Therapies for Cancer
Vol. 37 (2019), pp. 145–171More LessGenetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer. Chimeric antigen receptor (CAR) T cells were recently approved by the US Food and Drug Administration and are poised to enter the practice of medicine for leukemia and lymphoma, demonstrating that engineered immune cells can serve as a powerful new class of cancer therapeutics. The emergence of synthetic biology approaches for cellular engineering provides a broadly expanded set of tools for programming immune cells for enhanced function. Advances in T cell engineering, genetic editing, the selection of optimal lymphocytes, and cell manufacturing have the potential to broaden T cell–based therapies and foster new applications beyond oncology, in infectious diseases, organ transplantation, and autoimmunity.
-
-
-
Cancer Neoantigens
Vol. 37 (2019), pp. 173–200More LessMalignant transformation of cells depends on accumulation of DNA damage. Over the past years we have learned that the T cell–based immune system frequently responds to the neoantigens that arise as a consequence of this DNA damage. Furthermore, recognition of neoantigens appears an important driver of the clinical activity of both T cell checkpoint blockade and adoptive T cell therapy as cancer immunotherapies. Here we review the evidence for the relevance of cancer neoantigens in tumor control and the biological properties of these antigens. We discuss recent technological advances utilized to identify neoantigens, and the T cells that recognize them, in individual patients. Finally, we discuss strategies that can be employed to exploit cancer neoantigens in clinical interventions.
-
-
-
Origin, Organization, Dynamics, and Function of Actin and Actomyosin Networks at the T Cell Immunological Synapse
Vol. 37 (2019), pp. 201–224More LessThe engagement of a T cell with an antigen-presenting cell (APC) or activating surface results in the formation within the T cell of several distinct actin and actomyosin networks. These networks reside largely within a narrow zone immediately under the T cell's plasma membrane at its site of contact with the APC or activating surface, i.e., at the immunological synapse. Here we review the origin, organization, dynamics, and function of these synapse-associated actin and actomyosin networks. Importantly, recent insights into the nature of these actin-based cytoskeletal structures were made possible in several cases by advances in light microscopy.
-
-
-
The Antibody Response to Plasmodium falciparum: Cues for Vaccine Design and the Discovery of Receptor-Based Antibodies
Vol. 37 (2019), pp. 225–246More LessPlasmodium falciparum remains a serious public health problem and a continuous challenge for the immune system due to the complexity and diversity of the pathogen. Recent advances from several laboratories in the characterization of the antibody response to the parasite have led to the identification of critical targets for protection and revealed a new mechanism of diversification based on the insertion of host receptors into immunoglobulin genes, leading to the production of receptor-based antibodies. These advances have opened new possibilities for vaccine design and passive antibody therapies to provide sterilizing immunity and control blood-stage parasites.
-
-
-
Self-Awareness: Nucleic Acid–Driven Inflammation and the Type I Interferonopathies
Vol. 37 (2019), pp. 247–267More LessRecognition of foreign nucleic acids is the primary mechanism by which a type I interferon–mediated antiviral response is triggered. Given that human cells are replete with DNA and RNA, this evolutionary strategy poses an inherent biological challenge, i.e., the fundamental requirement to reliably differentiate self–nucleic acids from nonself nucleic acids. We suggest that the group of Mendelian inborn errors of immunity referred to as the type I interferonopathies relate to a breakdown of self/nonself discrimination, with the associated mutant genotypes involving molecules playing direct or indirect roles in nucleic acid signaling. This perspective begs the question as to the sources of self-derived nucleic acids that drive an inappropriate immune response. Resolving this question will provide fundamental insights into immune tolerance, antiviral signaling, and complex autoinflammatory disease states. Here we develop these ideas, discussing type I interferonopathies within the broader framework of nucleic acid–driven inflammation.
-
-
-
The Myeloid Cell Compartment—Cell by Cell
Vol. 37 (2019), pp. 269–293More LessMyeloid cells are a major cellular compartment of the immune system comprising monocytes, dendritic cells, tissue macrophages, and granulocytes. Models of cellular ontogeny, activation, differentiation, and tissue-specific functions of myeloid cells have been revisited during the last years with surprising results; for example, most tissue macrophages are yolk sac derived, monocytes and macrophages follow a multidimensional model of activation, and tissue signals have a significant impact on the functionality of all these cells. While these exciting results have brought these cells back to center stage, their enormous plasticity and heterogeneity, during both homeostasis and disease, are far from understood. At the same time, the ongoing revolution in single-cell genomics, with single-cell RNA sequencing (scRNA-seq) leading the way, promises to change this. Prevailing models of hematopoiesis with distinct intermediates are challenged by scRNA-seq data suggesting more continuous developmental trajectories in the myeloid cell compartment. Cell subset structures previously defined by protein marker expression need to be revised based on unbiased analyses of scRNA-seq data. Particularly in inflammatory conditions, myeloid cells exhibit substantially vaster heterogeneity than previously anticipated, and work performed within large international projects, such as the Human Cell Atlas, has already revealed novel tissue macrophage subsets. Based on these exciting developments, we propose the next steps to a full understanding of the myeloid cell compartment in health and diseases.
-
-
-
Fine-Tuning Cytokine Signals
Vol. 37 (2019), pp. 295–324More LessCytokines are secreted or otherwise released polypeptide factors that exert autocrine and/or paracrine actions, with most cytokines acting in the immune and/or hematopoietic system. They are typically pleiotropic, controlling development, cell growth, survival, and/or differentiation. Correspondingly, cytokines are clinically important, and augmenting or attenuating cytokine signals can have deleterious or therapeutic effects. Besides physiological fine-tuning of cytokine signals, altering the nature or potency of the signal can be important in pathophysiological responses and can also provide novel therapeutic approaches. Here, we give an overview of cytokines, their signaling and actions, and the physiological mechanisms and pharmacologic strategies to fine-tune their actions. In particular, the differential utilization of STAT proteins by a single cytokine or by different cytokines and STAT dimerization versus tetramerization are physiological mechanisms of fine-tuning, whereas anticytokine and anticytokine receptor antibodies and cytokines with altered activities, including cytokine superagonists, partial agonists, and antagonists, represent new ways of fine-tuning cytokine signals.
-
-
-
Purine Release, Metabolism, and Signaling in the Inflammatory Response
Vol. 37 (2019), pp. 325–347More LessATP, NAD+, and nucleic acids are abundant purines that, in addition to having critical intracellular functions, have evolved extracellular roles as danger signals released in response to cell lysis, apoptosis, degranulation, or membrane pore formation. In general ATP and NAD+ have excitatory and adenosine has anti-inflammatory effects on immune cells. This review focuses on recent advances in our understanding of purine release mechanisms, ectoenzymes that metabolize purines (CD38, CD39, CD73, ENPP1, and ENPP2/autotaxin), and signaling by key P2 purinergic receptors (P2X7, P2Y2, and P2Y12). In addition to metabolizing ATP or NAD+, some purinergic ectoenzymes metabolize other inflammatory modulators, notably lysophosphatidic acid and cyclic GMP-AMP (cGAMP). Also discussed are extracellular signaling effects of NAD+ mediated by ADP-ribosylation, and epigenetic effects of intracellular adenosine mediated by modification of S-adenosylmethionine-dependent DNA methylation.
-
-
-
Double-Stranded RNA Sensors and Modulators in Innate Immunity
Vol. 37 (2019), pp. 349–375More LessDetection of double-stranded RNAs (dsRNAs) is a central mechanism of innate immune defense in many organisms. We here discuss several families of dsRNA-binding proteins involved in mammalian antiviral innate immunity. These include RIG-I-like receptors, protein kinase R, oligoadenylate synthases, adenosine deaminases acting on RNA, RNA interference systems, and other proteins containing dsRNA-binding domains and helicase domains. Studies suggest that their functions are highly interdependent and that their interdependence could offer keys to understanding the complex regulatory mechanisms for cellular dsRNA homeostasis and antiviral immunity. This review aims to highlight their interconnectivity, as well as their commonalities and differences in their dsRNA recognition mechanisms.
-
-
-
The Microbiome and Food Allergy
Vol. 37 (2019), pp. 377–403More LessThe gut-associated lymphoid tissue (GALT) faces a considerable challenge. It encounters antigens derived from an estimated 1014 commensal microbes and greater than 30 kg of food proteins yearly. It must distinguish these harmless antigens from potential pathogens and mount the appropriate host immune response. Local and systemic hyporesponsiveness to dietary antigens, classically referred to as oral tolerance, comprises a distinct complement of adaptive cellular and humoral immune responses. It is increasingly evident that a functional epithelial barrier engaged in intimate interplay with innate immune cells and the resident microbiota is critical to establishing and maintaining oral tolerance. Moreover, innate immune cells serve as a bridge between the microbiota, epithelium, and the adaptive immune system, parlaying tonic microbial stimulation into signals critical for mucosal homeostasis. Dysregulation of gut homeostasis and the subsequent disruption of tolerance therefore have clinically significant consequences for the development of food allergy.
-
-
-
Disease Tolerance as an Inherent Component of Immunity
Vol. 37 (2019), pp. 405–437More LessPathogenic organisms exert a negative impact on host health, revealed by the clinical signs of infectious diseases. Immunity limits the severity of infectious diseases through resistance mechanisms that sense and target pathogens for containment, killing, or expulsion. These resistance mechanisms are viewed as the prevailing function of immunity. Under pathophysiologic conditions, however, immunity arises in response to infections that carry health and fitness costs to the host. Therefore, additional defense mechanisms are required to limit these costs, before immunity becomes operational as well as thereafter to avoid immunopathology. These are tissue damage control mechanisms that adjust the metabolic output of host tissues to different forms of stress and damage associated with infection. Disease tolerance is the term used to define this defense strategy, which does not exert a direct impact on pathogens but is essential to limit the health and fitness costs of infection. Under this argument, we propose that disease tolerance is an inherent component of immunity.
-
-
-
Nonclassical Monocytes in Health and Disease
Vol. 37 (2019), pp. 439–456More LessMonocytes are innate blood cells that maintain vascular homeostasis and are early responders to pathogens in acute infections. There are three well-characterized classes of monocytes: classical (CD14+CD16− in humans and Ly6Chi in mice), intermediate (CD14+CD16+ in humans and Ly6C+Treml4+ in mice), and nonclassical (CD14−CD16+ in humans and Ly6Clo in mice). Classical monocytes are critical for the initial inflammatory response. Classical monocytes can differentiate into macrophages in tissue and can contribute to chronic disease. Nonclassical monocytes have been widely viewed as anti-inflammatory, as they maintain vascular homeostasis. They are a first line of defense in recognition and clearance of pathogens. However, their roles in chronic disease are less clear. They have been shown to be protective as well as positively associated with disease burden. This review focuses on the state of the monocyte biology field and the functions of monocytes, particularly nonclassical monocytes, in health and disease.
-
-
-
CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer
Vol. 37 (2019), pp. 457–495More LessExhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.
-
-
-
New Molecular Insights into Immune Cell Development
Vol. 37 (2019), pp. 497–519More LessDuring development innate lymphoid cells and specialized lymphocyte subsets colonize peripheral tissues, where they contribute to organogenesis and later constitute the first line of protection while maintaining tissue homeostasis. A few of these subsets are produced only during embryonic development and remain in the tissues throughout life. They are generated through a unique developmental program initiated in lympho-myeloid-primed progenitors, which lose myeloid and B cell potential. They either differentiate into innate lymphoid cells or migrate to the thymus to give rise to embryonic T cell receptor–invariant T cells. At later developmental stages, adaptive T lymphocytes are derived from lympho-myeloid progenitors that colonize the thymus, while lymphoid progenitors become specialized in the production of B cells. This sequence of events highlights the requirement for stratification in the establishment of immune functions that determine efficient seeding of peripheral tissues by a limited number of cells.
-
Previous Volumes
-
Volume 43 (2025)
-
Volume 42 (2024)
-
Volume 41 (2023)
-
Volume 40 (2022)
-
Volume 39 (2021)
-
Volume 38 (2020)
-
Volume 37 (2019)
-
Volume 36 (2018)
-
Volume 35 (2017)
-
Volume 34 (2016)
-
Volume 33 (2015)
-
Volume 32 (2014)
-
Volume 31 (2013)
-
Volume 30 (2012)
-
Volume 29 (2011)
-
Volume 28 (2010)
-
Volume 27 (2009)
-
Volume 26 (2008)
-
Volume 25 (2007)
-
Volume 24 (2006)
-
Volume 23 (2005)
-
Volume 22 (2004)
-
Volume 21 (2003)
-
Volume 20 (2002)
-
Volume 19 (2001)
-
Volume 18 (2000)
-
Volume 17 (1999)
-
Volume 16 (1998)
-
Volume 15 (1997)
-
Volume 14 (1996)
-
Volume 13 (1995)
-
Volume 12 (1994)
-
Volume 11 (1993)
-
Volume 10 (1992)
-
Volume 9 (1991)
-
Volume 8 (1990)
-
Volume 7 (1989)
-
Volume 6 (1988)
-
Volume 5 (1987)
-
Volume 4 (1986)
-
Volume 3 (1985)
-
Volume 2 (1984)
-
Volume 1 (1983)
-
Volume 0 (1932)