1932

Abstract

Recognition of foreign nucleic acids is the primary mechanism by which a type I interferon–mediated antiviral response is triggered. Given that human cells are replete with DNA and RNA, this evolutionary strategy poses an inherent biological challenge, i.e., the fundamental requirement to reliably differentiate self–nucleic acids from nonself nucleic acids. We suggest that the group of Mendelian inborn errors of immunity referred to as the type I interferonopathies relate to a breakdown of self/nonself discrimination, with the associated mutant genotypes involving molecules playing direct or indirect roles in nucleic acid signaling. This perspective begs the question as to the sources of self-derived nucleic acids that drive an inappropriate immune response. Resolving this question will provide fundamental insights into immune tolerance, antiviral signaling, and complex autoinflammatory disease states. Here we develop these ideas, discussing type I interferonopathies within the broader framework of nucleic acid–driven inflammation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042718-041257
2019-04-26
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/immunol/37/1/annurev-immunol-042718-041257.html?itemId=/content/journals/10.1146/annurev-immunol-042718-041257&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hartmann G 2017. Nucleic acid immunity. Adv. Immunol. 133:121–69
    [Google Scholar]
  2. 2.
    Roers A, Hiller B, Hornung V 2016. Recognition of endogenous nucleic acids by the innate immune system. Immunity 44:739–54
    [Google Scholar]
  3. 3.
    Crow YJ, Manel N 2015. Aicardi-Goutières syndrome and the type I interferonopathies. Nat. Rev. Immunol. 15:429–40
    [Google Scholar]
  4. 4.
    Crow YJ 2011. Type I interferonopathies: a novel set of inborn errors of immunity. Ann. N.Y. Acad. Sci. 1238:91–98
    [Google Scholar]
  5. 5.
    Gresser I, Morel-Maroger L, Riviere Y, Guillon JC, Tovey MG et al. 1980. Interferon-induced disease in mice and rats. Ann. N.Y. Acad. Sci. 350:12–20
    [Google Scholar]
  6. 6.
    Rodero MP, Crow YJ 2016. Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J. Exp. Med. 213:2527–38
    [Google Scholar]
  7. 7.
    Behrendt R, Roers A 2014. Mouse models for Aicardi-Goutières syndrome provide clues to the molecular pathogenesis of systemic autoimmunity. Clin. Exp. Immunol. 175:9–16
    [Google Scholar]
  8. 8.
    Lebon P, Badoual J, Ponsot G, Goutières F, Hemeury-Cukier F, Aicardi J 1988. Intrathecal synthesis of interferon-alpha in infants with progressive familial encephalopathy. J. Neurol. Sci. 84:201–8
    [Google Scholar]
  9. 9.
    Rice GI, Forte GM, Szynkiewicz M, Chase DS, Aeby A et al. 2013. Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol 12:1159–69
    [Google Scholar]
  10. 10.
    Kim H, de Jesus AA, Brooks SR, Liu Y, Huang Y et al. 2018. Development of a validated interferon score using NanoString technology. J. Interferon Cytokine Res. 38:171–85
    [Google Scholar]
  11. 11.
    Rodero MP, Decalf J, Bondet V, Hunt D, Rice GI et al. 2017. Detection of interferon alpha protein reveals differential levels and cellular sources in disease. J. Exp. Med. 214:1547–55
    [Google Scholar]
  12. 12.
    Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A et al. 2006. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat. Genet. 38:917–20
    [Google Scholar]
  13. 13.
    Crow YJ, Leitch A, Hayward BE, Garner A, Parmar R et al. 2006. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection. Nat. Genet. 38:910–16
    [Google Scholar]
  14. 14.
    Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW et al. 2009. Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet. 41:829–32
    [Google Scholar]
  15. 15.
    Rice GI, Kasher PR, Forte GM, Mannion NM, Greenwood SM et al. 2012. Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat. Genet. 44:1243–48
    [Google Scholar]
  16. 16.
    Rice GI, Del Toro Duany Y, Jenkinson EM, Forte GM, Anderson BH et al. 2014. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 46:503–9
    [Google Scholar]
  17. 17.
    Jang MA, Kim EK, Now H, Nguyen NT, Kim WJ et al. 2015. Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am. J. Hum. Genet. 96:266–74
    [Google Scholar]
  18. 18.
    Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE et al. 2014. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371:507–18
    [Google Scholar]
  19. 19.
    Rodero MP, Tesser A, Bartok E, Rice GI, Della Mina E et al. 2017. Type I interferon-mediated autoinflammation due to DNase II deficiency. Nat. Commun. 8:2176
    [Google Scholar]
  20. 20.
    Dhir A, Dhir S, Borowski LS, Jimenez L, Teitell M et al. 2018. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 560238–42
    [Google Scholar]
  21. 21.
    Gul E, Sayar EH, Gungor B, Eroglu FK, Surucu N et al. 2018. Type I IFN-related NETosis in ataxia telangiectasia and Artemis deficiency. J. Allergy Clin. Immunol. 142:246–57
    [Google Scholar]
  22. 22.
    Starokadomskyy P, Gemelli T, Rios JJ, Xing C, Wang RC et al. 2016. DNA polymerase-alpha regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nat. Immunol. 17:495–504
    [Google Scholar]
  23. 23.
    Eckard SC, Rice GI, Fabre A, Badens C, Gray EE et al. 2014. The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nat. Immunol. 15:839–45
    [Google Scholar]
  24. 24.
    Mu X, Ahmad S, Hur S 2016. Endogenous retroelements and the host innate immune sensors. Adv. Immunol. 132:47–69
    [Google Scholar]
  25. 25.
    Stetson DB, Ko JS, Heidmann T, Medzhitov R 2008. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134:587–98
    [Google Scholar]
  26. 26.
    Rice GI, Kitabayashi N, Barth M, Briggs TA, Burton ACE et al. 2017. Genetic, phenotypic, and interferon biomarker status in ADAR1-related neurological disease. Neuropediatrics 48:166–84
    [Google Scholar]
  27. 27.
    Ahmad S, Mu X, Yang F, Greenwald E, Park JW et al. 2018. Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation. Cell 172:797–810.e13
    [Google Scholar]
  28. 28.
    Chung H, Calis JJA, Wu X, Sun T, Yu Y et al. 2018. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172:811–24.e14
    [Google Scholar]
  29. 29.
    Thomas CA, Tejwani L, Trujillo CA, Negraes PD, Herai RH et al. 2017. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell 21:319–31.e8
    [Google Scholar]
  30. 30.
    Li P, Du J, Goodier JL, Hou J, Kang J et al. 2017. Aicardi–Goutières syndrome protein TREX1 suppresses L1 and maintains genome integrity through exonuclease-independent ORF1p depletion. Nucleic Acids Res 45:4619–31
    [Google Scholar]
  31. 31.
    Herrmann A, Wittmann S, Thomas D, Shepard CN, Kim B et al. 2018. The SAMHD1-mediated block of LINE-1 retroelements is regulated by phosphorylation. Mob. DNA 9:11 Correction. 2018. Mob. DNA 9:16
    [Google Scholar]
  32. 32.
    Orecchini E, Doria M, Antonioni A, Galardi S, Ciafre SA et al. 2017. ADAR1 restricts LINE-1 retrotransposition. Nucleic Acids Res 45:155–68
    [Google Scholar]
  33. 33.
    Bartsch K, Knittler K, Borowski C, Rudnik S, Damme M et al. 2017. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum. Mol. Genet. 26:3960–72
    [Google Scholar]
  34. 34.
    Benitez-Guijarro M, Lopez-Ruiz C, Tarnauskaitė Z, Murina O, Mian Mohammad M et al. 2018. RNase H2, mutated in Aicardi-Goutières syndrome, promotes LINE-1 retrotransposition. EMBO J 37:e98506
    [Google Scholar]
  35. 35.
    Kawane K, Motani K, Nagata S 2014. DNA degradation and its defects. Cold Spring Harb. Perspect. Biol. 6:a016394
    [Google Scholar]
  36. 36.
    Kawane K, Fukuyama H, Kondoh G, Takeda J, Ohsawa Y et al. 2001. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292:1546–49
    [Google Scholar]
  37. 37.
    Yoshida H, Okabe Y, Kawane K, Fukuyama H, Nagata S 2005. Lethal anemia caused by interferon-beta produced in mouse embryos carrying undigested DNA. Nat. Immunol. 6:49–56
    [Google Scholar]
  38. 38.
    Kawane K, Ohtani M, Miwa K, Kizawa T, Kanbara Y et al. 2006. Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature 443:998–1002
    [Google Scholar]
  39. 39.
    Okabe Y, Kawane K, Nagata S 2008. IFN regulatory factor (IRF) 3/7-dependent and -independent gene induction by mammalian DNA that escapes degradation. Eur. J. Immunol. 38:3150–58
    [Google Scholar]
  40. 40.
    Ahn J, Gutman D, Saijo S, Barber GN 2012. STING manifests self DNA-dependent inflammatory disease. PNAS 109:19386–91
    [Google Scholar]
  41. 41.
    Gao D, Li T, Li XD, Chen X, Li QZ et al. 2015. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. PNAS 112:E5699–705
    [Google Scholar]
  42. 42.
    Lan YY, Londono D, Bouley R, Rooney MS, Hacohen N 2014. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep 9:180–92
    [Google Scholar]
  43. 43.
    Mackenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A et al. 2017. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548:461–65
    [Google Scholar]
  44. 44.
    Coquel F, Silva MJ, Techer H, Zadorozhny K, Sharma S et al. 2018. SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature 557:57–61
    [Google Scholar]
  45. 45.
    Wolf C, Rapp A, Berndt N, Staroske W, Schuster M et al. 2016. RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA. Nat. Commun. 7:11752
    [Google Scholar]
  46. 46.
    Härtlova A, Erttmann SF, Raffi FA, Schmalz AM, Resch U et al. 2015. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42:332–43
    [Google Scholar]
  47. 47.
    Quek H, Luff J, Cheung K, Kozlov S, Gatei M et al. 2017. Rats with a missense mutation in Atm display neuroinflammation and neurodegeneration subsequent to accumulation of cytosolic DNA following unrepaired DNA damage. J. Leukoc. Biol. 101:927–47
    [Google Scholar]
  48. 48.
    Quek H, Luff J, Cheung K, Kozlov S, Gatei M et al. 2017. A rat model of ataxia-telangiectasia: evidence for a neurodegenerative phenotype. Hum. Mol. Genet. 26:109–23
    [Google Scholar]
  49. 49.
    West AP, Shadel GS 2017. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17:363–75
    [Google Scholar]
  50. 50.
    Fernández‐Silva P, Enriquez JA, Montoya J 2003. Replication and transcription of mammalian mitochondrial DNA. Exp. Physiol. 88:41–46
    [Google Scholar]
  51. 51.
    Borowski LS, Dziembowski A, Hejnowicz MS, Stepien PP, Szczesny RJ 2013. Human mitochondrial RNA decay mediated by PNPase-hSuv3 complex takes place in distinct foci. Nucleic Acids Res 41:1223–40
    [Google Scholar]
  52. 52.
    West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM et al. 2015. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520:553–57
    [Google Scholar]
  53. 53.
    Aguirre S, Luthra P, Sanchez-Aparicio MT, Maestre AM, Patel J et al. 2017. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat. Microbiol. 2:17037
    [Google Scholar]
  54. 54.
    Yang K, Huang R, Fujihira H, Suzuki T, Yan N 2018. N-glycanase NGLY1 regulates mitochondrial homeostasis and inflammation through NRF1. J. Exp. Med. 215:2600–16
    [Google Scholar]
  55. 55.
    Enns GM, Shashi V, Bainbridge M, Gambello MJ, Zahir FR et al. 2014. Mutations in NGLY1 cause an inherited disorder of the endoplasmic reticulum-associated degradation pathway. Genet. Med. 16:751–58
    [Google Scholar]
  56. 56.
    Lam C, Ferreira C, Krasnewich D, Toro C, Latham L et al. 2017. Prospective phenotyping of NGLY1-CDDG, the first congenital disorder of deglycosylation. Genet. Med. 19:160–68
    [Google Scholar]
  57. 57.
    Frémond ML, Melki I, Kracker S, Bondet V, Duffy D et al. 2018. Comment on: ‘Aberrant tRNA processing causes an autoinflammatory syndrome responsive to TNF inhibitors’ by Giannelou et al: mutations in TRNT1 result in a constitutive activation of type I interferon signalling. Ann. Rheum. Dis In press. https://doi.org/10.1136/annrheumdis-2018-213745
    [Crossref] [Google Scholar]
  58. 58.
    Tonduti D, Orcesi S, Jenkinson EM, Dorboz I, Renaldo F et al. 2016. Clinical, radiological and possible pathological overlap of cystic leukoencephalopathy without megalencephaly and Aicardi-Goutières syndrome. Eur. J. Paediatr. Neurol. 20:604–10
    [Google Scholar]
  59. 59.
    Liu P, Huang J, Zheng Q, Xie L, Lu X et al. 2017. Mammalian mitochondrial RNAs are degraded in the mitochondrial intermembrane space by RNASET2. Protein Cell 8:735–49
    [Google Scholar]
  60. 60.
    Sasarman F, Thiffault I, Weraarpachai W, Salomon S, Maftei C et al. 2015. The 3′ addition of CCA to mitochondrial tRNASer(AGY) is specifically impaired in patients with mutations in the tRNA nucleotidyl transferase TRNT1. Hum. Mol. Genet 24:2841–47
    [Google Scholar]
  61. 61.
    Andreeva L, Hiller B, Kostrewa D, Lassig C, de Oliveira Mann CC et al. 2017. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nature 549:394–98
    [Google Scholar]
  62. 62.
    Stiles AR, Simon MT, Stover A, Eftekharian S, Khanlou N et al. 2016. Mutations in TFAM, encoding mitochondrial transcription factor A, cause neonatal liver failure associated with mtDNA depletion. Mol. Genet. Metab. 119:91–99
    [Google Scholar]
  63. 63.
    Zhang X, Bogunovic D, Payelle-Brogard B, Francois-Newton V, Speer SD et al. 2015. Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation. Nature 517:89–93
    [Google Scholar]
  64. 64.
    Meuwissen ME, Schot R, Buta S, Oudesluijs G, Tinschert S et al. 2016. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J. Exp. Med. 213:1163–74
    [Google Scholar]
  65. 65.
    Stark GR, Darnell JE 2012. The JAK-STAT pathway at twenty. Immunity 36:503–14
    [Google Scholar]
  66. 66.
    Hermann M, Bogunovic D 2017. ISG15: in sickness and in health. Trends Immunol 38:79–93
    [Google Scholar]
  67. 67.
    Arimoto KI, Lochte S, Stoner SA, Burkart C, Zhang Y et al. 2017. STAT2 is an essential adaptor in USP18-mediated suppression of type I interferon signaling. Nat. Struct. Mol. Biol. 24:279–89
    [Google Scholar]
  68. 68.
    Speer SD, Li Z, Buta S, Payelle-Brogard B, Qian L et al. 2016. ISG15 deficiency and increased viral resistance in humans but not mice. Nat. Commun. 7:11496
    [Google Scholar]
  69. 69.
    Goldmann T, Zeller N, Raasch J, Kierdorf K, Frenzel K et al. 2015. USP18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO J 34:1612–29
    [Google Scholar]
  70. 70.
    Al Shehri T AM, Gennery AR, Rice GI, Crow YJ, Lilic D 2015. Is gain-of-function STAT1 CMC an interferonopathy?. Clin. Exp. Immunol. 182:Suppl. 11–34
    [Google Scholar]
  71. 71.
    Johnston JJ, Sanchez-Contreras MY, Keppler-Noreuil KM, Sapp J, Crenshaw M et al. 2015. A point mutation in PDGFRB causes autosomal-dominant Penttinen syndrome. Am. J. Hum. Genet. 97:465–74
    [Google Scholar]
  72. 72.
    He C, Medley SC, Kim J, Sun C, Kwon HR et al. 2017. STAT1 modulates tissue wasting or overgrowth downstream from PDGFRβ. Genes Dev 31:1666–78
    [Google Scholar]
  73. 73.
    Del Bel KL, Ragotte RJ, Saferali A, Lee S, Vercauteren SM et al. 2017. JAK1 gain-of-function causes an autosomal dominant immune dysregulatory and hypereosinophilic syndrome. J. Allergy Clin. Immunol. 139:2016–20.e5
    [Google Scholar]
  74. 74.
    Watkin LB, Jessen B, Wiszniewski W, Vece TJ, Jan M et al. 2015. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat. Genet. 47:654–60
    [Google Scholar]
  75. 75.
    Volpi S, Tsui J, Mariani M, Pastorino C, Caorsi R et al. 2018. Type I interferon pathway activation in COPA syndrome. Clin. Immunol. 187:33–36
    [Google Scholar]
  76. 76.
    Arakel EC, Schwappach B 2018. Formation of COPI-coated vesicles at a glance. J. Cell Sci. 131:jcs209890. Correction. 2018. J. Cell. Sci 131:jcs218347
    [Google Scholar]
  77. 77.
    Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto NM, Yan N 2015. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 18:157–68
    [Google Scholar]
  78. 78.
    Grootjans J, Kaser A, Kaufman RJ, Blumberg RS 2016. The unfolded protein response in immunity and inflammation. Nat. Rev. Immunol. 16:469–84
    [Google Scholar]
  79. 79.
    Malathi K, Dong B, Gale M, Silverman RH 2007. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448:816–19
    [Google Scholar]
  80. 80.
    Morton DJ, Kuiper EG, Jones SK, Leung SW, Corbett AH, Fasken MB 2018. The RNA exosome and RNA exosome-linked disease. RNA 24:127–42
    [Google Scholar]
  81. 81.
    Goldberg AL 2007. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem. Soc. Trans. 35:12–17
    [Google Scholar]
  82. 82.
    Agarwal AK, Xing C, DeMartino GN, Mizrachi D, Hernandez MD et al. 2010. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am. J. Hum. Genet. 87:866–72
    [Google Scholar]
  83. 83.
    Kitamura A, Maekawa Y, Uehara H, Izumi K, Kawachi I et al. 2011. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J. Clin. Investig. 121:4150–60
    [Google Scholar]
  84. 84.
    Arima K, Kinoshita A, Mishima H, Kanazawa N, Kaneko T et al. 2011. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. PNAS 108:14914–19
    [Google Scholar]
  85. 85.
    Liu Y, Ramot Y, Torrelo A, Paller AS, Si N et al. 2012. Mutations in proteasome subunit beta type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum 64:895–907
    [Google Scholar]
  86. 86.
    Brehm A, Liu Y, Sheikh A, Marrero B, Omoyinmi E et al. 2015. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Investig. 125:4196–211
    [Google Scholar]
  87. 87.
    Poli MC, Ebstein F, Nicholas SK, de Guzman MM, Forbes LR et al. 2018. Heterozygous truncating variants in POMP escape nonsense-mediated decay and cause a unique immune dysregulatory syndrome. Am. J. Hum. Genet. 102:1126–42
    [Google Scholar]
  88. 88.
    Beck-Engeser GB, Eilat D, Wabl M 2011. An autoimmune disease prevented by anti-retroviral drugs. Retrovirology 8:91
    [Google Scholar]
  89. 89.
    Achleitner M, Kleefisch M, Hennig A, Peschke K, Polikarpova A et al. 2017. Lack of Trex1 causes systemic autoimmunity despite the presence of antiretroviral drugs. J. Immunol. 199:2261–69
    [Google Scholar]
  90. 90.
    Fowler BJ, Gelfand BD, Kim Y, Kerur N, Tarallo V et al. 2014. Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity. Science 346:1000–3
    [Google Scholar]
  91. 91.
    Rice GI, Meyzer C, Bouazza N, Hully M, Boddaert N et al. 2018. Reverse-transcriptase inhibitors in the Aicardi-Goutières syndrome. New Eng. J. Med 379:2275–77
    [Google Scholar]
  92. 92.
    Frémond ML, Rodero MP, Jeremiah N, Belot A, Jeziorski E et al. 2016. Efficacy of the Janus kinase 1/2 inhibitor ruxolitinib in the treatment of vasculopathy associated with TMEM173-activating mutations in 3 children. J. Allergy Clin. Immunol. 138:1752–55
    [Google Scholar]
  93. 93.
    Kothur K, Bandodkar S, Chu S, Wienholt L, Johnson A et al. 2018. An open-label trial of JAK 1/2 blockade in progressive IFIH1-associated neuroinflammation. Neurology 90:289–91
    [Google Scholar]
  94. 94.
    Sanchez GAM, Reinhardt A, Ramsey S, Wittkowski H, Hashkes PJ et al. 2018. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J. Clin. Investig 128:3041–52 https://doi.org/10.1172/JCI98814
    [Crossref] [Google Scholar]
  95. 95.
    Briand C, Frémond ML, Bessis D, Carbasse A, Rice GI et al. 2018. Efficacy of JAK1/2 inhibition in the treatment of chilblain lupus due to TREX1 deficiency. Ann. Rheum. Dis In press. https://doi.org/10.1136/annrheumdis-2018-214037
    [Crossref] [Google Scholar]
  96. 96.
    McLellan K, Martin N, Davidson J, Cordeiro N, Oates B et al. 2018. JAK 1/2 blockade in MDA5 gain-of-function. J. Clin. Immunol 38:844–46
    [Google Scholar]
  97. 97.
    Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S 2006. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312:1669–72
    [Google Scholar]
  98. 98.
    Gray EE, Treuting PM, Woodward JJ, Stetson DB 2015. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi-Goutières syndrome. J. Immunol. 195:1939–43
    [Google Scholar]
  99. 99.
    Funabiki M, Kato H, Miyachi Y, Toki H, Motegi H et al. 2014. Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity 40:199–212
    [Google Scholar]
  100. 100.
    Gall A, Treuting P, Elkon KB, Loo YM, Gale M et al. 2012. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36:120–31
    [Google Scholar]
  101. 101.
    Kawane K, Tanaka H, Kitahara Y, Shimaoka S, Nagata S 2010. Cytokine-dependent but acquired immunity-independent arthritis caused by DNA escaped from degradation. PNAS 107:19432–37
    [Google Scholar]
  102. 102.
    Gaidt MM, Ebert TS, Chauhan D, Ramshorn K, Pinci F et al. 2017. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell 171:1110–24.e18
    [Google Scholar]
  103. 103.
    Cerboni S, Jeremiah N, Gentili M, Gehrmann U, Conrad C et al. 2017. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J. Exp. Med. 214:1769–85
    [Google Scholar]
  104. 104.
    Bouis D, Kirstetter P, Arbogast F, Lamon D, Delgado V et al. 2018. Severe combined immunodeficiency in stimulator of interferon genes (STING) V154M/wild-type mice. J. Allergy Clin. Immunol In press https://doi.org/10.1016/j.jaci.2018.04.034
    [Crossref] [Google Scholar]
  105. 105.
    Warner JD, Irizarry-Caro RA, Bennion BG, Ai TL, Smith AM et al. 2017. STING-associated vasculopathy develops independently of IRF3 in mice. J. Exp. Med. 214:3279–92
    [Google Scholar]
  106. 106.
    de Carvalho LM, Ngoumou G, Park JW, Ehmke N, Deigendesch N et al. 2017. Musculoskeletal disease in MDA5-related type I interferonopathy: a Mendelian mimic of Jaccoud's arthropathy. Arthritis Rheumatol 69:2081–91
    [Google Scholar]
  107. 107.
    Winthrop KL 2017. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat. Rev. Rheumatol. 13:234–43
    [Google Scholar]
  108. 108.
    Pawaria S, Moody K, Busto P, Nundel K, Choi CH et al. 2015. Cutting edge: DNase II deficiency prevents activation of autoreactive B cells by double-stranded DNA endogenous ligands. J. Immunol. 194:1403–7
    [Google Scholar]
  109. 109.
    Chan MP, Onji M, Fukui R, Kawane K, Shibata T et al. 2015. DNase II-dependent DNA digestion is required for DNA sensing by TLR9. Nat. Commun. 6:5853
    [Google Scholar]
  110. 110.
    Ling GS, Crawford G, Buang N, Bartok I, Tian K et al. 2018. C1q restrains autoimmunity and viral infection by regulating CD8+ T cell metabolism. Science 360:558–63
    [Google Scholar]
  111. 111.
    Briggs TA, Rice GI, Adib N, Ades L, Barete S et al. 2016. Spondyloenchondrodysplasia due to mutations in ACP5: a comprehensive survey. J. Clin. Immunol. 36:220–34 Erratum. 2016 36:529–30
    [Google Scholar]
  112. 112.
    Belot A, Wassmer E, Twilt M, Lega JC, Zeef LA et al. 2014. Mutations in CECR1 associated with a neutrophil signature in peripheral blood. Pediatr. Rheumatol. Online J. 12:44
    [Google Scholar]
  113. 113.
    Yang H, Wang H, Ren J, Chen Q, Chen ZJ 2017. cGAS is essential for cellular senescence. PNAS 114:E4612–20
    [Google Scholar]
  114. 114.
    Zierhut C, Funabiki H 2017. The cytoplasmic DNA sensor cGAS promotes mitotic cell death. bioRxiv 168070
  115. 115.
    Gorman JA, Hundhausen C, Errett JS, Stone AE, Allenspach EJ et al. 2017. The A946T variant of the RNA sensor IFIH1 mediates an interferon program that limits viral infection but increases the risk for autoimmunity. Nat. Immunol. 18:744–52
    [Google Scholar]
  116. 116.
    Della Mina E, Rodero MP, Crow YJ 2017. Polymorphisms in IFIH1: the good and the bad. Nat. Immunol. 18:708–9
    [Google Scholar]
  117. 117.
    Rice GI, Melki I, Frémond ML, Briggs TA, Rodero MP et al. 2017. Assessment of type I interferon signaling in pediatric inflammatory disease. J. Clin. Immunol. 37:123–32
    [Google Scholar]
  118. 118.
    Akwa Y, Hassett DE, Eloranta ML, Sandberg K, Masliah E et al. 1998. Transgenic expression of IFN-alpha in the central nervous system of mice protects against lethal neurotropic viral infection but induces inflammation and neurodegeneration. J. Immunol. 161:5016–26
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-042718-041257
Loading
/content/journals/10.1146/annurev-immunol-042718-041257
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error