1932

Abstract

Myeloid cells are a major cellular compartment of the immune system comprising monocytes, dendritic cells, tissue macrophages, and granulocytes. Models of cellular ontogeny, activation, differentiation, and tissue-specific functions of myeloid cells have been revisited during the last years with surprising results; for example, most tissue macrophages are yolk sac derived, monocytes and macrophages follow a multidimensional model of activation, and tissue signals have a significant impact on the functionality of all these cells. While these exciting results have brought these cells back to center stage, their enormous plasticity and heterogeneity, during both homeostasis and disease, are far from understood. At the same time, the ongoing revolution in single-cell genomics, with single-cell RNA sequencing (scRNA-seq) leading the way, promises to change this. Prevailing models of hematopoiesis with distinct intermediates are challenged by scRNA-seq data suggesting more continuous developmental trajectories in the myeloid cell compartment. Cell subset structures previously defined by protein marker expression need to be revised based on unbiased analyses of scRNA-seq data. Particularly in inflammatory conditions, myeloid cells exhibit substantially vaster heterogeneity than previously anticipated, and work performed within large international projects, such as the Human Cell Atlas, has already revealed novel tissue macrophage subsets. Based on these exciting developments, we propose the next steps to a full understanding of the myeloid cell compartment in health and diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042718-041728
2019-04-26
2024-05-25
Loading full text...

Full text loading...

/deliver/fulltext/immunol/37/1/annurev-immunol-042718-041728.html?itemId=/content/journals/10.1146/annurev-immunol-042718-041728&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ramsköld D, Luo S, Wang Y-C, Li R, Deng Q et al. 2012. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30:8777–82
    [Google Scholar]
  2. 2.
    Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R 2014. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9:1171–81
    [Google Scholar]
  3. 3.
    Gawad C, Koh W, Quake SR 2016. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17:3175–88
    [Google Scholar]
  4. 4.
    Navin N, Kendall J, Troge J, Andrews P, Rodgers L et al. 2011. Tumour evolution inferred by single-cell sequencing. Nature 472:734190–94
    [Google Scholar]
  5. 5.
    Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L et al. 2015. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348:6237910–14
    [Google Scholar]
  6. 6.
    Litzenburger UM, Buenrostro JD, Wu B, Shen Y, Sheffield NC et al. 2017. Single-cell epigenomic variability reveals functional cancer heterogeneity. Genome Biol 18:115
    [Google Scholar]
  7. 7.
    Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN et al. 2018. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 173:61535–48.e16
    [Google Scholar]
  8. 8.
    Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT et al. 2013. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498:7453236–40
    [Google Scholar]
  9. 9.
    Shapiro E, Biezuner T, Linnarsson S 2013. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14:9618–30
    [Google Scholar]
  10. 10.
    Hooke R 1665. Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses London: J. Martyn and J. Allestry
  11. 11.
    Steinman RM, Cohn ZA 1973. Identification of a novel cell type in peripheral lymphoid organs of mice. J. Exp. Med. 137:51142–62
    [Google Scholar]
  12. 12.
    Coons AH, Creech HJ, Jones RN 1941. Immunological properties of an antibody containing a fluorescent group. Exp. Biol. Med. 47:2200–2
    [Google Scholar]
  13. 13.
    Franke WW, Schmid E, Osborn M, Weber K 1978. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. PNAS 75:105034–38
    [Google Scholar]
  14. 14.
    Fulwyler MJ 1965. Electronic separation of biological cells by volume. Science 150:3698910–11
    [Google Scholar]
  15. 15.
    Köhler G, Milstein C 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:5517495–97
    [Google Scholar]
  16. 16.
    Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R et al. 2009. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81:166813–22
    [Google Scholar]
  17. 17.
    Bendall SC, Simonds EF, Qiu P, Amir ED, Krutzik PO et al. 2011. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:6030687–95
    [Google Scholar]
  18. 18.
    Guilliams M, Dutertre C-A, Scott CL, McGovern N, Sichien D et al. 2016. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45:3669–84
    [Google Scholar]
  19. 19.
    Yosef N, Regev A 2016. Writ large: genomic dissection of the effect of cellular environment on immune response. Science 354:630864–68
    [Google Scholar]
  20. 20.
    Netea MG, Joosten LAB, Latz E, Mills KHG, Natoli G et al. 2016. Trained immunity: a program of innate immune memory in health and disease. Science 352:6284aaf1098
    [Google Scholar]
  21. 21.
    Bonnardel J, Guilliams M 2018. Developmental control of macrophage function. Curr. Opin. Immunol. 50:64–74
    [Google Scholar]
  22. 22.
    Davis MM, Brodin P 2018. Rebooting human immunology. Annu. Rev. Immunol. 36:843–64
    [Google Scholar]
  23. 23.
    Gaublomme JT, Yosef N, Lee Y, Gertner RS, Yang LV et al. 2015. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163:61400–12
    [Google Scholar]
  24. 24.
    Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D et al. 2014. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510:7505363–69
    [Google Scholar]
  25. 25.
    Mass E, Ballesteros I, Farlik M, Halbritter F, Günther P et al. 2016. Specification of tissue-resident macrophages during organogenesis. Science 353:6304aaf4238
    [Google Scholar]
  26. 26.
    Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F et al. 2014. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:6172776–79
    [Google Scholar]
  27. 27.
    Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D et al. 2016. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352:6282189–96
    [Google Scholar]
  28. 28.
    See P, Dutertre CA, Chen J, Günther P, McGovern N et al. 2017. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 356:6342eaag3009
    [Google Scholar]
  29. 29.
    Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C et al. 2014. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20:4436–42
    [Google Scholar]
  30. 30.
    Liu Z, Gerner MY, Van Panhuys N, Levine AG, Rudensky AY, Germain RN 2015. Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature 528:7581225–30
    [Google Scholar]
  31. 31.
    Ginhoux F, Jung S 2014. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14:6392–404
    [Google Scholar]
  32. 32.
    Varol C, Mildner A, Jung S 2015. Macrophages: development and tissue specialization. Annu. Rev. Immunol. 33:643–75
    [Google Scholar]
  33. 33.
    Laurenti E, Göttgens B 2018. From haematopoietic stem cells to complex differentiation landscapes. Nature 553:7689418
    [Google Scholar]
  34. 34.
    Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N et al. 2014. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14:8571–78
    [Google Scholar]
  35. 35.
    Geissmann F, Mass E 2015. A stratified myeloid system, the challenge of understanding macrophage diversity. Semin. Immunol. 27:6353–56
    [Google Scholar]
  36. 36.
    Ginhoux F, Guilliams M 2016. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44:3439–49
    [Google Scholar]
  37. 37.
    Brady G, Barbara M, Iscove NN 1990. Representative in vitro cDNA amplification from individual hemopoietic cells and colonies. Methods Mol. Cell. Biol. 2:117–25
    [Google Scholar]
  38. 38.
    Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y et al. 2015. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 33:3269–76
    [Google Scholar]
  39. 39.
    Pina C, Teles J, Fugazza C, May G, Wang D et al. 2015. Single-cell network analysis identifies DDIT3 as a nodal lineage regulator in hematopoiesis. Cell Rep 11:101503–10
    [Google Scholar]
  40. 40.
    Drissen R, Buza-Vidas N, Woll P, Thongjuea S, Gambardella A et al. 2016. Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing. Nat. Immunol. 17:6666–76
    [Google Scholar]
  41. 41.
    Olsson A, Venkatasubramanian M, Chaudhri VK, Aronow BJ, Salomonis N et al. 2016. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature 537:7622698–702
    [Google Scholar]
  42. 42.
    Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E et al. 2015. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163:71663–77 Correction. 2016 Cell 164:1325
    [Google Scholar]
  43. 43.
    Naik SH, Perié L, Swart E, Gerlach C, van Rooij N et al. 2013. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 496:7444229–32
    [Google Scholar]
  44. 44.
    Notta F, Zandi S, Takayama N, Dobson S, Gan OI et al. 2016. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351:6269aab2116
    [Google Scholar]
  45. 45.
    Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M et al. 2013. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154:51112–26
    [Google Scholar]
  46. 46.
    Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC et al. 2013. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 502:7470232–36
    [Google Scholar]
  47. 47.
    Müller-Sieberg CE, Cho RH, Thoman M, Adkins B, Sieburg HB 2002. Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood 100:41302–9
    [Google Scholar]
  48. 48.
    Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, Panero R, Patel SH et al. 2018. Clonal analysis of lineage fate in native haematopoiesis. Nature 553:7687212–16
    [Google Scholar]
  49. 49.
    Giladi A, Paul F, Herzog Y, Lubling Y, Weiner A et al. 2018. Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis. Nat. Cell Biol. 20:836–46
    [Google Scholar]
  50. 50.
    Rosendaal M, Hodgson GS, Bradley TR 1979. Organization of haemopoietic stem cells: the generation-age hypothesis. Cell Tissue Kinet 12:117–29
    [Google Scholar]
  51. 51.
    Benz C, Copley MR, Kent DG, Wohrer S, Cortes A et al. 2012. Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell 10:3273–83
    [Google Scholar]
  52. 52.
    Young K, Borikar S, Bell R, Kuffler L, Philip V, Trowbridge JJ 2016. Progressive alterations in multipotent hematopoietic progenitors underlie lymphoid cell loss in aging. J. Exp. Med. 213:111–9
    [Google Scholar]
  53. 53.
    Grover A, Sanjuan-Pla A, Thongjuea S, Carrelha J, Giustacchini A et al. 2016. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat. Commun. 7:11075
    [Google Scholar]
  54. 54.
    Qiu X, Mao Q, Tang Y, Wang L, Chawla R et al. 2017. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14:10979–82
    [Google Scholar]
  55. 55.
    Ji Z, Ji H 2016. TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res 44:13e117
    [Google Scholar]
  56. 56.
    Nestorowa S, Hamey FK, Pijuan Sala B, Diamanti E, Shepherd M et al. 2016. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128:8e20–31
    [Google Scholar]
  57. 57.
    Tusi BK, Wolock SL, Weinreb C, Hwang Y, Hidalgo D et al. 2018. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555:769454–60
    [Google Scholar]
  58. 58.
    Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W et al. 2014. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:2274–88
    [Google Scholar]
  59. 59.
    Schultze JL, Beyer M 2016. Myelopoiesis reloaded: single-cell transcriptomics leads the way. Immunity 44:118–20
    [Google Scholar]
  60. 60.
    Ziegler-Heitbrock L 2015. Blood monocytes and their subsets: established features and open questions. Front. Immunol. 6:423
    [Google Scholar]
  61. 61.
    van Furth R, Cohn ZA 1968. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128:3415–35
    [Google Scholar]
  62. 62.
    Ginhoux F, Greter M, Leboeuf M, Nandi S, See P et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:6005841–45
    [Google Scholar]
  63. 63.
    Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E et al. 2015. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:7540547–51
    [Google Scholar]
  64. 64.
    Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L et al. 2013. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210:101977–92
    [Google Scholar]
  65. 65.
    Hoeffel G, Wang Y, Greter M, See P, Teo P et al. 2012. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209:61167–81
    [Google Scholar]
  66. 66.
    Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF et al. 2015. C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42:4665–78
    [Google Scholar]
  67. 67.
    Merad M, Manz MG, Karsunky H, Wagers A, Peters W et al. 2002. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3:121135–41
    [Google Scholar]
  68. 68.
    Schulz Christian, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N et al. 2012. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:607786–90
    [Google Scholar]
  69. 69.
    Sheng J, Ruedl C, Karjalainen K 2015. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43:2382–93
    [Google Scholar]
  70. 70.
    Yona S, Kim K-W, Wolf Y, Mildner A, Varol D et al. 2013. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:179–91
    [Google Scholar]
  71. 71.
    Chong SZ, Evrard M, Devi S, Chen J, Lim JY et al. 2016. CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. J. Exp. Med. 213:112293–314
    [Google Scholar]
  72. 72.
    Jung H, Mithal DS, Park JE, Miller RJ 2015. Localized CCR2 activation in the bone marrow niche mobilizes monocytes by desensitizing CXCR4. PLOS ONE 10:6e0128387
    [Google Scholar]
  73. 73.
    Kawamura S, Onai N, Miya F, Sato T, Tsunoda T et al. 2017. Identification of a human clonogenic progenitor with strict monocyte differentiation potential: a counterpart of mouse cMoPs. Immunity 46:5835–48.e4
    [Google Scholar]
  74. 74.
    Menezes S, Melandri D, Anselmi G, Perchet T, Loschko J et al. 2016. The heterogeneity of Ly6Chi monocytes controls their differentiation into iNOS+ macrophages or monocyte-derived dendritic cells. Immunity 45:61205–18
    [Google Scholar]
  75. 75.
    Yáñez A, Coetzee SG, Olsson A, Muench DE, Berman BP et al. 2017. Granulocyte-monocyte progenitors and monocyte-dendritic cell progenitors independently produce functionally distinct monocytes. Immunity 47:5890–902.e4
    [Google Scholar]
  76. 76.
    Mildner A, Schönheit J, Giladi A, David E, Lara-Astiaso D et al. 2017. Genomic characterization of murine monocytes reveals C/EBPβ transcription factor dependence of Ly6C cells. Immunity 46:5849–62.e7
    [Google Scholar]
  77. 77.
    Zawada AM, Rogacev KS, Rotter B, Winter P, Marell R-R et al. 2011. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 118:12e50–61
    [Google Scholar]
  78. 78.
    Gren ST, Rasmussen TB, Janciauskiene S, Håkansson K, Gerwien JG, Grip O 2015. A single-cell gene-expression profile reveals inter-cellular heterogeneity within human monocyte subsets. PLOS ONE 10:12e0144351
    [Google Scholar]
  79. 79.
    Imhof BA, Aurrand-Lions M 2004. Adhesion mechanisms regulating the migration of monocytes. Nat. Rev. Immunol. 4:6432–44
    [Google Scholar]
  80. 80.
    Goudot C, Coillard A, Villani A-C, Gueguen P, Cros A et al. 2017. Aryl hydrocarbon receptor controls monocyte differentiation into dendritic cells versus macrophages. Immunity 47:3582–96.e6
    [Google Scholar]
  81. 81.
    Villani A-C, Satija R, Reynolds G, Sarkizova S, Shekhar K et al. 2017. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356:6335eaah4573
    [Google Scholar]
  82. 82.
    Schlitzer A, Sivakamasundari V, Chen J, Sumatoh HR, Schreuder J et al. 2015. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 16:7718–28
    [Google Scholar]
  83. 83.
    Sander J, Schmidt SV, Cirovic B, McGovern N, Papantonopoulou O et al. 2017. Cellular differentiation of human monocytes is regulated by time-dependent interleukin-4 signaling and the transcriptional regulator NCOR2. Immunity 47:61051–66.e12
    [Google Scholar]
  84. 84.
    Schraml BU, van Blijswijk J, Zelenay S, Whitney PG, Filby A et al. 2013. Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage. Cell 154:4843–58
    [Google Scholar]
  85. 85.
    Merad M, Sathe P, Helft J, Miller J, Mortha A 2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31:563–604
    [Google Scholar]
  86. 86.
    Mildner A, Jung S 2014. Development and function of dendritic cell subsets. Immunity 40:5642–56
    [Google Scholar]
  87. 87.
    Schlitzer A, Ginhoux F 2014. Organization of the mouse and human DC network. Curr. Opin. Immunol. 26:90–99
    [Google Scholar]
  88. 88.
    Schlitzer A, McGovern N, Ginhoux F 2015. Dendritic cells and monocyte-derived cells: two complementary and integrated functional systems. Semin. Cell Dev. Biol. 41:9–22
    [Google Scholar]
  89. 89.
    Doebel T, Voisin B, Nagao K 2017. Langerhans cells—the macrophage in dendritic cell clothing. Trends Immunol 38:11817–28
    [Google Scholar]
  90. 90.
    Naik SH, Sathe P, Park H-Y, Metcalf D, Proietto AI et al. 2007. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8:111217–26
    [Google Scholar]
  91. 91.
    Onai N, Obata-Onai A, Schmid MA, Ohteki T, Jarrossay D, Manz MG 2007. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat. Immunol. 8:111207–16
    [Google Scholar]
  92. 92.
    Onai N, Kurabayashi K, Hosoi-Amaike M, Toyama-Sorimachi N, Matsushima K et al. 2013. A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential. Immunity 38:5943–57
    [Google Scholar]
  93. 93.
    Sathe P, Metcalf D, Vremec D, Naik SH, Langdon WY et al. 2014. Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophage-dendritic cell-restricted progenitor. Immunity 41:1104–15
    [Google Scholar]
  94. 94.
    Liu K, Victora GD, Schwickert TA, Guermonprez P, Meredith MM et al. 2009. In vivo analysis of dendritic cell development and homeostasis. Science 324:5925392–97
    [Google Scholar]
  95. 95.
    Breton G, Lee J, Zhou YJ, Schreiber JJ, Keler T et al. 2015. Circulating precursors of human CD1c+ and CD141+ dendritic cells. J. Exp. Med. 212:3401–13
    [Google Scholar]
  96. 96.
    Breton G, Zheng S, Valieris R, Tojal da Silva I, Satija R, Nussenzweig MC 2016. Human dendritic cells (DCs) are derived from distinct circulating precursors that are precommitted to become CD1c+ or CD141+ DCs. J. Exp. Med. 213:132861–70
    [Google Scholar]
  97. 97.
    Matsui T, Connolly JE, Michnevitz M, Chaussabel D, Yu C-I et al. 2009. CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J. Immunol. 182:116815–23
    [Google Scholar]
  98. 98.
    Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK et al. 2017. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14:9865–68
    [Google Scholar]
  99. 99.
    Helft J, Böttcher J, Chakravarty P, Zelenay S, Huotari J et al. 2015. GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c+MHCII+ macrophages and dendritic cells. Immunity 42:61197–211
    [Google Scholar]
  100. 100.
    Dixit A, Parnas O, Li B, Chen J, Fulco CP et al. 2016. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167:71853–66.e17
    [Google Scholar]
  101. 101.
    Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H et al. 2016. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167:71883–96.e15
    [Google Scholar]
  102. 102.
    Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P et al. 2017. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14:3297–301
    [Google Scholar]
  103. 103.
    Xie S, Duan J, Li B, Zhou P, Hon GC 2017. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell 66:2285–99.e5
    [Google Scholar]
  104. 104.
    Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK 2016. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat. Immunol. 17:134–40
    [Google Scholar]
  105. 105.
    Mass E 2018. Delineating the origins, developmental programs and homeostatic functions of tissue-resident macrophages. Int. Immunol. 30:11493–501
    [Google Scholar]
  106. 106.
    Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB et al. 2013. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:4792–804
    [Google Scholar]
  107. 107.
    Soucie EL, Weng Z, Geirsdóttir L, Molawi K, Maurizio J et al. 2016. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science 351:6274aad5510
    [Google Scholar]
  108. 108.
    Abutbul S, Shapiro J, Szaingurten-Solodkin I, Levy N, Carmy Y et al. 2012. TGF-β signaling through SMAD2/3 induces the quiescent microglial phenotype within the CNS environment. Glia 60:71160–71
    [Google Scholar]
  109. 109.
    Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ et al. 2014. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17:1131–43
    [Google Scholar]
  110. 110.
    Haldar M, Kohyama M, So AY-L, KC W, Wu X et al. 2014. Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell 156:61223–34
    [Google Scholar]
  111. 111.
    Kohyama M, Ise W, Edelson BT, Wilker PR, Hildner K et al. 2009. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457:7227318–21
    [Google Scholar]
  112. 112.
    Okabe Y, Medzhitov R 2014. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157:4832–44
    [Google Scholar]
  113. 113.
    Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H et al. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:61312–26
    [Google Scholar]
  114. 114.
    Artegiani B, Lyubimova A, Muraro M, van Es JH, van Oudenaarden A, Clevers H 2017. A single-cell RNA sequencing study reveals cellular and molecular dynamics of the hippocampal neurogenic niche. Cell Rep 21:113271–84
    [Google Scholar]
  115. 115.
    Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A et al. 2016. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353:6301aad8670
    [Google Scholar]
  116. 116.
    Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG et al. 2018. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48:2380–95.e6
    [Google Scholar]
  117. 117.
    Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R et al. 2017. A unique microglia type associated with restricting development of Alzheimer's disease. Cell 169:71276–90.e17
    [Google Scholar]
  118. 118.
    Goldmann T, Wieghofer P, Jordão MJC, Prutek F, Hagemeyer N et al. 2016. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17:7797–805
    [Google Scholar]
  119. 119.
    Chen R, Wu X, Jiang L, Zhang Y 2017. Single-cell RNA-seq reveals hypothalamic cell diversity. Cell Rep 18:133227–41
    [Google Scholar]
  120. 120.
    Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C et al. 2015. A survey of human brain transcriptome diversity at the single cell level. PNAS 112:237285–90
    [Google Scholar]
  121. 121.
    Gokce O, Stanley GM, Treutlein B, Neff NF, Camp JG et al. 2016. Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-seq. Cell Rep 16:41126–37
    [Google Scholar]
  122. 122.
    Lake BB, Chen S, Sos BC, Fan J, Kaeser GE et al. 2017. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36:170–80
    [Google Scholar]
  123. 123.
    Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T et al. 2016. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19:2335–46
    [Google Scholar]
  124. 124.
    Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F et al. 2018. Molecular architecture of the mouse nervous system. bioRxiv. 294918
  125. 125.
    Hulsmans M, Clauss S, Xiao L, Aguirre AD, King KR et al. 2017. Macrophages facilitate electrical conduction in the heart. Cell 169:3510–22.e20
    [Google Scholar]
  126. 126.
    Skelly DA, Squiers GT, McLellan MA, Bolisetty MT, Robson P et al. 2018. Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep 22:3600–10
    [Google Scholar]
  127. 127.
    Hill DA, Lim H-W, Kim YH, Ho WY, Foong YH et al. 2018. Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. PNAS 115:E5096–105
    [Google Scholar]
  128. 128.
    Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM 2000. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164:126166–73
    [Google Scholar]
  129. 129.
    Avraham R, Haseley N, Brown D, Penaranda C, Jijon HB et al. 2015. Pathogen cell-to-cell variability drives heterogeneity in host immune responses. Cell 162:61309–21
    [Google Scholar]
  130. 130.
    Saliba A-E, Li L, Westermann AJ, Appenzeller S, Stapels DAC et al. 2017. Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella. Nat. Microbiol 2:216206
    [Google Scholar]
  131. 131.
    Gierahn TM, Wadsworth MH, Hughes TK, Bryson BD, Butler A et al. 2017. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14:4395–98
    [Google Scholar]
  132. 132.
    Achim K, Pettit JB, Saraiva LR, Gavriouchkina D, Larsson T et al. 2015. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 33:5503–9
    [Google Scholar]
  133. 133.
    Boisset JC, Vivié J, Grün D, Muraro MJ, Lyubimova A, van Oudenaarden A 2018. Mapping the physical network of cellular interactions. Nat. Methods 15:547–53
    [Google Scholar]
  134. 134.
    Satija R, Farrell JA, Gennert D, Schier AF, Regev A 2015. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33:5495–502
    [Google Scholar]
  135. 135.
    Saadatpour A, Guo G, Orkin SH, Yuan GC 2014. Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis. Genome Biol 15:12525
    [Google Scholar]
  136. 136.
    Hérault A, Binnewies M, Leong S, Calero-Nieto FJ, Zhang SY et al. 2017. Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature 544:764853–58
    [Google Scholar]
  137. 137.
    Turaj AH, Hussain K, Cox KL, Rose-Zerilli MJJ, Testa J et al. 2017. Antibody tumor targeting is enhanced by CD27 agonists through myeloid recruitment. Cancer Cell 32:6777–91.e6
    [Google Scholar]
  138. 138.
    Ohgaki H, Kleihues P 2005. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol. 64:6479–89
    [Google Scholar]
  139. 139.
    Szulzewsky F, Arora S, de Witte L, Ulas T, Markovic D et al. 2016. Human glioblastoma-associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples. Glia 64:81416–36
    [Google Scholar]
  140. 140.
    Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C et al. 2017. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355:6332eaai8478
    [Google Scholar]
  141. 141.
    Müller S, Kohanbash G, Liu SJ, Alvarado B, Carrera D et al. 2017. Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol 18:1234
    [Google Scholar]
  142. 142.
    Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D et al. 2017. An immune atlas of clear cell renal cell carcinoma. Cell 169:4736–49.e18
    [Google Scholar]
  143. 143.
    Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N et al. 2017. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169:4750–65.e17
    [Google Scholar]
  144. 144.
    Mass E, Jacome-Galarza CE, Blank T, Lazarov T, Durham BH et al. 2017. A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. Nature 549:7672389–93
    [Google Scholar]
  145. 145.
    Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I 2018. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173:51073–81
    [Google Scholar]
  146. 146.
    Friedman BA, Srinivasan K, Ayalon G, Meilandt WJ, Lin H et al. 2018. Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer's disease not evident in mouse models. Cell Rep 22:3832–47
    [Google Scholar]
  147. 147.
    Plescher M, Seifert G, Hansen JN, Bedner P, Steinhäuser C, Halle A 2018. Plaque-dependent morphological and electrophysiological heterogeneity of microglia in an Alzheimer's disease mouse model. Glia 66:71464–80
    [Google Scholar]
  148. 148.
    Winkels H, Ehinger E, Vassallo M, Buscher K, Dinh H et al. 2018. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ. Res. 122:121675–88
    [Google Scholar]
  149. 149.
    Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H et al. 2018. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122:121661–74
    [Google Scholar]
  150. 150.
    Lechner AJ, Driver IH, Lee J, Conroy CM, Nagle A et al. 2017. Recruited monocytes and type 2 immunity promote lung regeneration following pneumonectomy. Cell Stem Cell 21:1120–34.e7
    [Google Scholar]
  151. 151.
    Aran D, Looney AP, Liu L, Fong V, Hsu A et al. 2018. Single-cell RNA-seq reveals profibrotic macrophages in lung fibrosis. bioRxiv. 284604
  152. 152.
    Kramann R, Machado F, Wu H, Kusaba T, Hoeft K et al. 2018. Parabiosis and single-cell RNA sequencing reveal a limited contribution of monocytes to myofibroblasts in kidney fibrosis. J. Clin. Investig. Insight. 3:999561
    [Google Scholar]
  153. 153.
    Tang PMK, Zhou S, Li CJ, Liao J, Xiao J et al. 2018. The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring. Kidney Int 93:1173–87
    [Google Scholar]
  154. 154.
    Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C et al. 2018. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174:1293–308.e36
    [Google Scholar]
  155. 155.
    Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C et al. 2017. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357:6352661–67
    [Google Scholar]
  156. 156.
    Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P et al. 2018. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360:6385176–82
    [Google Scholar]
  157. 157.
    Orr JS, Kennedy AJ, Hasty AH 2013. Isolation of adipose tissue immune cells. J. Vis. Exp. 2013:75e50707
    [Google Scholar]
  158. 158.
    Zhang X, Goncalves R, Mosser DM 2008. The isolation and characterization of murine macrophages. Curr. Protoc. Immunol 83:114.1.1–14
    [Google Scholar]
  159. 159.
    Butler A, Hoffman P, Smibert P, Papalexi E, Satija R 2018. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36:5411–20
    [Google Scholar]
  160. 160.
    Alles J, Karaiskos N, Praktiknjo SD, Grosswendt S, Wahle P et al. 2017. Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biol 15:144
    [Google Scholar]
  161. 161.
    Guillaumet-Adkins A, Rodríguez-Esteban G, Mereu E, Mendez-Lago M, Jaitin DA et al. 2017. Single-cell transcriptome conservation in cryopreserved cells and tissues. Genome Biol 18:145
    [Google Scholar]
  162. 162.
    Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW et al. 2017. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8:14049
    [Google Scholar]
  163. 163.
    Stoeckius M, Zheng S, Houck-Loomis B, Hao S, Yeung B et al. 2017. Cell “hashing” with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. bioRxiv 237693
  164. 164.
    Delley CL, Liu L, Sarhan MF, Abate AR 2018. Combined aptamer and transcriptome sequencing of single cells. Sci. Rep. 8:12919
    [Google Scholar]
  165. 165.
    Gehring J, Park JH, Chen S, Thomson M, Pachter L 2018. Highly multiplexed single-cell RNA-seq for defining cell population and transcriptional spaces. bioRxiv. 315333
  166. 166.
    Scholz CJ, Biernat P, Becker M, Baßler K, Günther P et al. 2018. FASTGenomics: an analytical ecosystem for single-cell RNA sequencing data. bioRxiv 272476.
  167. 167.
    Beaulieu-Jones BK, Greene CS 2017. Reproducibility of computational workflows is automated using continuous analysis. Nat. Biotechnol. 35:4342–46
    [Google Scholar]
  168. 168.
    Waddington CH 1957. The Strategy of the Genes London: Allen & Unwin
  169. 169.
    Boulais PE, Frenette PS 2015. Making sense of hematopoietic stem cell niches. Blood 125:172621–29
    [Google Scholar]
  170. 170.
    Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S et al. 2017. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19:4271–81
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-042718-041728
Loading
/content/journals/10.1146/annurev-immunol-042718-041728
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error