1932

Abstract

ATP, NAD+, and nucleic acids are abundant purines that, in addition to having critical intracellular functions, have evolved extracellular roles as danger signals released in response to cell lysis, apoptosis, degranulation, or membrane pore formation. In general ATP and NAD+ have excitatory and adenosine has anti-inflammatory effects on immune cells. This review focuses on recent advances in our understanding of purine release mechanisms, ectoenzymes that metabolize purines (CD38, CD39, CD73, ENPP1, and ENPP2/autotaxin), and signaling by key P2 purinergic receptors (P2X7, P2Y2, and P2Y12). In addition to metabolizing ATP or NAD+, some purinergic ectoenzymes metabolize other inflammatory modulators, notably lysophosphatidic acid and cyclic GMP-AMP (cGAMP). Also discussed are extracellular signaling effects of NAD+ mediated by ADP-ribosylation, and epigenetic effects of intracellular adenosine mediated by modification of -adenosylmethionine-dependent DNA methylation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-051116-052406
2019-04-26
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/immunol/37/1/annurev-immunol-051116-052406.html?itemId=/content/journals/10.1146/annurev-immunol-051116-052406&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Lappas CM, Day YJ, Marshall MA, Engelhard VH, Linden J 2006. Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J. Exp. Med. 203:2639–48
    [Google Scholar]
  2. 2.
    Wu D, Xing GW, Poles MA, Horowitz A, Kinjo Y et al. 2005. Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. PNAS 102:1351–56
    [Google Scholar]
  3. 3.
    Czura CJ, Wang H, Tracey KJ 2001. Dual roles for HMGB1: DNA binding and cytokine. J. Endotoxin Res. 7:315–21
    [Google Scholar]
  4. 4.
    Hartlova A, Erttmann SF, Raffi FA, Schmalz AM, Resch U et al. 2015. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42:332–43
    [Google Scholar]
  5. 5.
    Borges da Silva H, Beura LK, Wang H, Hanse EA, Gore R et al. 2018. The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells. Nature 559:264–68
    [Google Scholar]
  6. 6.
    Adriouch S, Haag F, Boyer O, Seman M, Koch-Nolte F 2012. Extracellular NAD+: a danger signal hindering regulatory T cells. Microbes Infect 14:1284–92
    [Google Scholar]
  7. 7.
    Cekic C, Linden J 2016. Purinergic regulation of the immune system. Nat. Rev. Immunol. 16:177–92
    [Google Scholar]
  8. 8.
    Bowser JL, Phan LH, Eltzschig HK 2018. The hypoxia-adenosine link during intestinal inflammation. J. Immunol. 200:897–907
    [Google Scholar]
  9. 9.
    Jacobson KA, Merighi S, Varani K, Borea PA, Baraldi S et al. 2018. A3 adenosine receptors as modulators of inflammation: from medicinal chemistry to therapy. Med. Res. Rev. 38:1031–72
    [Google Scholar]
  10. 10.
    Antonioli L, Csoka B, Fornai M, Colucci R, Kokai E et al. 2014. Adenosine and inflammation: What's new on the horizon?. Drug Discov. Today 19:1051–68
    [Google Scholar]
  11. 11.
    Antonioli L, Blandizzi C, Pacher P, Hasko G 2013. Immunity, inflammation and cancer: a leading role for adenosine. Nat. Rev. Cancer 13:842–57
    [Google Scholar]
  12. 12.
    Elsherbiny NM, Al-Gayyar MM 2013. Adenosine receptors: new therapeutic targets for inflammation in diabetic nephropathy. Inflamm. Allergy Drug Targets 12:153–61
    [Google Scholar]
  13. 13.
    Hasko G, Cronstein B 2013. Regulation of inflammation by adenosine. Front. Immunol. 4:85
    [Google Scholar]
  14. 14.
    Colgan SP, Fennimore B, Ehrentraut SF 2013. Adenosine and gastrointestinal inflammation. J. Mol. Med. 91:157–64
    [Google Scholar]
  15. 15.
    Feoktistov I, Biaggioni I 2011. Role of adenosine A2B receptors in inflammation. Adv. Pharmacol. 61:115–44
    [Google Scholar]
  16. 16.
    Grenz A, Homann D, Eltzschig HK 2011. Extracellular adenosine: a safety signal that dampens hypoxia-induced inflammation during ischemia. Antioxid. Redox Signal. 15:2221–34
    [Google Scholar]
  17. 17.
    Blackburn MR, Vance CO, Morschl E, Wilson CN 2009. Adenosine receptors and inflammation. Handb. Exp. Pharmacol. 193:215–69
    [Google Scholar]
  18. 18.
    Hasko G, Csoka B, Nemeth ZH, Vizi ES, Pacher P 2009. A2B adenosine receptors in immunity and inflammation. Trends Immunol 30:263–70
    [Google Scholar]
  19. 19.
    Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A et al. 2007. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204:1257–65
    [Google Scholar]
  20. 20.
    Lanser AJ, Rezende RM, Rubino S, Lorello PJ, Donnelly DJ et al. 2017. Disruption of the ATP/adenosine balance in CD39−/− mice is associated with handling-induced seizures. Immunology 152:589–601
    [Google Scholar]
  21. 21.
    Raczkowski F, Rissiek A, Ricklefs I, Heiss K, Schumacher V et al. 2018. CD39 is upregulated during activation of mouse and human T cells and attenuates the immune response to Listeria monocytogenes. PLOS ONE 13:e0197151
    [Google Scholar]
  22. 22.
    Longhi MS, Vuerich M, Kalbasi A, Kenison JE, Yeste A et al. 2017. Bilirubin suppresses Th17 immunity in colitis by upregulating CD39. JCI Insight 2:92791
    [Google Scholar]
  23. 23.
    Ganesan AP, Clarke J, Wood O, Garrido-Martin EM, Chee SJ et al. 2017. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18:940–50
    [Google Scholar]
  24. 24.
    Chini EN, Chini CCS, Espindola Netto JM, de Oliveira GC, van Schooten W 2018. The pharmacology of CD38/NADase: an emerging target in cancer and diseases of aging. Trends Pharmacol. Sci. 39:424–36
    [Google Scholar]
  25. 25.
    van de Donk NW, Janmaat ML, Mutis T, Lammerts van Bueren JJ, Ahmadi T et al. 2016. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol. Rev. 270:95–112
    [Google Scholar]
  26. 26.
    Bu X, Kato J, Hong JA, Merino MJ, Schrump DS, Lund FE, Moss J 2018. CD38 knockout suppresses tumorigenesis in mice and clonogenic growth of human lung cancer cells. Carcinogenesis 39:242–51
    [Google Scholar]
  27. 27.
    Horenstein AL, Chillemi A, Zaccarello G, Bruzzone S, Quarona V et al. 2013. A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes. Oncoimmunology 2:e26246
    [Google Scholar]
  28. 28.
    Li L, Yin Q, Kuss P, Maliga Z, Millan JL et al. 2014. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10:1043–48
    [Google Scholar]
  29. 29.
    Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B et al. 2011. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478:515–18
    [Google Scholar]
  30. 30.
    Wang J, Lu SF, Wan B, Ming SL, Li GL et al. 2018. Maintenance of cyclic GMP-AMP homeostasis by ENPP1 is involved in pseudorabies virus infection. Mol. Immunol. 95:56–63
    [Google Scholar]
  31. 31.
    Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N et al. 2002. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J. Cell Biol. 158:227–33
    [Google Scholar]
  32. 32.
    Sevastou I, Kaffe E, Mouratis MA, Aidinis V 2013. Lysoglycerophospholipids in chronic inflammatory disorders: the PLA(2)/LPC and ATX/LPA axes. Biochim. Biophys. Acta 1831:42–60
    [Google Scholar]
  33. 33.
    Shoshan E, Braeuer RR, Kamiya T, Mobley AK, Huang L et al. 2016. NFAT1 directly regulates IL8 and MMP3 to promote melanoma tumor growth and metastasis. Cancer Res 76:3145–55
    [Google Scholar]
  34. 34.
    Costales MG, Alam MS, Cavanaugh C, Williams KM 2018. Extracellular adenosine produced by ecto-5′-nucleotidase (CD73) regulates macrophage pro-inflammatory responses, nitric oxide production, and favors Salmonella persistence. Nitric Oxide 72:7–15
    [Google Scholar]
  35. 35.
    Figueiro F, de Oliveira CP, Bergamin LS, Rockenbach L, Mendes FB et al. 2016. Methotrexate up-regulates ecto-5′-nucleotidase/CD73 and reduces the frequency of T lymphocytes in the glioblastoma microenvironment. Purinergic Signal 12:303–12
    [Google Scholar]
  36. 36.
    Reinhardt J, Landsberg J, Schmid-Burgk JL, Ramis BB, Bald T et al. 2017. MAPK signaling and inflammation link melanoma phenotype switching to induction of CD73 during immunotherapy. Cancer Res 77:4697–709
    [Google Scholar]
  37. 37.
    Turcotte M, Spring K, Pommey S, Chouinard G, Cousineau I et al. 2015. CD73 is associated with poor prognosis in high-grade serous ovarian cancer. Cancer Res 75:4494–503
    [Google Scholar]
  38. 38.
    Clark AN, Youkey R, Liu X, Jia L, Blatt R et al. 2007. A1 adenosine receptor activation promotes angiogenesis and release of VEGF from monocytes. Circ. Res. 101:1130–38
    [Google Scholar]
  39. 39.
    Du X, Ou X, Song T, Zhang W, Cong F et al. 2015. Adenosine A2B receptor stimulates angiogenesis by inducing VEGF and eNOS in human microvascular endothelial cells. Exp. Biol. Med. 240:1472–79
    [Google Scholar]
  40. 40.
    Desai A, Victor-Vega C, Gadangi S, Montesinos MC, Chu CC, Cronstein BN 2005. Adenosine A2A receptor stimulation increases angiogenesis by down-regulating production of the antiangiogenic matrix protein thrombospondin 1. Mol. Pharmacol. 67:1406–13
    [Google Scholar]
  41. 41.
    Koszalka P, Pryszlak A, Golunska M, Kolasa J, Stasilojc G et al. 2014. Inhibition of CD73 stimulates the migration and invasion of B16F10 melanoma cells in vitro, but results in impaired angiogenesis and reduced melanoma growth in vivo. Oncol. Rep. 31:819–27
    [Google Scholar]
  42. 42.
    Liang D, Zuo A, Zhao R, Shao H, Born WK et al. 2016. CD73 expressed on γδ T cells shapes their regulatory effect in experimental autoimmune uveitis. PLOS ONE 11:e0150078
    [Google Scholar]
  43. 43.
    Ayna G, Krysko DV, Kaczmarek A, Petrovski G, Vandenabeele P, Fesus L 2012. ATP release from dying autophagic cells and their phagocytosis are crucial for inflammasome activation in macrophages. PLOS ONE 7:e40069
    [Google Scholar]
  44. 44.
    Zheng LM, Zychlinsky A, Liu CC, Ojcius DM, Young JD 1991. Extracellular ATP as a trigger for apoptosis or programmed cell death. J. Cell Biol. 112:279–88
    [Google Scholar]
  45. 45.
    Jorgensen I, Rayamajhi M, Miao EA 2017. Programmed cell death as a defence against infection. Nat. Rev. Immunol. 17:151–64
    [Google Scholar]
  46. 46.
    Wang J, Dahl G 2018. Pannexin1: a multifunctional and multiconductance and/or permeability membrane channel. Am. J. Phys. 315:C290–99
    [Google Scholar]
  47. 47.
    Chiu YH, Jin X, Medina CB, Leonhardt SA, Kiessling V et al. 2017. A quantized mechanism for activation of pannexin channels. Nat. Commun. 8:14324
    [Google Scholar]
  48. 48.
    Burnstock G 2006. Purinergic signalling. Br. J. Pharmacol. 147:Suppl. 1S172–81
    [Google Scholar]
  49. 49.
    Plesner L 1995. Ecto-ATPases: identities and functions. Int. Rev. Cytol. 158:141–214
    [Google Scholar]
  50. 50.
    Surprenant A, Rassendren F, Kawashima E, North RA, Buell G 1996. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–38
    [Google Scholar]
  51. 51.
    Bao L, Locovei S, Dahl G 2004. Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68
    [Google Scholar]
  52. 52.
    Pelegrin P, Surprenant A 2006. Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J 25:5071–82
    [Google Scholar]
  53. 53.
    Locovei S, Scemes E, Qiu F, Spray DC, Dahl G 2007. Pannexin1 is part of the pore forming unit of the P2X7 receptor death complex. FEBS Lett 581:483–88
    [Google Scholar]
  54. 54.
    Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK et al. 2009. The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J. Biol. Chem. 284:18143–51
    [Google Scholar]
  55. 55.
    Boyce AKJ, Swayne LA 2017. P2X7 receptor cross-talk regulates ATP-induced pannexin 1 internalization. Biochem. J. 474:2133–44
    [Google Scholar]
  56. 56.
    Xu XJ, Boumechache M, Robinson LE, Marschall V, Gorecki DC et al. 2012. Splice variants of the P2X7 receptor reveal differential agonist dependence and functional coupling with pannexin-1. J. Cell Sci. 125:3776–89
    [Google Scholar]
  57. 57.
    Locovei S, Wang J, Dahl G 2006. Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 580:239–44
    [Google Scholar]
  58. 58.
    Locovei S, Bao L, Dahl G 2006. Pannexin 1 in erythrocytes: function without a gap. PNAS 103:7655–59
    [Google Scholar]
  59. 59.
    Dahl G, Locovei S 2006. Pannexin: To gap or not to gap, is that a question?. IUBMB Life 58:409–19
    [Google Scholar]
  60. 60.
    Di Virgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz JM et al. 2001. Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97:587–600
    [Google Scholar]
  61. 61.
    Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y et al. 2001. Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J. Neurosci. 21:1975–82
    [Google Scholar]
  62. 62.
    Schipke CG, Boucsein C, Ohlemeyer C, Kirchhoff F, Kettenmann H 2002. Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices. FASEB J 16:255–57
    [Google Scholar]
  63. 63.
    Chen A, Kumar SM, Sahley CL, Muller KJ 2000. Nitric oxide influences injury-induced microglial migration and accumulation in the leech CNS. J. Neurosci. 20:1036–43
    [Google Scholar]
  64. 64.
    Samuels SE, Lipitz JB, Dahl G, Muller KJ 2010. Neuroglial ATP release through innexin channels controls microglial cell movement to a nerve injury. J. Gen. Physiol. 136:425–42
    [Google Scholar]
  65. 65.
    Dahl G, Muller KJ 2014. Innexin and pannexin channels and their signaling. FEBS Lett 588:1396–402
    [Google Scholar]
  66. 66.
    Khakh BS, North RA 2006. P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–32
    [Google Scholar]
  67. 67.
    Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A et al. 2006. The P2X7 receptor: a key player in IL-1 processing and release. J. Immunol. 176:3877–83
    [Google Scholar]
  68. 68.
    Dubyak GR 2012. P2X7 receptor regulation of non-classical secretion from immune effector cells. Cell Microbiol 14:1697–706
    [Google Scholar]
  69. 69.
    Matute C, Torre I, Perez-Cerda F, Perez-Samartin A, Alberdi E et al. 2007. P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J. Neurosci. 27:9525–33
    [Google Scholar]
  70. 70.
    Taylor SR, Turner CM, Elliott JI, McDaid J, Hewitt R et al. 2009. P2X7 deficiency attenuates renal injury in experimental glomerulonephritis. J. Am. Soc. Nephrol. 20:1275–81
    [Google Scholar]
  71. 71.
    Weber FC, Esser PR, Muller T, Ganesan J, Pellegatti P et al. 2010. Lack of the purinergic receptor P2X7 results in resistance to contact hypersensitivity. J. Exp. Med. 207:2609–19
    [Google Scholar]
  72. 72.
    Barbera-Cremades M, Baroja-Mazo A, Gomez AI, Machado F, Di Virgilio F, Pelegrin P 2012. P2X7 receptor-stimulation causes fever via PGE2 and IL-1β release. FASEB J 26:2951–62
    [Google Scholar]
  73. 73.
    Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S 2017. The P2X7 receptor in infection and inflammation. Immunity 47:15–31
    [Google Scholar]
  74. 74.
    Hu F, Xing F, Zhu G, Xu G, Li C et al. 2015. Rhein antagonizes P2X7 receptor in rat peritoneal macrophages. Sci. Rep. 5:14012
    [Google Scholar]
  75. 75.
    Kahlenberg JM, Dubyak GR 2004. Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am. J. Physiol. Cell Physiol. 286:C1100–8
    [Google Scholar]
  76. 76.
    Church LD, Cook GP, McDermott MF 2008. Primer: inflammasomes and interleukin 1β in inflammatory disorders. Nat. Clin. Pract. Rheumatol. 4:34–42
    [Google Scholar]
  77. 77.
    Dinarello CA, Simon A, van der Meer JW 2012. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11:633–52
    [Google Scholar]
  78. 78.
    Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS et al. 2006. Critical role for NALP3/CIAS1/cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24:317–27
    [Google Scholar]
  79. 79.
    Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K et al. 2006. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–32
    [Google Scholar]
  80. 80.
    MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A 2001. Rapid secretion of interleukin-1β by microvesicle shedding. Immunity 15:825–35
    [Google Scholar]
  81. 81.
    Pelegrin P, Barroso-Gutierrez C, Surprenant A 2008. P2X7 receptor differentially couples to distinct release pathways for IL-1β in mouse macrophage. J. Immunol. 180:7147–57
    [Google Scholar]
  82. 82.
    Jiang LH, Baldwin JM, Roger S, Baldwin SA 2013. Insights into the molecular mechanisms underlying mammalian P2X7 receptor functions and contributions in diseases, revealed by structural modeling and single nucleotide polymorphisms. Front. Pharmacol. 4:55
    [Google Scholar]
  83. 83.
    Nicke A 2008. Homotrimeric complexes are the dominant assembly state of native P2X7 subunits. Biochem. Biophys. Res. Commun. 377:803–8
    [Google Scholar]
  84. 84.
    Karasawa A, Kawate T 2016. Structural basis for subtype-specific inhibition of the P2X7 receptor. eLife 5:e22153
    [Google Scholar]
  85. 85.
    Kawate T, Michel JC, Birdsong WT, Gouaux E 2009. Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature 460:592–98
    [Google Scholar]
  86. 86.
    Hattori M, Gouaux E 2012. Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485:207–13
    [Google Scholar]
  87. 87.
    Qiu F, Dahl G 2009. A permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP. Am. J. Physiol. Cell Physiol. 296:C250–55
    [Google Scholar]
  88. 88.
    Qiu F, Wang J, Dahl G 2012. Alanine substitution scanning of pannexin1 reveals amino acid residues mediating ATP sensitivity. Purinergic Signal 8:81–90
    [Google Scholar]
  89. 89.
    Boyce AK, Kim MS, Wicki-Stordeur LE, Swayne LA 2015. ATP stimulates pannexin 1 internalization to endosomal compartments. Biochem. J. 470:319–30
    [Google Scholar]
  90. 90.
    Jackson DG, Wang J, Keane RW, Scemes E, Dahl G 2014. ATP and potassium ions: a deadly combination for astrocytes. Sci. Rep. 4:4576
    [Google Scholar]
  91. 91.
    Somjen GG 1979. Extracellular potassium in the mammalian central nervous system. Annu. Rev. Physiol. 41:159–77
    [Google Scholar]
  92. 92.
    Sridharan M, Adderley SP, Bowles EA, Egan TM, Stephenson AH et al. 2010. Pannexin 1 is the conduit for low oxygen tension-induced ATP release from human erythrocytes. Am. J. Physiol. Heart Circ. Physiol. 299:H1146–52
    [Google Scholar]
  93. 93.
    Thompson RJ, Zhou N, MacVicar BA 2006. Ischemia opens neuronal gap junction hemichannels. Science 312:924–27
    [Google Scholar]
  94. 94.
    Thompson RJ, Jackson MF, Olah ME, Rungta RL, Hines DJ et al. 2008. Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322:1555–59
    [Google Scholar]
  95. 95.
    Seminario-Vidal L, Kreda S, Jones L, O'Neal W, Trejo J et al. 2009. Thrombin promotes release of ATP from lung epithelial cells through coordinated activation of Rho- and Ca2+-dependent signaling pathways. J. Biol. Chem. 284:20638–48
    [Google Scholar]
  96. 96.
    Murali S, Zhang M, Nurse CA 2014. Angiotensin II mobilizes intracellular calcium and activates pannexin-1 channels in rat carotid body type II cells via AT1 receptors. J. Physiol. 592:4747–62
    [Google Scholar]
  97. 97.
    Isakson BE, Thompson RJ 2014. Pannexin-1 as a potentiator of ligand-gated receptor signaling. Channels 8:118–23
    [Google Scholar]
  98. 98.
    Pinheiro AR, Paramos-de-Carvalho D, Certal M, Costa C, Magalhaes-Cardoso MT et al. 2013. Bradykinin-induced Ca2+ signaling in human subcutaneous fibroblasts involves ATP release via hemichannels leading to P2Y12 receptors activation. Cell Commun. Signal. 11:70
    [Google Scholar]
  99. 99.
    Pinheiro AR, Paramos-de-Carvalho D, Certal M, Costa MA, Costa C et al. 2013. Histamine induces ATP release from human subcutaneous fibroblasts, via pannexin-1 hemichannels, leading to Ca2+ mobilization and cell proliferation. J. Biol. Chem. 288:27571–83
    [Google Scholar]
  100. 100.
    Suadicani SO, Iglesias R, Wang J, Dahl G, Spray DC, Scemes E 2012. ATP signaling is deficient in cultured pannexin1-null mouse astrocytes. Glia 60:1106–16
    [Google Scholar]
  101. 101.
    Wang J, Ambrosi C, Qiu F, Jackson DG, Sosinsky G, Dahl G 2014. The membrane protein pannexin1 forms two open-channel conformations depending on the mode of activation. Sci. Signal. 7:ra69
    [Google Scholar]
  102. 102.
    Scemes E, Spray DC 2012. Extracellular K+ and astrocyte signaling via connexin and pannexin channels. Neurochem. Res. 37:2310–16
    [Google Scholar]
  103. 103.
    Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H 2003. Pannexins, a family of gap junction proteins expressed in brain. PNAS 100:13644–49
    [Google Scholar]
  104. 104.
    Ma W, Compan V, Zheng W, Martin E, North RA et al. 2012. Pannexin 1 forms an anion-selective channel. Pflugers Arch 463:585–92
    [Google Scholar]
  105. 105.
    Romanov RA, Bystrova MF, Rogachevskaya OA, Sadovnikov VB, Shestopalov VI, Kolesnikov SS 2012. The ATP permeability of pannexin 1 channels in a heterologous system and in mammalian taste cells is dispensable. J. Cell Sci. 125:5514–23
    [Google Scholar]
  106. 106.
    Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM et al. 2010. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467:863–67
    [Google Scholar]
  107. 107.
    Chiu YH, Ravichandran KS, Bayliss DA 2014. Intrinsic properties and regulation of Pannexin 1 channel. Channels 8:1–7
    [Google Scholar]
  108. 108.
    Yang D, He Y, Munoz-Planillo R, Liu Q, Nunez G 2015. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity 43:923–32
    [Google Scholar]
  109. 109.
    Wessel GM 2010. The apoptotic oocyte. Mol. Reprod. Dev. 77:i https://doi.org/10.1002/mrd.21134
    [Crossref] [Google Scholar]
  110. 110.
    Shi J, Zhao Y, Wang K, Shi X, Wang Y et al. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–65
    [Google Scholar]
  111. 111.
    Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K et al. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–71
    [Google Scholar]
  112. 112.
    Yuan J, Zhu M, Deng S, Fan S, Xu H et al. 2018. Classical swine fever virus induces pyroptosis in the peripheral lymphoid organs of infected pigs. Virus Res 250:37–42
    [Google Scholar]
  113. 113.
    Ding J, Wang K, Liu W, She Y, Sun Q et al. 2016. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:111–16
    [Google Scholar]
  114. 114.
    Sborgi L, Ruhl S, Mulvihill E, Pipercevic J, Heilig R et al. 2016. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 35:1766–78
    [Google Scholar]
  115. 115.
    Fan ZD, Zhang YY, Guo YH, Huang N, Ma HH et al. 2016. Involvement of P2X7 receptor signaling on regulating the differentiation of Th17 cells and type II collagen-induced arthritis in mice. Sci. Rep. 6:35804
    [Google Scholar]
  116. 116.
    Borges da Silva H, Beura LK, Wang H, Hanse EA, Gore R et al. 2018. The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells. Nature 559:264–68
    [Google Scholar]
  117. 117.
    Purvis HA, Anderson AE, Young DA, Isaacs JD, Hilkens CM 2014. A negative feedback loop mediated by STAT3 limits human Th17 responses. J. Immunol. 193:1142–50
    [Google Scholar]
  118. 118.
    de Torre-Minguela C, Barbera-Cremades M, Gomez AI, Martin-Sanchez F, Pelegrin P 2016. Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process. Sci. Rep. 6:22586
    [Google Scholar]
  119. 119.
    Ouyang X, Ghani A, Malik A, Wilder T, Colegio OR et al. 2013. Adenosine is required for sustained inflammasome activation via the A2A receptor and the HIF-1α pathway. Nat. Commun. 4:2909
    [Google Scholar]
  120. 120.
    Nakanishi K, Tsukimoto M, Tanuma S, Takeda K, Kojima S 2016. Silica nanoparticles activate purinergic signaling via P2X7 receptor in dendritic cells, leading to production of pro-inflammatory cytokines. Toxicol. In Vitro 35:202–11
    [Google Scholar]
  121. 121.
    Saez PJ, Vargas P, Shoji KF, Harcha PA, Lennon-Dumenil AM, Saez JC 2017. ATP promotes the fast migration of dendritic cells through the activity of pannexin 1 channels and P2X7 receptors. Sci. Signal. 10:eaah7107
    [Google Scholar]
  122. 122.
    Kuhny M, Hochdorfer T, Ayata CK, Idzko M, Huber M 2014. CD39 is a negative regulator of P2X7-mediated inflammatory cell death in mast cells. Cell Commun. Signal. 12:40
    [Google Scholar]
  123. 123.
    Scheuplein F, Schwarz N, Adriouch S, Krebs C, Bannas P et al. 2009. NAD+ and ATP released from injured cells induce P2X7-dependent shedding of CD62L and externalization of phosphatidylserine by murine T cells. J. Immunol. 182:2898–908
    [Google Scholar]
  124. 124.
    Seman M, Adriouch S, Scheuplein F, Krebs C, Freese D et al. 2003. NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor. Immunity 19:571–82
    [Google Scholar]
  125. 125.
    Adriouch S, Bannas P, Schwarz N, Fliegert R, Guse AH et al. 2008. ADP-ribosylation at R125 gates the P2X7 ion channel by presenting a covalent ligand to its nucleotide binding site. FASEB J 22:861–69
    [Google Scholar]
  126. 126.
    Schwarz N, Fliegert R, Adriouch S, Seman M, Guse AH et al. 2009. Activation of the P2X7 ion channel by soluble and covalently bound ligands. Purinergic Signal 5:139–49
    [Google Scholar]
  127. 127.
    Gu B, Bendall LJ, Wiley JS 1998. Adenosine triphosphate-induced shedding of CD23 and L-selectin (CD62L) from lymphocytes is mediated by the same receptor but different metalloproteases. Blood 92:946–51
    [Google Scholar]
  128. 128.
    Fernandez-Ruiz D, Ng WY, Holz LE, Ma JZ, Zaid A et al. 2016. Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection. Immunity 45:889–902
    [Google Scholar]
  129. 129.
    Hubert S, Rissiek B, Klages K, Huehn J, Sparwasser T et al. 2010. Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2-P2X7 pathway. J. Exp. Med. 207:2561–68
    [Google Scholar]
  130. 130.
    Rissiek B, Danquah W, Haag F, Koch-Nolte F 2014. Technical advance: a new cell preparation strategy that greatly improves the yield of vital and functional Tregs and NKT cells. J. Leukoc. Biol. 95:543–49
    [Google Scholar]
  131. 131.
    Kawamura H, Aswad F, Minagawa M, Govindarajan S, Dennert G 2006. P2X7 receptors regulate NKT cells in autoimmune hepatitis. J. Immunol. 176:2152–60
    [Google Scholar]
  132. 132.
    Schenk U, Frascoli M, Proietti M, Geffers R, Traggiai E et al. 2011. ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci. Signal. 4:ra12
    [Google Scholar]
  133. 133.
    Arulkumaran N, Unwin RJ, Tam FW 2011. A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases. Expert Opin. Investig. Drugs 20:897–915
    [Google Scholar]
  134. 134.
    North RA, Jarvis MF 2013. P2X receptors as drug targets. Mol. Pharmacol. 83:759–69
    [Google Scholar]
  135. 135.
    Bartlett R, Stokes L, Sluyter R 2014. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol. Rev. 66:638–75
    [Google Scholar]
  136. 136.
    Danquah W, Meyer-Schwesinger C, Rissiek B, Pinto C, Serracant-Prat A et al. 2016. Nanobodies that block gating of the P2X7 ion channel ameliorate inflammation. Sci. Transl. Med. 8:366ra162
    [Google Scholar]
  137. 137.
    Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C et al. 1993. Naturally occurring antibodies devoid of light chains. Nature 363:446–48
    [Google Scholar]
  138. 138.
    Wesolowski J, Alzogaray V, Reyelt J, Unger M, Juarez K et al. 2009. Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med. Microbiol. Immunol. 198:157–74
    [Google Scholar]
  139. 139.
    Muyldermans S 2013. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82:775–97
    [Google Scholar]
  140. 140.
    Steeland S, Vandenbroucke RE, Libert C 2016. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov. Today 21:1076–113
    [Google Scholar]
  141. 141.
    De Genst E, Silence K, Decanniere K, Conrath K, Loris R et al. 2006. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. PNAS 103:4586–91
    [Google Scholar]
  142. 142.
    Tijink BM, Laeremans T, Budde M, Stigter-van Walsum M, Dreier T et al. 2008. Improved tumor targeting of anti–epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology. Mol. Cancer Ther. 7:2288–97
    [Google Scholar]
  143. 143.
    Van Bockstaele F, Holz JB, Revets H 2009. The development of nanobodies for therapeutic applications. Curr. Opin. Investig. Drugs 10:1212–24
    [Google Scholar]
  144. 144.
    Muller T, Fay S, Vieira RP, Karmouty-Quintana H, Cicko S et al. 2017. The purinergic receptor subtype P2Y2 mediates chemotaxis of neutrophils and fibroblasts in fibrotic lung disease. Oncotarget 8:35962–72
    [Google Scholar]
  145. 145.
    Alberto AV, Faria RX, de Menezes JR, Surrage A, da Rocha NC et al. 2016. Role of P2 receptors as modulators of rat eosinophil recruitment in allergic inflammation. PLOS ONE 11:e0145392
    [Google Scholar]
  146. 146.
    Bao Y, Ledderose C, Graf AF, Brix B, Birsak T et al. 2015. mTOR and differential activation of mitochondria orchestrate neutrophil chemotaxis. J. Cell Biol. 210:1153–64
    [Google Scholar]
  147. 147.
    Adamson SE, Montgomery G, Seaman SA, Peirce-Cottler SM, Leitinger N 2018. Myeloid P2Y2 receptor promotes acute inflammation but is dispensable for chronic high-fat diet-induced metabolic dysfunction. Purinergic Signal 14:19–26
    [Google Scholar]
  148. 148.
    Vanderstocken G, Van de Paar E, Robaye B, di Pietrantonio L, Bondue B et al. 2012. Protective role of P2Y2 receptor against lung infection induced by pneumonia virus of mice. PLOS ONE 7:e50385
    [Google Scholar]
  149. 149.
    Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME et al. 2006. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9:1512–19
    [Google Scholar]
  150. 150.
    Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C et al. 2016. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 164:1073
    [Google Scholar]
  151. 151.
    Villar-Menendez I, Nunez F, Diaz-Sanchez S, Albasanz JL, Taura J et al. 2014. Striatal adenosine A2A receptor expression is controlled by S-adenosyl-l-methionine-mediated methylation. Purinergic Signal 10:523–28
    [Google Scholar]
  152. 152.
    Boison D, Scheurer L, Zumsteg V, Rulicke T, Litynski P et al. 2002. Neonatal hepatic steatosis by disruption of the adenosine kinase gene. PNAS 99:6985–90
    [Google Scholar]
  153. 153.
    Xu Y, Wang Y, Yan S, Zhou Y, Yang Q et al. 2017. Intracellular adenosine regulates epigenetic programming in endothelial cells to promote angiogenesis. EMBO Mol. Med. 9:1263–78
    [Google Scholar]
  154. 154.
    Bhargava V, Wiehagen KR, Cowley GS, Bachman KE, Strick R et al. 2017. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. PNAS 114:E10981–90
    [Google Scholar]
  155. 155.
    Zhang J, Han C, Dai H, Hou J, Dong Y et al. 2016. Hypoxia-inducible factor-2α limits natural killer T cell cytotoxicity in renal ischemia/reperfusion injury. J. Am. Soc. Nephrol. 27:92–106
    [Google Scholar]
  156. 156.
    Liu C, Shang Q, Bai Y, Guo C, Zhu F et al. 2015. Adenosine A2A receptor, a potential valuable target for controlling reoxygenated DCs-triggered inflammation. Mol. Immunol. 63:559–65
    [Google Scholar]
  157. 157.
    Cao Z, Yuan Y, Jeyabalan G, Du Q, Tsung A et al. 2009. Preactivation of NKT cells with α-GalCer protects against hepatic ischemia-reperfusion injury in mouse by a mechanism involving IL-13 and adenosine A2A receptor. Am. J. Physiol. Gastrointest. Liver Physiol. 297:G249–58
    [Google Scholar]
  158. 158.
    Hinz S, Alnouri WM, Pleiss U, Muller CE 2018. Tritium-labeled agonists as tools for studying adenosine A2B receptors. Purinergic Signal 14:223–33
    [Google Scholar]
  159. 159.
    Hinz S, Lacher SK, Seibt BF, Muller CE 2014. BAY60–6583 acts as a partial agonist at adenosine A2B receptors. J. Pharmacol. Exp. Ther. 349:427–36
    [Google Scholar]
  160. 160.
    Xu P, Feng X, Luan H, Wang J, Ge R et al. 2018. Current knowledge on the nucleotide agonists for the P2Y2 receptor. Bioorg. Med. Chem. 26:366–75
    [Google Scholar]
  161. 161.
    Klambt V, Wohlfeil SA, Schwab L, Hulsdunker J, Ayata K et al. 2015. A novel function for P2Y2 in myeloid recipient-derived cells during graft-versus-host disease. J. Immunol. 195:5795–804
    [Google Scholar]
  162. 162.
    Rafehi M, Neumann A, Baqi Y, Malik EM, Wiese M et al. 2017. Molecular recognition of agonists and antagonists by the nucleotide-activated G protein-coupled P2Y2 receptor. J. Med. Chem. 60:8425–40
    [Google Scholar]
  163. 163.
    Jiang P, Xing F, Guo B, Yang J, Li Z et al. 2017. Nucleotide transmitters ATP and ADP mediate intercellular calcium wave communication via P2Y12/13 receptors among BV-2 microglia. PLOS ONE 12:e0183114
    [Google Scholar]
  164. 164.
    Karakasheva TA, Dominguez GA, Hashimoto A, Lin EW, Chiu C et al. 2018. CD38+ M-MDSC expansion characterizes a subset of advanced colorectal cancer patients. JCI Insight 3:97022
    [Google Scholar]
  165. 165.
    Abeles RH, Fish S, Lapinskas B 1982. S-adenosylhomocysteinase: mechanism of inactivation by 2′-deoxyadenosine and interaction with other nucleosides. Biochemistry 21:5557–62
    [Google Scholar]
  166. 166.
    Williams-Karnesky RL, Sandau US, Lusardi TA, Lytle NK, Farrell JM et al. 2013. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J. Clin. Investig. 123:3552–63
    [Google Scholar]
  167. 167.
    Hershfield MS 1979. Apparent suicide inactivation of human lymphoblast S-adenosylhomocysteine hydrolase by 2′-deoxyadenosine and adenine arabinoside: a basis for direct toxic effects of analogs of adenosine. J. Biol. Chem. 254:22–25
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-051116-052406
Loading
/content/journals/10.1146/annurev-immunol-051116-052406
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error