1932

Abstract

Tuft cells—rare solitary chemosensory cells in mucosal epithelia—are undergoing intense scientific scrutiny fueled by recent discovery of unsuspected connections to type 2 immunity. These cells constitute a conduit by which ligands from the external space are sensed via taste-like signaling pathways to generate outputs unique among epithelial cells: the cytokine IL-25, eicosanoids associated with allergic immunity, and the neurotransmitter acetylcholine. The classic type II taste cell transcription factor POU2F3 is lineage defining, suggesting a conceptualization of these cells as widely distributed environmental sensors with effector functions interfacing type 2 immunity and neural circuits. Increasingly refined single-cell analytics have revealed diversity among tuft cells that extends from nasal epithelia and type II taste cells to ex--expressing medullary thymic cells and small-intestine cells that mediate tissue remodeling in response to colonizing helminths and protists.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042718-041505
2019-04-26
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/immunol/37/1/annurev-immunol-042718-041505.html?itemId=/content/journals/10.1146/annurev-immunol-042718-041505&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Sbarbati A, Osculati F 2005. A new fate for old cells: brush cells and related elements. J. Anat. 206:349–58
    [Google Scholar]
  2. 2.  Sato A 2007. Tuft cells. Anat. Sci. Int. 82:187–99
    [Google Scholar]
  3. 3.  Gerbe F, Legraverend C, Jay P 2012. The intestinal epithelium Tuft cells: specification and function. Cell Mol. Life Sci. 69:2907–17
    [Google Scholar]
  4. 4.  Banerjee A, McKinley ET, von Moltke J, Coffey RJ, Lau KS 2018. Interpreting heterogeneity in intestinal Tuft cell structure and function. J. Clin. Investig. 128:1711–19
    [Google Scholar]
  5. 5.  von Moltke J 2018. Intestinal tuft cells. Physiology of the Gastrointestinal Tract HM Said 721–33 London: Academic. , 6th ed..
    [Google Scholar]
  6. 6.  Bezencon C, Furholz A, Raymond F, Mansourian R, Metairon S et al. 2008. Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells. J. Comp. Neurol. 509:514–25First expression profiling of tuft cells using Trpm5-GFP reporter, revealing chemosensory-immune-neuronal programs.
    [Google Scholar]
  7. 7.  Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K et al. 2017. A single-cell survey of the small intestinal epithelium. Nature 551:333–39
    [Google Scholar]
  8. 8.  Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B, Birket SE et al. 2018. A revised airway epithelial hierarchy incudes CFTR-expressing ionocytes. Nature 560:319–24
    [Google Scholar]
  9. 9.  Miller CN, Proekt I, von Moltke J, Wells KL, Rajpurkar AR et al. 2018. Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature 559:627–31
    [Google Scholar]
  10. 10.  Nadjsombati MS, McGinty JW, Lyons-Cohen MR, Jaffe JB, DiPeso L et al. 2018. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity 49:33–41.e7RNA-seq profiling of tuft cells and identification of Tritrichomonas-induced succinate-SUCNR1-mediated activation.
    [Google Scholar]
  11. 11.  Bornstein C, Nevo S, Giladi A, Kadouri N, Pouzolles M et al. 2018. Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature 559:622–26
    [Google Scholar]
  12. 12.  von Moltke J, Ji M, Liang HE, Locksley RM 2016. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529:221–25Tuft cells are the major source of IL-25; first description of tuft cell–ILC2 circuit.
    [Google Scholar]
  13. 13.  Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV et al. 2016. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351:1329–33Protist Tritrichomonas potently stimulates TRPM5-dependent ILC2–tuft cell circuit.
    [Google Scholar]
  14. 14.  Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I et al. 2016. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529:226–30Tuft cell deficiency in Pou2f3−/− mice abrogates helminth-induced small-intestine type 2 responses.
    [Google Scholar]
  15. 15.  Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R et al. 2017. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31:21–34
    [Google Scholar]
  16. 16.  Deckmann K, Filipski K, Krasteva-Christ G, Fronius M, Althaus M et al. 2014. Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes. PNAS 111:8287–92
    [Google Scholar]
  17. 17.  Krasteva G, Canning BJ, Hartmann P, Veres TZ, Papadakis T et al. 2011. Cholinergic chemosensory cells in the trachea regulate breathing. PNAS 108:9478–83
    [Google Scholar]
  18. 18.  Kinnamon SC 2012. Taste receptor signalling—from tongues to lungs. Acta Physiol 204:158–68
    [Google Scholar]
  19. 19.  Hoover B, Baena V, Kaelberer MM, Getaneh F, Chinchilla S, Bohorquez DV 2017. The intestinal tuft cell nanostructure in 3D. Sci. Rep. 7:1652
    [Google Scholar]
  20. 20.  Chamanza R, Wright JA 2015. A review of the comparative anatomy, histology, physiology and pathology of the nasal cavity of rats, mice, dogs and non-human primates: relevance to inhalation toxicology and human health risk assessment. J. Comp. Pathol. 153:287–314
    [Google Scholar]
  21. 21.  Yamaguchi T, Yamashita J, Ohmoto M, Aoude I, Ogura T et al. 2014. Skn-1a/Pou2f3 is required for the generation of Trpm5-expressing microvillous cells in the mouse main olfactory epithelium. BMC Neurosci 15:13
    [Google Scholar]
  22. 22.  Saunders CJ, Christensen M, Finger TE, Tizzano M 2014. Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. PNAS 111:6075–80
    [Google Scholar]
  23. 23.  Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP et al. 2010. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. PNAS 107:3210–15
    [Google Scholar]
  24. 24.  Lee RJ, Kofonow JM, Rosen PL, Siebert AP, Chen B et al. 2014. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J. Clin. Investig. 124:1393–405
    [Google Scholar]
  25. 25.  Lee RJ, Hariri BM, McMahon DB, Chen B, Doghramji L et al. 2017. Bacterial d-amino acids suppress sinonasal innate immunity through sweet taste receptors in solitary chemosensory cells. Sci. Signal. 10:eaam7703
    [Google Scholar]
  26. 26.  Dunican EM, Elicker BM, Gierada DS, Nagle SK, Schiebler ML et al. 2018. Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J. Clin. Investig. 128:997–1009
    [Google Scholar]
  27. 27.  Schleimer RP 2017. Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu. Rev. Pathol. 12:331–57
    [Google Scholar]
  28. 28.  Bachert C, Mannent L, Naclerio RM, Mullol J, Ferguson BJ et al. 2016. Effect of subcutaneous dupilumab on nasal polyp burden in patients with chronic sinusitis and nasal polyposis: a randomized clinical trial. JAMA 315:469–79
    [Google Scholar]
  29. 29.  Kohanski MA, Workman AD, Patel NN, Hung LY, Shtraks JP et al. 2018. Solitary chemosensory cells are a primary epithelial source of IL-25 in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 142:2460–69.e7
    [Google Scholar]
  30. 30.  Nakanishi W, Yamaguchi S, Matsuda A, Suzukawa M, Shibui A et al. 2013. IL-33, but not IL-25, is crucial for the development of house dust mite antigen-induced allergic rhinitis. PLOS ONE 8:e78099
    [Google Scholar]
  31. 31.  Ordovas-Montanes J, Dwyer DF, Nyquist SK, Buchheit KM, Vukovic M et al. 2018. Reduced cellular diversity and an altered basal progenitor cell state inform epithelial barrier dysfunction in human type 2 immunity. Nature 560:649–54
    [Google Scholar]
  32. 32.  Fletcher RB, Das D, Gadye L, Street KN, Baudhuin A et al. 2017. Deconstructing olfactory stem cell trajectories at single-cell resolution. Cell Stem Cell 20:817–30.e8
    [Google Scholar]
  33. 33.  Gadye L, Das D, Sanchez MA, Street K, Baudhuin A et al. 2017. Injury activates transient olfactory stem cell states with diverse lineage capacities. Cell Stem Cell 21:775–90.e9
    [Google Scholar]
  34. 34.  Ogura T, Szebenyi SA, Krosnowski K, Sathyanesan A, Jackson J, Lin W 2011. Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells. J. Neurophysiol. 106:1274–87
    [Google Scholar]
  35. 35.  Lemons K, Fu Z, Aoude I, Ogura T, Sun J et al. 2017. Lack of TRPM5-expressing microvillous cells in mouse main olfactory epithelium leads to impaired odor-evoked responses and olfactory-guided behavior in a challenging chemical environment. eNeuro 4: ENEURO 0135–17 2017.
    [Google Scholar]
  36. 36.  Doyle KL, Cunha C, Hort Y, Tasan R, Sperk G et al. 2018. Role of neuropeptide Y (NPY) in the differentiation of Trpm-5-positive olfactory microvillar cells. Neuropeptides 68:90–98
    [Google Scholar]
  37. 37.  Krasteva G, Hartmann P, Papadakis T, Bodenbenner M, Wessels L et al. 2012. Cholinergic chemosensory cells in the auditory tube. Histochem. Cell Biol. 137:483–97
    [Google Scholar]
  38. 38.  Wiederhold S, Papadakis T, Chubanov V, Gudermann T, Krasteva-Christ G, Kummer W 2015. A novel cholinergic epithelial cell with chemosensory traits in the murine conjunctiva. Int. Immunopharmacol. 29:45–50
    [Google Scholar]
  39. 39.  Panneck AR, Rafiq A, Schutz B, Soultanova A, Deckmann K et al. 2014. Cholinergic epithelial cell with chemosensory traits in murine thymic medulla. Cell Tissue Res 358:737–48
    [Google Scholar]
  40. 40.  Soultanova A, Voigt A, Chubanov V, Gudermann T, Meyerhof W et al. 2015. Cholinergic chemosensory cells of the thymic medulla express the bitter receptor Tas2r131. Int. Immunopharmacol. 29:143–47
    [Google Scholar]
  41. 41.  Liu S, Lu S, Xu R, Atzberger A, Gunther S et al. 2017. Members of bitter taste receptor cluster Tas2r143/Tas2r135/Tas2r126 are expressed in the epithelium of murine airways and other non-gustatory tissues. Front. Physiol. 8:849
    [Google Scholar]
  42. 42.  Swarr DT, Morrisey EE 2015. Lung endoderm morphogenesis: gasping for form and function. Annu. Rev. Cell Dev. Biol. 31:553–73
    [Google Scholar]
  43. 43.  Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R et al. 2014. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15:123–38
    [Google Scholar]
  44. 44.  Reid L, Meyrick B, Antony VB, Chang LY, Crapo JD, Reynolds HY 2005. The mysterious pulmonary brush cell: a cell in search of a function. Am. J. Respir. Crit. Care Med. 172:136–39
    [Google Scholar]
  45. 45.  Tizzano M, Cristofoletti M, Sbarbati A, Finger TE 2011. Expression of taste receptors in solitary chemosensory cells of rodent airways. BMC Pulm. Med. 11:3
    [Google Scholar]
  46. 46.  Tizzano M, Merigo F, Sbarbati A 2006. Evidence of solitary chemosensory cells in a large mammal: the diffuse chemosensory system in Bos taurus airways. J. Anat. 209:333–37
    [Google Scholar]
  47. 47.  Yamashita J, Ohmoto M, Yamaguchi T, Matsumoto I, Hirota J 2017. Skn-1a/Pou2f3 functions as a master regulator to generate Trpm5-expressing chemosensory cells in mice. PLOS ONE 12:e0189340
    [Google Scholar]
  48. 48.  Saunders CJ, Reynolds SD, Finger TE 2013. Chemosensory brush cells of the trachea: a stable population in a dynamic epithelium. Am. J. Respir. Cell Mol. Biol. 49:190–96
    [Google Scholar]
  49. 49.  Krasteva G, Canning BJ, Papadakis T, Kummer W 2012. Cholinergic brush cells in the trachea mediate respiratory responses to quorum sensing molecules. Life Sci 91:992–96
    [Google Scholar]
  50. 50.  Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ 2009. Motile cilia of human airway epithelia are chemosensory. Science 325:1131–34
    [Google Scholar]
  51. 51.  Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM et al. 2010. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat. Med. 16:1299–304
    [Google Scholar]
  52. 52.  Roper SD, Chaudhari N 2017. Taste buds: cells, signals and synapses. Nat. Rev. Neurosci. 18:485–97
    [Google Scholar]
  53. 53.  Ohmoto M, Matsumoto I, Yasuoka A, Yoshihara Y, Abe K 2008. Genetic tracing of the gustatory and trigeminal neural pathways originating from T1R3-expressing taste receptor cells and solitary chemoreceptor cells. Mol. Cell Neurosci. 38:505–17
    [Google Scholar]
  54. 54.  Chin AM, Hill DR, Aurora M, Spence JR 2017. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin. Cell Dev. Biol. 66:81–93
    [Google Scholar]
  55. 55.  Mowat AM, Agace WW 2014. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14:667–85
    [Google Scholar]
  56. 56.  Schutz B, Jurastow I, Bader S, Ringer C, von Engelhardt J et al. 2015. Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. Front. Physiol. 6:87
    [Google Scholar]
  57. 57.  Quante M, Bhagat G, Abrams JA, Marache F, Good P et al. 2012. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell 21:36–51
    [Google Scholar]
  58. 58.  Housset C, Chretien Y, Debray D, Chignard N 2016. Functions of the gallbladder. Compr. Physiol. 6:1549–77
    [Google Scholar]
  59. 59.  Spence JR, Lange AW, Lin SC, Kaestner KH, Lowy AM et al. 2009. Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. Dev. Cell 17:62–74
    [Google Scholar]
  60. 60.  Barrett KE 2014. Gallbladder function. Gastrointestinal Physiology New York: McGraw-Hill. , 2nd ed..
    [Google Scholar]
  61. 61.  Reichert M, Rustgi AK 2011. Pancreatic ductal cells in development, regeneration, and neoplasia. J. Clin. Investig. 121:4572–78
    [Google Scholar]
  62. 62.  Hundt M, John S 2018. Physiology, bile secretion. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK470209/
  63. 63.  Gunn JS, Marshall JM, Baker S, Dongol S, Charles RC, Ryan ET 2014. Salmonella chronic carriage: epidemiology, diagnosis, and gallbladder persistence. Trends Microbiol 22:648–55
    [Google Scholar]
  64. 64.  Luciano L, Castellucci M, Reale E 1981. The brush cells of the common bile duct of the rat: thin section, freeze-fracture and scanning electron microscopy. Cell Tissue Res 218:403–20
    [Google Scholar]
  65. 65.  Nevalainen TJ 1977. Ultrastructural characteristics of tuft cells in mouse gallbladder epithelium. Acta Anat 98:210–20
    [Google Scholar]
  66. 66.  Luciano L, Reale E 1997. Presence of brush cells in the mouse gallbladder. Microsc. Res. Tech. 38:598–608
    [Google Scholar]
  67. 67.  Dancygier H 1989. Endoscopic transpapillary biopsy (ETPB) of human extrahepatic bile ducts—light and electron microscopic findings, clinical significance. Endoscopy 21:Suppl. 1312–20
    [Google Scholar]
  68. 68.  Gieseck RL 3rd, Wilson MS, Wynn TA 2018. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 18:62–76
    [Google Scholar]
  69. 69.  Luciano L, Groos S, Reale E 2003. Brush cells of rodent gallbladder and stomach epithelia express neurofilaments. J. Histochem. Cytochem. 51:187–98
    [Google Scholar]
  70. 70.  Gilloteaux J, Pomerants B, Kelly TR 1989. Human gallbladder mucosa ultrastructure: evidence of intraepithelial nerve structures. Am. J. Anat. 184:321–33
    [Google Scholar]
  71. 71.  Weyrauch KD 1979. [Ultrastructure of the Tuft cell in some epithelia of the domestic ruminants]. Anat. Anz 146:141–51 In German
    [Google Scholar]
  72. 72.  Weyrauch KD, Schnorr B 1976. [Ultrastructure of the epithelium of the major pancreatic duct in sheep]. Acta Anat 96:232–47 In German
    [Google Scholar]
  73. 73.  Hofer D, Drenckhahn D 1998. Identification of the taste cell G-protein, alpha-gustducin, in brush cells of the rat pancreatic duct system. Histochem. Cell Biol. 110:303–9
    [Google Scholar]
  74. 74.  Delgiorno KE, Hall JC, Takeuchi KK, Pan FC, Halbrook CJ et al. 2014. Identification and manipulation of biliary metaplasia in pancreatic tumors. Gastroenterology 146:233–44.e5
    [Google Scholar]
  75. 75.  Bailey JM, Alsina J, Rasheed ZA, McAllister FM, Fu YY et al. 2014. DCLK1 marks a morphologically distinct subpopulation of cells with stem cell properties in preinvasive pancreatic cancer. Gastroenterology 146:245–56
    [Google Scholar]
  76. 76.  May R, Sureban SM, Lightfoot SA, Hoskins AB, Brackett DJ et al. 2010. Identification of a novel putative pancreatic stem/progenitor cell marker DCAMKL-1 in normal mouse pancreas. Am. J. Physiol. Gastrointest. Liver Physiol. 299:G303–10
    [Google Scholar]
  77. 77.  Kim TH, Shivdasani RA 2016. Stomach development, stem cells and disease. Development 143:554–65
    [Google Scholar]
  78. 78.  Hofer D, Puschel B, Drenckhahn D 1996. Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. PNAS 93:6631–34
    [Google Scholar]
  79. 79.  O'Neil A, Petersen CP, Choi E, Engevik AC, Goldenring JR 2017. Unique cellular lineage composition of the first gland of the mouse gastric corpus. J. Histochem. Cytochem. 65:47–58
    [Google Scholar]
  80. 80.  Hass N, Schwarzenbacher K, Breer H 2007. A cluster of gustducin-expressing cells in the mouse stomach associated with two distinct populations of enteroendocrine cells. Histochem. Cell Biol. 128:457–71
    [Google Scholar]
  81. 81.  Sothilingam V, Hass N, Breer H 2011. Candidate chemosensory cells in the stomach mucosa of young postnatal mice during the phases of dietary changes. Cell Tissue Res 344:239–49
    [Google Scholar]
  82. 82.  Ogata T 2000. Mammalian tuft (brush) cells and chloride cells of other vertebrates share a similar structure and cytochemical reactivities. Acta Histochem. Cytochem. 33:439–49
    [Google Scholar]
  83. 83.  Ogata T 2006. Bicarbonate secretion by rat bile duct brush cells indicated by immunohistochemical localization of CFTR, anion exchanger AE2, Na+/HCO3cotransporter, carbonic anhydrase II, Na+/H+ exchangers NHE1 and NHE3, H+/K+-ATPase, and Na+/K+-ATPase. Med. Mol. Morphol. 39:44–48
    [Google Scholar]
  84. 84.  Ogata T 2005. Sodium bicarbonate secretion indicated by ultrastructural cytochemical localization of HCO3, Cl, and Na+ ions on rat bile duct brush cells. Med. Mol. Morphol. 38:243–50
    [Google Scholar]
  85. 85.  Eberle JA, Muller-Roth KL, Widmayer P, Chubanov V, Gudermann T, Breer H 2013. Putative interaction of brush cells with bicarbonate secreting cells in the proximal corpus mucosa. Front. Physiol. 4:182
    [Google Scholar]
  86. 86.  Liman ER 2014. TRPM5. Handb. Exp. Pharmacol. 222:489–502
    [Google Scholar]
  87. 87.  Beumer J, Clevers H 2016. Regulation and plasticity of intestinal stem cells during homeostasis and regeneration. Development 143:3639–49
    [Google Scholar]
  88. 88.  Noah TK, Shroyer NF 2013. Notch in the intestine: regulation of homeostasis and pathogenesis. Annu. Rev. Physiol. 75:263–88
    [Google Scholar]
  89. 89.  Jensen J, Pedersen EE, Galante P, Hald J, Heller RS et al. 2000. Control of endodermal endocrine development by Hes-1. Nat. Genet. 24:36–44
    [Google Scholar]
  90. 90.  Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY 2001. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294:2155–58
    [Google Scholar]
  91. 91.  Shroyer NF, Helmrath MA, Wang VY, Antalffy B, Henning SJ, Zoghbi HY 2007. Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology 132:2478–88
    [Google Scholar]
  92. 92.  Gerbe F, van Es JH, Makrini L, Brulin B, Mellitzer G et al. 2011. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J. Cell Biol. 192:767–80Detailed characterization of small-intestine tuft cell markers and development.
    [Google Scholar]
  93. 93.  Bjerknes M, Khandanpour C, Moroy T, Fujiyama T, Hoshino M et al. 2012. Origin of the brush cell lineage in the mouse intestinal epithelium. Dev. Biol. 362:194–218
    [Google Scholar]
  94. 94.  Westphalen CB, Asfaha S, Hayakawa Y, Takemoto Y, Lukin DJ et al. 2014. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J. Clin. Investig. 124:1283–95
    [Google Scholar]
  95. 95.  Herring CA, Banerjee A, McKinley ET, Simmons AJ, Ping J et al. 2018. Unsupervised trajectory analysis of single-cell RNA-seq and imaging data reveals alternative tuft cell origins in the gut. Cell Syst 6:37–51.e9
    [Google Scholar]
  96. 96.  Schneider C, O'Leary CE, von Moltke J, Liang HE, Ang QY et al. 2018. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell 174:271–84.e14Tritrichomonas-derived succinate triggers tuft cell–ILC2 circuit involved in adaptive remodeling and concomitant immunity.
    [Google Scholar]
  97. 97.  McKinley ET, Sui Y, Al-Kofahi Y, Millis BA, Tyska MJ et al. 2017. Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity. JCI Insight 2:93487
    [Google Scholar]
  98. 98.  Gracz AD, Samsa LA, Fordham MJ, Trotier DC, Zwarycz B et al. 2018. Sox4 promotes Atoh1-independent intestinal secretory differentiation toward tuft and enteroendocrine fates. Gastroenterology 155:1508–23
  99. 99.  Malik V, Zimmer D, Jauch R 2018. Diversity among POU transcription factors in chromatin recognition and cell fate reprogramming. Cell Mol. Life Sci. 75:1587–612
    [Google Scholar]
  100. 100.  Matsumoto I, Ohmoto M, Narukawa M, Yoshihara Y, Abe K 2011. Skn-1a (Pou2f3) specifies taste receptor cell lineage. Nat. Neurosci. 14:685–87First description of POU2F3 dependency in type II taste bud cells.
    [Google Scholar]
  101. 101.  Ohmoto M, Yamaguchi T, Yamashita J, Bachmanov AA, Hirota J, Matsumoto I 2013. Pou2f3/Skn-1a is necessary for the generation or differentiation of solitary chemosensory cells in the anterior nasal cavity. Biosci. Biotechnol. Biochem. 77:2154–56
    [Google Scholar]
  102. 102.  Middelhoff M, Westphalen CB, Hayakawa Y, Yan KS, Gershon MD et al. 2017. Dclk1-expressing tuft cells: critical modulators of the intestinal niche?. Am. J. Physiol. Gastrointest. Liver Physiol. 313:G285–99
    [Google Scholar]
  103. 103.  Deckmann K, Kummer W 2016. Chemosensory epithelial cells in the urethra: sentinels of the urinary tract. Histochem. Cell Biol. 146:673–83
    [Google Scholar]
  104. 104.  Deckmann K, Krasteva-Christ G, Rafiq A, Herden C, Wichmann J et al. 2015. Cholinergic urethral brush cells are widespread throughout placental mammals. Int. Immunopharmacol. 29:51–56
    [Google Scholar]
  105. 105.  Lei W, Ren W, Ohmoto M, Urban JF Jr, Matsumoto I et al. 2018. Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine. PNAS 115:5552–57Identification of succinate-SUCNR1-mediated tuft cell activation by succinate-producing microbiota.
    [Google Scholar]
  106. 106.  Wilen CB, Lee S, Hsieh LL, Orchard RC, Desai C et al. 2018. Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science 360:204–8
    [Google Scholar]
  107. 107.  Aladegbami B, Barron L, Bao J, Colasanti J, Erwin CR et al. 2017. Epithelial cell specific Raptor is required for initiation of type 2 mucosal immunity in small intestine. Sci. Rep. 7:5580
    [Google Scholar]
  108. 108.  Nakanishi Y, Seno H, Fukuoka A, Ueo T, Yamaga Y et al. 2013. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat. Genet. 45:98–103
    [Google Scholar]
  109. 109.  Westphalen CB, Takemoto Y, Tanaka T, Macchini M, Jiang Z et al. 2016. Dclk1 defines quiescent pancreatic progenitors that promote injury-induced regeneration and tumorigenesis. Cell Stem Cell 18:441–55
    [Google Scholar]
  110. 110.  May R, Qu D, Weygant N, Chandrakesan P, Ali N et al. 2014. Brief report: Dclk1 deletion in tuft cells results in impaired epithelial repair after radiation injury. Stem. Cells 32:822–27
    [Google Scholar]
  111. 111.  Qu D, Weygant N, May R, Chandrakesan P, Madhoun M et al. 2015. Ablation of doublecortin-like kinase 1 in the colonic epithelium exacerbates dextran sulfate sodium-induced colitis. PLOS ONE 10:e0134212
    [Google Scholar]
  112. 112.  Ohmae S, Takemoto-Kimura S, Okamura M, Adachi-Morishima A, Nonaka M et al. 2006. Molecular identification and characterization of a family of kinases with homology to Ca2+/calmodulin-dependent protein kinases I/IV. J. Biol. Chem. 281:20427–39
    [Google Scholar]
  113. 113.  Jadhav U, Saxena M, O'Neill NK, Saadatpour A, Yuan GC et al. 2017. Dynamic reorganization of chromatin accessibility signatures during dedifferentiation of secretory precursors into Lgr5+ intestinal stem cells. Cell Stem Cell 21:65–77.e5
    [Google Scholar]
  114. 114.  Yan KS, Gevaert O, Zheng GXY, Anchang B, Probert CS et al. 2017. Intestinal enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity. Cell Stem Cell 21:78–90.e6
    [Google Scholar]
  115. 115.  Westphalen CB, Quante M, Wang TC 2017. Functional implication of Dclk1 and Dclk1-expressing cells in cancer. Small GTPases 8:164–71
    [Google Scholar]
  116. 116.  Patel O, Dai W, Mentzel M, Griffin MD, Serindoux J et al. 2016. Biochemical and structural insights into doublecortin-like kinase domain 1. Structure 24:1550–61
    [Google Scholar]
  117. 117.  Qu D, Johnson J, Chandrakesan P, Weygant N, May R et al. 2015. Doublecortin-like kinase 1 is elevated serologically in pancreatic ductal adenocarcinoma and widely expressed on circulating tumor cells. PLOS ONE 10:e0118933
    [Google Scholar]
  118. 118.  Nishio K, Kimura K, Amano R, Nakata B, Yamazoe S et al. 2017. Doublecortin and CaM kinase-like-1 as an independent prognostic factor in patients with resected pancreatic carcinoma. World J. Gastroenterol. 23:5764–72
    [Google Scholar]
  119. 119.  Saqui-Salces M, Keeley TM, Grosse AS, Qiao XT, El-Zaatari M et al. 2011. Gastric tuft cells express DCLK1 and are expanded in hyperplasia. Histochem. Cell Biol. 136:191–204
    [Google Scholar]
  120. 120.  Mutoh H, Sashikawa M, Sakamoto H, Tateno T 2014. Cyclooxygenase 2 in gastric carcinoma is expressed in doublecortin- and CaM kinase-like-1-positive tuft cells. Gut Liver 8:508–18
    [Google Scholar]
  121. 121.  Huang YH, Klingbeil O, He XY, Wu XS, Arun G et al. 2018. POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes Dev 32:13–14915–28
    [Google Scholar]
  122. 122.  Sukumaran SK, Lewandowski BC, Qin Y, Kotha R, Bachmanov AA, Margolskee RF 2017. Whole transcriptome profiling of taste bud cells. Sci. Rep. 7:7595
    [Google Scholar]
  123. 123.  Ogura T, Krosnowski K, Zhang L, Bekkerman M, Lin W 2010. Chemoreception regulates chemical access to mouse vomeronasal organ: role of solitary chemosensory cells. PLOS ONE 5:e11924
    [Google Scholar]
  124. 124.  Finger TE 1997. Evolution of taste and solitary chemoreceptor cell systems. Brain Behav. Evol. 50:234–43
    [Google Scholar]
  125. 125.  Vernot B, Akey JM 2014. Resurrecting surviving Neandertal lineages from modern human genomes. Science 343:1017–21
    [Google Scholar]
  126. 126.  Seo JS, Rhie A, Kim J, Lee S, Sohn MH et al. 2016. De novo assembly and phasing of a Korean human genome. Nature 538:243–47
    [Google Scholar]
  127. 127.  Mazzoni M, Bonaldo A, Gatta PP, Vallorani C, Latorre R et al. 2015. α-Transducin and α-gustducin immunoreactive cells in the stomach of common sole (Solea solea) fed with mussel meal. Fish Physiol. Biochem. 41:603–12
    [Google Scholar]
  128. 128.  Kaske S, Krasteva G, Konig P, Kummer W, Hofmann T et al. 2007. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. BMC Neurosci 8:49
    [Google Scholar]
  129. 129.  Liman ER 2007. TRPM5 and taste transduction. Handb. Exp. Pharmacol. 179:287–98
    [Google Scholar]
  130. 130.  Perez CA, Huang L, Rong M, Kozak JA, Preuss AK et al. 2002. A transient receptor potential channel expressed in taste receptor cells. Nat. Neurosci. 5:1169–76
    [Google Scholar]
  131. 131.  Liu D, Liman ER 2003. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. PNAS 100:15160–65
    [Google Scholar]
  132. 132.  Prawitt D, Monteilh-Zoller MK, Brixel L, Spangenberg C, Zabel B et al. 2003. TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. PNAS 100:15166–71
    [Google Scholar]
  133. 133.  Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B et al. 2003. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112:293–301
    [Google Scholar]
  134. 134.  Romanov RA, Rogachevskaja OA, Bystrova MF, Jiang P, Margolskee RF, Kolesnikov SS 2007. Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO J 26:657–67
    [Google Scholar]
  135. 135.  Talavera K, Yasumatsu K, Voets T, Droogmans G, Shigemura N et al. 2005. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438:1022–25
    [Google Scholar]
  136. 136.  Tantin D 2013. Oct transcription factors in development and stem cells: insights and mechanisms. Development 140:2857–66
    [Google Scholar]
  137. 137.  Andersen B, Schonemann MD, Flynn SE, Pearse RV 2nd, Singh H, Rosenfeld MG 1993. Skn-1a and Skn-1i: two functionally distinct Oct-2-related factors expressed in epidermis. Science 260:78–82
    [Google Scholar]
  138. 138.  Yukawa K, Yasui T, Yamamoto A, Shiku H, Kishimoto T, Kikutani H 1993. Epoc-1: a POU-domain gene expressed in murine epidermal basal cells and thymic stromal cells. Gene 133:163–69
    [Google Scholar]
  139. 139.  Andersen B, Weinberg WC, Rennekampff O, McEvilly RJ, Bermingham JR Jr et al. 1997. Functions of the POU domain genes Skn-1a/i and Tst-1/Oct-6/SCIP in epidermal differentiation. Genes Dev 11:1873–84
    [Google Scholar]
  140. 140.  Fourniol F, Perderiset M, Houdusse A, Moores C 2013. Structural studies of the doublecortin family of MAPs. Methods Cell Biol 115:27–48
    [Google Scholar]
  141. 141.  Sossey-Alaoui K, Hartung AJ, Guerrini R, Manchester DK, Posar A et al. 1998. Human doublecortin (DCX) and the homologous gene in mouse encode a putative Ca2+-dependent signaling protein which is mutated in human X-linked neuronal migration defects. Hum. Mol. Genet. 7:1327–32
    [Google Scholar]
  142. 142.  Friocourt G, Liu JS, Antypa M, Rakic S, Walsh CA, Parnavelas JG 2007. Both doublecortin and doublecortin-like kinase play a role in cortical interneuron migration. J. Neurosci. 27:3875–83
    [Google Scholar]
  143. 143.  Sossey-Alaoui K, Srivastava AK 1999. DCAMKL1, a brain-specific transmembrane protein on 13q12.3 that is similar to doublecortin (DCX). Genomics 56:121–26
    [Google Scholar]
  144. 144.  Bezencon C, le Coutre J, Damak S 2007. Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem. Senses 32:41–49
    [Google Scholar]
  145. 145.  Huang L, Shanker YG, Dubauskaite J, Zheng JZ, Yan W et al. 1999. Gγ13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat. Neurosci. 2:1055–62
    [Google Scholar]
  146. 146.  Kim JW, Roberts C, Maruyama Y, Berg S, Roper S, Chaudhari N 2006. Faithful expression of GFP from the PLCβ2 promoter in a functional class of taste receptor cells. Chem. Senses 31:213–19
    [Google Scholar]
  147. 147.  Eberle JA, Richter P, Widmayer P, Chubanov V, Gudermann T, Breer H 2013. Band-like arrangement of taste-like sensory cells at the gastric groove: evidence for paracrine communication. Front. Physiol. 4:58
    [Google Scholar]
  148. 148.  Jiang H, Kuang Y, Wu Y, Xie W, Simon MI, Wu D 1997. Roles of phospholipase C β2 in chemoattractant-elicited responses. PNAS 94:7971–75
    [Google Scholar]
  149. 149.  Gautron L, Rutkowski JM, Burton MD, Wei W, Wan Y, Elmquist JK 2013. Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen. J. Comp. Neurol. 521:3741–67
    [Google Scholar]
  150. 150.  Rotolo T, Smallwood PM, Williams J, Nathans J 2008. Genetically-directed, cell type-specific sparse labeling for the analysis of neuronal morphology. PLOS ONE 3:e4099
    [Google Scholar]
  151. 151.  Misgeld T, Burgess RW, Lewis RM, Cunningham JM, Lichtman JW, Sanes JR 2002. Roles of neurotransmitter in synapse formation: development of neuromuscular junctions lacking choline acetyltransferase. Neuron 36:635–48
    [Google Scholar]
  152. 152.  Lecomte MJ, Bertolus C, Santamaria J, Bauchet AL, Herbin M et al. 2014. Selective disruption of acetylcholine synthesis in subsets of motor neurons: a new model of late-onset motor neuron disease. Neurobiol. Dis. 65:102–11
    [Google Scholar]
  153. 153.  Voigt A, Hubner S, Lossow K, Hermans-Borgmeyer I, Boehm U, Meyerhof W 2012. Genetic labeling of Tas1r1 and Tas2r131 taste receptor cells in mice. Chem. Senses 37:897–911
    [Google Scholar]
  154. 154.  Iwatsuki K, Nomura M, Shibata A, Ichikawa R, Enciso PL et al. 2010. Generation and characterization of T1R2-LacZ knock-in mouse. Biochem. Biophys. Res. Commun. 402:495–99
    [Google Scholar]
  155. 155.  Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W et al. 2006. The cells and logic for mammalian sour taste detection. Nature 442:934–38
    [Google Scholar]
  156. 156.  Clapp TR, Medler KF, Damak S, Margolskee RF, Kinnamon SC 2006. Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25. BMC Biol 4:7
    [Google Scholar]
  157. 157.  Voigt A, Hubner S, Doring L, Perlach N, Hermans-Borgmeyer I et al. 2015. Cre-mediated recombination in Tas2r131 cells—a unique way to explore bitter taste receptor function inside and outside of the taste system. Chem. Senses 40:627–39
    [Google Scholar]
  158. 158.  Khandanpour C, Sharif-Askari E, Vassen L, Gaudreau MC, Zhu J et al. 2010. Evidence that Growth factor independence 1b regulates dormancy and peripheral blood mobilization of hematopoietic stem cells. Blood 116:5149–61
    [Google Scholar]
  159. 159.  Foudi A, Kramer DJ, Qin J, Ye D, Behlich AS et al. 2014. Distinct, strict requirements for Gfi-1b in adult bone marrow red cell and platelet generation. J. Exp. Med. 211:909–27
    [Google Scholar]
  160. 160.  Kuga D, Ushida K, Mii S, Enomoto A, Asai N et al. 2017. Tyrosine phosphorylation of an actin-binding protein girdin specifically marks tuft cells in human and mouse gut. J. Histochem. Cytochem. 65:347–66
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-042718-041505
Loading
/content/journals/10.1146/annurev-immunol-042718-041505
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error