- Home
- A-Z Publications
- Annual Review of Immunology
- Previous Issues
- Volume 26, 2008
Annual Review of Immunology - Volume 26, 2008
Volume 26, 2008
-
-
Doing What I Like
Vol. 26 (2008), pp. 1–28More LessI have spent my entire professional life at Harvard Medical School, beginning as a medical student. I have enjoyed each day of a diverse career in four medical subspecialties while following the same triad of preclinical areas of investigation—cysteinyl leukotrienes, mast cells, and complement—with occasional translational opportunities. I did not envision a career with a predominant preclinical component. Such a path simply evolved because I chose instinctively at multiple junctures to follow what proved to be propitious opportunities. My commentary notes some of the highlights for each area of interest and the mentors, collaborators, and trainees whose counsel has been immensely important at particular intervals or over an extended period.
-
-
-
Protein Tyrosine Phosphatases in Autoimmunity
Vol. 26 (2008), pp. 29–55More LessProtein tyrosine phosphatases (PTPs) are important regulators of many cellular functions and a growing number of PTPs have been implicated in human disease conditions, such as developmental defects, neoplastic disorders, and immunodeficiency. Here, we review the involvement of PTPs in human autoimmunity. The leading examples include the allelic variant of the lymphoid tyrosine phosphatase (PTPN22), which is associated with multiple autoimmune diseases, and mutations that affect the exon-intron splicing of CD45 (PTPRC). We also find it likely that additional PTPs are involved in susceptibility to autoimmune and inflammatory diseases. Finally, we discuss the possibility that PTPs regulating the immune system may serve as therapeutic targets.
-
-
-
Interleukin-21: Basic Biology and Implications for Cancer and Autoimmunity*
Vol. 26 (2008), pp. 57–79More LessInterleukin-21 (IL-21), a potent immunomodulatory four-α-helical-bundle type I cytokine, is produced by NKT and CD4+ T cells and has pleiotropic effects on both innate and adaptive immune responses. These actions include positive effects such as enhanced proliferation of lymphoid cells, increased cytotoxicity of CD8+ T cells and natural killer (NK) cells, and differentiation of B cells into plasma cells. Conversely, IL-21 also has direct inhibitory effects on the antigen-presenting function of dendritic cells and can be proapoptotic for B cells and NK cells. IL-21 is also produced by Th17 cells and is a critical regulator of Th17 development. The regulatory activity of IL-21 is modulated by the differentiation state of its target cells as well as by other cytokines or costimulatory molecules. IL-21 has potent antitumor activity but is also associated with the development of autoimmune disease. IL-21 transcription is dependent on a calcium signal and NFAT sites, and IL-21 requires Stat3 for its signaling. The key to harnessing the power of IL-21 will depend on better understanding its range of biological actions, its mechanism of action, and the molecular basis of regulation of expression of IL-21 and its receptor.
-
-
-
Forward Genetic Dissection of Immunity to Infection in the Mouse
S.M. Vidal, D. Malo, J.-F. Marquis, and P. GrosVol. 26 (2008), pp. 81–132More LessForward genetics is an experimental approach in which gene mapping and positional cloning are used to elucidate the molecular mechanisms underlying phenotypic differences between two individuals for a given trait. This strategy has been highly successful for the study of inbred mouse strains that show differences in innate susceptibility to bacterial, parasitic, fungal, and viral infections. Over the past 20 years, these studies have led to the identification of a number of cell populations and critical biochemical pathways and proteins that are essential for the early detection of and response to invading pathogens. Strikingly, the macrophage is the point of convergence for many of these genetic studies. This has led to the identification of diverse pathways involved in extracellular and intracellular pathogen recognition, modification of the properties and content of phagosomes, transcriptional response, and signal transduction for activation of adaptive immune mechanisms. In models of viral infections, elegant genetic studies highlighted the pivotal role of natural killer cells in the detection and destruction of infected cells.
-
-
-
Regulation and Functions of Blimp-1 in T and B Lymphocytes
Vol. 26 (2008), pp. 133–169More LessB lymphocyte–induced maturation protein-1 (Blimp-1), discovered 16 years ago as a transcriptional repressor of the IFNβ promoter, plays fundamentally important roles in many cell lineages and in early development. This review focuses on Blimp-1 in lymphocytes. In the B cell lineage, Blimp-1 is required for development of immunoglobulin-secreting cells and for maintenance of long-lived plasma cells (LLPCs). Direct targets of Blimp-1 and the transcriptional cascades Blimp-1 initiates to trigger plasmacytic differentiation are described. Blimp-1 also affects the homeostasis and function of CD4+, CD8+, and regulatory CD4+ T cells, and Blimp-1 levels are highest in antigen-experienced T cells. Blimp-1 attenuates T cell proliferation and survival and modulates differentiation. Roles for Blimp-1 in Th1/Th2 specification, regulatory T cell function, and CD8 differentiation and function are under investigation. Signals that induce Blimp-1 in B cells include Toll-like receptor ligands and cytokines; in T cells, T cell receptors and cytokines induce Blimp-1. In spite of some commonalities, different targets and regulators of Blimp-1 in B and T cells suggest intriguing evolutionary divergence of this regulatory machinery.
-
-
-
Evolutionarily Conserved Amino Acids That Control TCR-MHC Interaction
Vol. 26 (2008), pp. 171–203More LessThe rules for the conserved reaction of αβ T cell receptors (TCRs) with major histocompatibility complex (MHC) proteins plus peptides are poorly understood, probably because thymocytes bearing TCRs with the strongest MHC reactivity are lost by negative selection. Thus, only TCRs with an attenuated ability to react with MHC appear on mature T cells. Also, the interaction sites between TCRs and MHC may be inherently flexible and hence difficult to spot. We reevaluated contacts between TCRs and MHC in the solved structures of their complexes with these points in mind. Relatively conserved amino acids in the TCR complementarity-determining regions (CDR) 1 and CDR2 are often used to bind exposed areas of the MHC α-helices. These areas are exposed because of small amino acids that allow somewhat flexible binding of the TCRs. The TCR amino acids involved are specific to families of variable (V) regions and to some extent different rules may govern the recognition of MHCI versus MHCII.
-
-
-
T Cell Trafficking in Allergic Asthma: The Ins and Outs
Vol. 26 (2008), pp. 205–232More LessT cells are critical mediators of the allergic airway inflammation seen in asthma. Pathogenic allergen-specific T cells are generated in regional lymph nodes and are then recruited into the airway by chemoattractants produced by the asthmatic lung. These recruited effector T cells and their products then mediate the cardinal features of asthma: airway eosinophilia, mucus hypersecretion, and airway hyperreactivity. There has been considerable progress in delineating the molecular mechanisms that control T cell trafficking into peripheral tissue, including the asthmatic lung. In this review, we summarize these advances and formulate them into a working model that proposes that T cell trafficking into and out of the allergic lung is controlled by several discrete regulatory pathways that involve the collaboration of innate and acquired immune cells.
-
-
-
The Actin Cytoskeleton in T Cell Activation
Vol. 26 (2008), pp. 233–259More LessT cell cytoarchitecture differs dramatically depending on whether the cell is circulating within the bloodstream, migrating through tissues, or interacting with antigen-presenting cells. The transition between these states requires important signaling-dependent changes in actin cytoskeletal dynamics. Recently, analysis of actin-regulatory proteins associated with T cell activation has provided new insights into how T cells control actin dynamics in response to external stimuli and how actin facilitates downstream signaling events and effector functions. Among the actin-regulatory proteins that have been identified are nucleation-promoting factors such as WASp, WAVE2, and HS1; severing proteins such as cofilin; motor proteins such as myosin II; and linker proteins such as ezrin and moesin. We review the current literature on how signaling pathways leading from diverse cell surface receptors regulate the coordinated activity of these and other actin-regulatory proteins and how these proteins control T cell function.
-
-
-
Mechanism and Regulation of Class Switch Recombination
Vol. 26 (2008), pp. 261–292More LessAntibody class switching occurs in mature B cells in response to antigen stimulation and costimulatory signals. It occurs by a unique type of intrachromosomal deletional recombination within special G-rich tandem repeated DNA sequences [called switch, or S, regions located upstream of each of the heavy chain constant (CH) region genes, except Cδ]. The recombination is initiated by the B cell–specific activation-induced cytidine deaminase (AID), which deaminates cytosines in both the donor and acceptor S regions. AID activity converts several dC bases to dU bases in each S region, and the dU bases are then excised by the uracil DNA glycosylase UNG; the resulting abasic sites are nicked by apurinic/apyrimidinic endonuclease (APE). AID attacks both strands of transcriptionally active S regions, but how transcription promotes AID targeting is not entirely clear. Mismatch repair proteins are then involved in converting the resulting single-strand DNA breaks to double-strand breaks with DNA ends appropriate for end-joining recombination. Proteins required for the subsequent S-S recombination include DNA-PK, ATM, Mre11-Rad50-Nbs1, γH2AX, 53BP1, Mdc1, and XRCC4-ligase IV. These proteins are important for faithful joining of S regions, and in their absence aberrant recombination and chromosomal translocations involving S regions occur.
-
-
-
Migration of Dendritic Cell Subsets and their Precursors
Vol. 26 (2008), pp. 293–316More LessThe ability of dendritic cells (DCs) to initiate and orchestrate immune responses is a consequence of their localization within tissues and their specialized capacity for mobilization. The migration of a given DC subset is typified by a restricted capacity for recirculation, contrasting markedly with T cells. Routes of DC migration into lymph nodes differ notably for distinct DC subsets. Here, we compare the distinct migratory patterns of plasmacytoid DCs (pDCs), CD8α+ DCs, Langerhans cells, and conventional myeloid DCs and discuss how the highly regulated patterns of DC migration in vivo may affect their roles in immunity. Finally, to gain a more molecular appreciation of the specialized migratory properties of DCs, we review the signaling cascades that govern the process of DC migration.
-
-
-
The APOBEC3 Cytidine Deaminases: An Innate Defensive Network Opposing Exogenous Retroviruses and Endogenous Retroelements
Vol. 26 (2008), pp. 317–353More LessAll retroviruses, including HIV-1, display species-specific patterns of infection. The impaired growth of these retroviruses in foreign and sometimes even in their natural hosts often stems from the action of potent host-encoded “viral restriction factors” that form important protective components of the innate immune system. The discovery of APOBEC3G and related cytidine deaminases as one class of host restriction factors and of the action of HIV-1 Vif as a specific APOBEC3G antagonist have stimulated intense scientific interest. This Vif-APOBEC3G axis now forms a very attractive target for development of an entirely new class of anti-HIV drugs. In this review, we summarize current understanding of the mechanism of action of the APOBEC3 family of enzymes, their intriguing regulation within cells, the impact of these enzymes on viral evolution and disease progression, and their roles in controlling not only the replication of exogenous retroviruses but also the retrotransposition of endogenous retroelements.
-
-
-
Thymus Organogenesis
Vol. 26 (2008), pp. 355–388More LessThe epithelial architecture of the thymus fosters growth, differentiation, and T cell receptor repertoire selection of large numbers of immature T cells that continuously feed the mature peripheral T cell pool. Failure to build or to maintain a proper thymus structure can lead to defects ranging from immunodeficiency to autoimmunity. There has been long-standing interest in unraveling the cellular and molecular basis of thymus organogenesis. Earlier studies gave important morphological clues on thymus development. More recent cell biological and genetic approaches yielded new and conclusive insights regarding the germ layer origin of the epithelium and the composition of the medulla as a mosaic of clonally derived islets. The existence of epithelial progenitors common for cortex and medulla with the capacity for forming functional thymus after birth has been uncovered. In addition to the thymus in the chest, mice can have a cervical thymus that is small, but functional, and produces T cells only after birth. It will be important to elucidate the pathways from putative thymus stem cells to mature thymus epithelial cells, and the properties and regulation of these pathways from ontogeny to thymus involution.
-
-
-
Death by a Thousand Cuts: Granzyme Pathways of Programmed Cell Death
Vol. 26 (2008), pp. 389–420More LessThe granzymes are cell death–inducing enzymes, stored in the cytotoxic granules of cytotoxic T lymphocytes and natural killer cells, that are released during granule exocytosis when a specific virus-infected or transformed target cell is marked for elimination. Recent work suggests that this homologous family of serine esterases can activate at least three distinct pathways of cell death. This redundancy likely evolved to provide protection against pathogens and tumors with diverse strategies for evading cell death. This review discusses what is known about granzyme-mediated pathways of cell death as well as recent studies that implicate granzymes in immune regulation and extracellular proteolytic functions in inflammation.
-
-
-
Monocyte-Mediated Defense Against Microbial Pathogens
Vol. 26 (2008), pp. 421–452More LessCirculating blood monocytes supply peripheral tissues with macrophage and dendritic cell (DC) precursors and, in the setting of infection, also contribute directly to immune defense against microbial pathogens. In humans and mice, monocytes are divided into two major subsets that either specifically traffic into inflamed tissues or, in the absence of overt inflammation, constitutively maintain tissue macrophage/DC populations. Inflammatory monocytes respond rapidly to microbial stimuli by secreting cytokines and antimicrobial factors, express the CCR2 chemokine receptor, and traffic to sites of microbial infection in response to monocyte chemoattractant protein (MCP)-1 (CCL2) secretion. In murine models, CCR2-mediated monocyte recruitment is essential for defense against Listeria monocytogenes, Mycobacterium tuberculosis, Toxoplasma gondii, and Cryptococcus neoformans infection, implicating inflammatory monocytes in defense against bacterial, protozoal, and fungal pathogens. Recent studies indicate that inflammatory monocyte recruitment to sites of infection is complex, involving CCR2-mediated emigration of monocytes from the bone marrow into the bloodstream, followed by trafficking into infected tissues. The in vivo mechanisms that promote chemokine secretion, monocyte differentiation and trafficking, and finally monocyte-mediated microbial killing remain active and important areas of investigation.
-
-
-
The Biology of Interleukin-2
Vol. 26 (2008), pp. 453–479More LessMuch data support an essential role for interleukin (IL)-2 in immune tolerance. This idea is much different from the early paradigm in which IL-2 is central for protective immune responses. This change in thinking occurred when a T regulatory cell defect was shown to be responsible for the lethal autoimmunity associated with IL-2/IL-2R deficiency. This realization allowed investigators to explore immune responses in IL-2-nonresponsive mice rendered autoimmune-free. Such studies established that IL-2 sometimes contributes to optimal primary immune responses, but it is not mandatory. Emerging findings, however, suggest an essential role for IL-2 in immune memory. Here, the current understanding of the dual role of IL-2 in maintaining tolerance and contributing to immunity in vivo is reviewed with some emphasis on T regulatory cell production and homeostasis. Also discussed are implications of this new appreciation concerning the immunobiology of IL-2 with respect to targeting IL-2 or its receptor in immunotherapy.
-
-
-
The Biochemistry of Somatic Hypermutation
Vol. 26 (2008), pp. 481–511More LessAffinity maturation of the humoral response is mediated by somatic hypermutation of the immunoglobulin (Ig) genes and selection of higher-affinity B cell clones. Activation-induced cytidine deaminase (AID) is the first of a complex series of proteins that introduce these point mutations into variable regions of the Ig genes. AID deaminates deoxycytidine residues in single-stranded DNA to deoxyuridines, which are then processed by DNA replication, base excision repair (BER), or mismatch repair (MMR). In germinal center B cells, MMR, BER, and other factors are diverted from their normal roles in preserving genomic integrity to increase diversity within the Ig locus. Both AID and these components of an emerging error-prone mutasome are regulated on many levels by complex mechanisms that are only beginning to be elucidated.
-
-
-
Anti-Inflammatory Actions of Intravenous Immunoglobulin
Vol. 26 (2008), pp. 513–533More LessThe remarkable success story of the therapeutic application of pooled immunoglobulin G (IgG) preparations from thousands of donors, the so-called intravenous IgG (IVIG) therapy, to patients with a variety of hematological and immunological disorders began more than half a century ago. Since then, the use of this primary blood product has increased constantly, resulting in the serious danger of shortages in supply. Despite its widespread use and therapeutic success, the mechanisms of action, especially of the anti-inflammatory activity, are only beginning to be understood. In this review, we summarize the clinical use of IVIG for different diseases and discuss recent data on the molecular mechanisms that might explain how this potent drug mediates its activity in vivo.
-
-
-
The IRF Family Transcription Factors in Immunity and Oncogenesis
Vol. 26 (2008), pp. 535–584More LessThe interferon regulatory factor (IRF) family, consisting of nine members in mammals, was identified in the late 1980s in the context of research into the type I interferon system. Subsequent studies over the past two decades have revealed the versatile and critical functions performed by this transcription factor family. Indeed, many IRF members play central roles in the cellular differentiation of hematopoietic cells and in the regulation of gene expression in response to pathogen-derived danger signals. In particular, the advances made in understanding the immunobiology of Toll-like and other pattern-recognition receptors have recently generated new momentum for the study of IRFs. Moreover, the role of several IRF family members in the regulation of the cell cycle and apoptosis has important implications for understanding susceptibility to and progression of several cancers.
-
-
-
Choreography of Cell Motility and Interaction Dynamics Imaged by Two-Photon Microscopy in Lymphoid Organs
Vol. 26 (2008), pp. 585–626More LessThe immune system is the most diffuse cellular system in the body. Accordingly, long-range migration of cells and short-range communication by local chemical signaling and by cell-cell contacts are vital to the control of an immune response. Cellular homing and migration within lymphoid organs, antigen recognition, and cell signaling and activation are clearly vital during an immune response, but these events had not been directly observed in vivo until recently. Introduced to the field of immunology in 2002, two-photon microscopy is the method of choice for visualizing living cells deep within native tissue environments, and it is now revealing an elegant cellular choreography that underlies the adaptive immune response to antigen challenge. We review cellular dynamics and molecular factors that contribute to basal motility of lymphocytes in the lymph node and cellular interactions leading to antigen capture and recognition, T cell activation, B cell activation, cytolytic effector function, and antibody production.
-
-
-
Development of Secondary Lymphoid Organs
Vol. 26 (2008), pp. 627–650More LessSecondary lymphoid organs develop during embryogenesis or in the first few weeks after birth according to a highly coordinated series of interactions between newly emerging hematopoietic cells and immature mesenchymal or stromal cells. These interactions are orchestrated by homeostatic chemokines, cytokines, and growth factors that attract hematopoietic cells to sites of future lymphoid organ development and promote their survival and differentiation. In turn, lymphotoxin-expressing hematopoietic cells trigger the differentiation of stromal and endothelial cells that make up the scaffolding of secondary lymphoid organs. Lymphotoxin signaling also maintains the expression of adhesion molecules and chemokines that govern the ultimate structure and function of secondary lymphoid organs. Here we describe the current paradigm of secondary lymphoid organ development and discuss the subtle differences in the timing, molecular interactions, and cell types involved in the development of each secondary lymphoid organ.
-
Previous Volumes
-
Volume 42 (2024)
-
Volume 41 (2023)
-
Volume 40 (2022)
-
Volume 39 (2021)
-
Volume 38 (2020)
-
Volume 37 (2019)
-
Volume 36 (2018)
-
Volume 35 (2017)
-
Volume 34 (2016)
-
Volume 33 (2015)
-
Volume 32 (2014)
-
Volume 31 (2013)
-
Volume 30 (2012)
-
Volume 29 (2011)
-
Volume 28 (2010)
-
Volume 27 (2009)
-
Volume 26 (2008)
-
Volume 25 (2007)
-
Volume 24 (2006)
-
Volume 23 (2005)
-
Volume 22 (2004)
-
Volume 21 (2003)
-
Volume 20 (2002)
-
Volume 19 (2001)
-
Volume 18 (2000)
-
Volume 17 (1999)
-
Volume 16 (1998)
-
Volume 15 (1997)
-
Volume 14 (1996)
-
Volume 13 (1995)
-
Volume 12 (1994)
-
Volume 11 (1993)
-
Volume 10 (1992)
-
Volume 9 (1991)
-
Volume 8 (1990)
-
Volume 7 (1989)
-
Volume 6 (1988)
-
Volume 5 (1987)
-
Volume 4 (1986)
-
Volume 3 (1985)
-
Volume 2 (1984)
-
Volume 1 (1983)
-
Volume 0 (1932)