1932

Abstract

Genetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer. Chimeric antigen receptor (CAR) T cells were recently approved by the US Food and Drug Administration and are poised to enter the practice of medicine for leukemia and lymphoma, demonstrating that engineered immune cells can serve as a powerful new class of cancer therapeutics. The emergence of synthetic biology approaches for cellular engineering provides a broadly expanded set of tools for programming immune cells for enhanced function. Advances in T cell engineering, genetic editing, the selection of optimal lymphocytes, and cell manufacturing have the potential to broaden T cell–based therapies and foster new applications beyond oncology, in infectious diseases, organ transplantation, and autoimmunity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042718-041407
2019-04-26
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/immunol/37/1/annurev-immunol-042718-041407.html?itemId=/content/journals/10.1146/annurev-immunol-042718-041407&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ribas A, Wolchok JD 2018. Cancer immunotherapy using checkpoint blockade. Science 359:1350–55
    [Google Scholar]
  2. 2.
    June CH, Sadelain M 2018. Chimeric antigen receptor T cells. N. Engl. J. Med. 379:64–73
    [Google Scholar]
  3. 3.
    Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS et al. 2011. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17:4550–57
    [Google Scholar]
  4. 4.
    Kalos M, Levine BL, Porter DL, Katz S, Grupp SA et al. 2011. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3:95ra73
    [Google Scholar]
  5. 5.
    Brentjens RJ, Davila ML, Riviere I, Park J, Wang X et al. 2013. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5:177ra38
    [Google Scholar]
  6. 6.
    Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM et al. 2014. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371:1507–17
    [Google Scholar]
  7. 7.
    Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S et al. 2016. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Investig. 126:2123–38
    [Google Scholar]
  8. 8.
    Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB et al. 2017. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. New Engl. J. Med. 377:2531–44
    [Google Scholar]
  9. 9.
    Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR et al. 2017. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 377:2545–54
    [Google Scholar]
  10. 10.
    Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM et al. 2018. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24:20–28
    [Google Scholar]
  11. 11.
    Mikkilineni L, Kochenderfer JN 2017. Chimeric antigen receptor T-cell therapies for multiple myeloma. Blood 130:2594–602
    [Google Scholar]
  12. 12.
    Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT et al. 2015. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med. 21:914–21
    [Google Scholar]
  13. 13.
    Stevanovic S, Pasetto A, Helman SR, Gartner JJ, Prickett TD et al. 2017. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science 356:200–5
    [Google Scholar]
  14. 14.
    Tran E, Turcotte S, Gros A, Robbins PF, Lu YC et al. 2014. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344:641–45
    [Google Scholar]
  15. 15.
    Ye Q, Song DG, Poussin M, Yamamoto T, Best A et al. 2014. CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin. Cancer Res. 20:44–55
    [Google Scholar]
  16. 16.
    Gros A, Robbins PF, Yao X, Li YF, Turcotte S et al. 2014. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Investig. 124:2246–59
    [Google Scholar]
  17. 17.
    Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF et al. 2016. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22:433–38
    [Google Scholar]
  18. 18.
    Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J et al. 2015. Cancer immunotherapy: A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348:803–8
    [Google Scholar]
  19. 19.
    Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC et al. 2006. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–29
    [Google Scholar]
  20. 20.
    Bos R, van Duikeren S, Morreau H, Franken K, Schumacher TN et al. 2008. Balancing between antitumor efficacy and autoimmune pathology in T-cell-mediated targeting of carcinoembryonic antigen. Cancer Res 68:8446–55
    [Google Scholar]
  21. 21.
    Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC et al. 2009. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–46
    [Google Scholar]
  22. 22.
    Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA et al. 2011. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19:620–26
    [Google Scholar]
  23. 23.
    Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF et al. 2013. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36:133–51
    [Google Scholar]
  24. 24.
    Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL et al. 2013. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122:863–71
    [Google Scholar]
  25. 25.
    Robbins PF, Kassim SH, Tran TL, Crystal JS, Morgan RA et al. 2015. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin. Cancer Res. 21:1019–27
    [Google Scholar]
  26. 26.
    Grasso CS, Giannakis M, Wells DK, Hamada T, Mu XJ et al. 2018. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov 8:730–49
    [Google Scholar]
  27. 27.
    Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W et al. 2016. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375:819–29
    [Google Scholar]
  28. 28.
    Tran E, Robbins PF, Lu YC, Prickett TD, Gartner JJ et al. 2016. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 375:2255–62
    [Google Scholar]
  29. 29.
    Gettinger S, Choi J, Hastings K, Truini A, Datar I et al. 2017. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov 7:1420–35
    [Google Scholar]
  30. 30.
    Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M et al. 2018. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378:439–48
    [Google Scholar]
  31. 31.
    Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C et al. 2015. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385:517–28
    [Google Scholar]
  32. 32.
    Park JH, Riviere I, Gonen M, Wang X, Senechal B et al. 2018. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378:449–59
    [Google Scholar]
  33. 33.
    Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA et al. 2015. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 7:303ra139
    [Google Scholar]
  34. 34.
    Turtle CJ, Hay KA, Hanafi LA, Li D, Cherian S et al. 2017. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J. Clin. Oncol. 35:3010–20
    [Google Scholar]
  35. 35.
    Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C et al. 2018. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15:47–62
    [Google Scholar]
  36. 36.
    Kochenderfer JN, Somerville RPT, Lu T, Yang JC, Sherry RM et al. 2017. Long-duration complete remissions of diffuse large B cell lymphoma after anti-CD19 chimeric antigen receptor T cell therapy. Mol. Ther. 25:2245–53
    [Google Scholar]
  37. 37.
    Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M et al. 2018. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24:563–71
    [Google Scholar]
  38. 38.
    Ruella M, Maus MV 2016. Catch me if you can: leukemia escape after CD19-directed T cell immunotherapies. Comput. Struct. Biotechnol. J. 14:357–62
    [Google Scholar]
  39. 39.
    Frey NV, Porter DL 2016. Cytokine release syndrome with novel therapeutics for acute lymphoblastic leukemia. Hematol. Am. Soc. Hematol. Educ. Program 2016:567–72
    [Google Scholar]
  40. 40.
    Rotolo A, Karadimitris A, Ruella M 2017. Building upon the success of CART19: chimeric antigen receptor T cells for hematologic malignancies. Leuk. Lymphoma 59:2040–55
    [Google Scholar]
  41. 41.
    Wang Q-S, Wang Y, Lv H-Y, Han Q-W, Fan H et al. 2015. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol. Ther. 23:184–91
    [Google Scholar]
  42. 42.
    Smith BD, Roboz GJ, Walter RB, Altman JK, Ferguson A et al. 2014. First-in man, phase 1 study of CSL362 (anti-IL3Rα / anti-CD123 monoclonal antibody) in patients with CD123+ acute myeloid leukemia (AML) in CR at high risk for early relapse. Blood 124:120
    [Google Scholar]
  43. 43.
    Mardiros A, Dos Santos C, McDonald T, Brown CE, Wang X et al. 2013. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood 122:3138–48
    [Google Scholar]
  44. 44.
    Tettamanti S, Marin V, Pizzitola I, Magnani CF, Giordano Attianese GM et al. 2013. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br. J. Haematol. 161:389–401
    [Google Scholar]
  45. 45.
    Pizzitola I, Anjos-Afonso F, Rouault-Pierre K, Lassailly F, Tettamanti S et al. 2014. Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia 28:1596–605
    [Google Scholar]
  46. 46.
    Zhou L, Liu X, Wang X, Sun Z, Song XT 2016. CD123 redirected multiple virus-specific T cells for acute myeloid leukemia. Leuk. Res 41:76–84
    [Google Scholar]
  47. 47.
    Gill S, Tasian SK, Ruella M, Shestova O, Li Y et al. 2014. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood 123:2343–54
    [Google Scholar]
  48. 48.
    Casucci M, Falcone L, Camisa B, Gentner B, Naldini L et al. 2013. CD44v6 is required for in vivo tumorigenesis of human AML and MM cells: role of microenvironmental signals and therapeutic implications. Blood 122:605
    [Google Scholar]
  49. 49.
    Wang C-M, Wu Z-Q, Wang Y, Guo Y-L, Dai H-R et al. 2017. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma: an open-label phase I trial. Clin. Cancer Res. 23:1156–66
    [Google Scholar]
  50. 50.
    Bu DX, Singh R, Choi EE, Ruella M, Nunez-Cruz S et al. 2018. Pre-clinical validation of B cell maturation antigen (BCMA) as a target for T cell immunotherapy of multiple myeloma. Oncotarget 9:25764–80
    [Google Scholar]
  51. 51.
    D'Agostino M, Boccadoro M, Smith EL 2017. Novel immunotherapies for multiple myeloma. Curr. Hematol. Malig. Rep. 12:344–57
    [Google Scholar]
  52. 52.
    Brudno JN, Maric I, Hartman SD, Rose JJ, Wang M et al. 2018. T cells genetically modified to express an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J. Clin. Oncol. 36:2267–80
    [Google Scholar]
  53. 53.
    Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M et al. 2006. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J. Clin. Oncol. 24:e20–22
    [Google Scholar]
  54. 54.
    Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA 2010. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18:843–51
    [Google Scholar]
  55. 55.
    Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z et al. 2006. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12:6106–15
    [Google Scholar]
  56. 56.
    Louis CU, Savoldo B, Dotti G, Pule M, Yvon E et al. 2011. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118:6050–56
    [Google Scholar]
  57. 57.
    Brown CE, Badie B, Barish ME, Weng L, Ostberg JR et al. 2015. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin. Cancer Res. 21:4062–72
    [Google Scholar]
  58. 58.
    Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A et al. 2015. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33:1688–96
    [Google Scholar]
  59. 59.
    O'Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K et al. 2017. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9:eaaa0984
    [Google Scholar]
  60. 60.
    Beatty GL, O'Hara MH, Lacey SF, Torigian DA, Nazimuddin F et al. 2018. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology 155:29–32
    [Google Scholar]
  61. 61.
    Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR et al. 2016. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 375:2561–9
    [Google Scholar]
  62. 62.
    Thistlethwaite FC, Gilham DE, Guest RD, Rothwell DG, Pillai M et al. 2017. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol. Immunother. 66:1425–36
    [Google Scholar]
  63. 63.
    Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF et al. 2004. Cutting edge: Persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J. Immunol. 173:7125–30
    [Google Scholar]
  64. 64.
    Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P et al. 2002. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–54
    [Google Scholar]
  65. 65.
    Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP 2005. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol 26:111–17
    [Google Scholar]
  66. 66.
    Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC et al. 2005. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202:907–12
    [Google Scholar]
  67. 67.
    Rosenberg SA, Restifo NP 2015. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348:62–68
    [Google Scholar]
  68. 68.
    Muranski P, Borman ZA, Kerkar SP, Klebanoff CA, Ji Y et al. 2011. Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity 35:972–85
    [Google Scholar]
  69. 69.
    Bowers JS, Nelson MH, Majchrzak K, Bailey SR, Rohrer B et al. 2017. Th17 cells are refractory to senescence and retain robust antitumor activity after long-term ex vivo expansion. JCI Insight 2:e90772
    [Google Scholar]
  70. 70.
    Schietinger A, Philip M, Krisnawan VE, Chiu EY, Delrow JJ et al. 2016. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45:389–401
    [Google Scholar]
  71. 71.
    Wherry EJ, Kurachi M 2015. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15:486–99
    [Google Scholar]
  72. 72.
    Crespo J, Sun H, Welling TH, Tian Z, Zou W 2013. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol. 25:214–21
    [Google Scholar]
  73. 73.
    Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J et al. 2016. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354:1160–65
    [Google Scholar]
  74. 74.
    Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M et al. 2015. 4–1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21:581–90
    [Google Scholar]
  75. 75.
    Frigault MJ, Lee J, Basil MC, Carpenito C, Motohashi S et al. 2015. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol. Res. 3:356–67
    [Google Scholar]
  76. 76.
    Watanabe N, Bajgain P, Sukumaran S, Ansari S, Heslop HE et al. 2016. Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology 5:e1253656
    [Google Scholar]
  77. 77.
    Gomes-Silva D, Mukherjee M, Srinivasan M, Krenciute G, Dakhova O et al. 2017. Tonic 4–1BB costimulation in chimeric antigen receptors impedes T cell survival and is vector-dependent. Cell Rep 21:17–26
    [Google Scholar]
  78. 78.
    Guedan S, Posey AD, Shaw C, Wing A, Da T et al. 2018. Enhancing CAR T cell persistence through ICOS and 4–1BB costimulation. JCI Insight 3:96976
    [Google Scholar]
  79. 79.
    van Zelm MC, Reisli I, van der Burg M, Castano D, van Noesel CJ et al. 2006. An antibody-deficiency syndrome due to mutations in the CD19 gene. N. Engl. J. Med. 354:1901–12
    [Google Scholar]
  80. 80.
    Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D et al. 2015. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 5:1282–95
    [Google Scholar]
  81. 81.
    van Zelm MC, Smet J, Adams B, Mascart F, Schandene L et al. 2010. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J. Clin. Investig. 120:1265–74
    [Google Scholar]
  82. 82.
    Braig F, Brandt A, Goebeler M, Tony HP, Kurze AK et al. 2017. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood 129:100–4
    [Google Scholar]
  83. 83.
    James SE, Greenberg PD, Jensen MC, Lin Y, Wang J et al. 2008. Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane. J. Immunol. 180:7028–38
    [Google Scholar]
  84. 84.
    Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM et al. 2013. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 121:1165–74
    [Google Scholar]
  85. 85.
    Shalabi H, Kraft IL, Wang HW, Yuan CM, Yates B et al. 2018. Sequential loss of tumor surface antigens following chimeric antigen receptor T-cell therapies in diffuse large B-cell lymphoma. Haematologica 103:e215–18
    [Google Scholar]
  86. 86.
    Jacoby E, Nguyen SM, Fountaine TJ, Welp K, Gryder B et al. 2016. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat. Commun. 7:12320
    [Google Scholar]
  87. 87.
    Gardner R, Wu D, Cherian S, Fang M, Hanafi LA et al. 2016. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127:2406–10
    [Google Scholar]
  88. 88.
    Anurathapan U, Chan RC, Hindi HF, Mucharla R, Bajgain P et al. 2014. Kinetics of tumor destruction by chimeric antigen receptor-modified T cells. Mol. Ther. 22:623–33
    [Google Scholar]
  89. 89.
    Song DG, Ye Q, Poussin M, Chacon JA, Figini M, Powell DJ 2016. Effective adoptive immunotherapy of triple-negative breast cancer by folate receptor-alpha redirected CAR T cells is influenced by surface antigen expression level. J. Hematol. Oncol. 9:56
    [Google Scholar]
  90. 90.
    Wing A, Fajardo CA, Posey AD, Shaw C, Da T et al. 2018. Improving CART-cell therapy of solid tumors with oncolytic virus-driven production of a bispecific T-cell engager. Cancer Immunol. Res. 6:605–16
    [Google Scholar]
  91. 91.
    Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M et al. 2017. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8:1136
    [Google Scholar]
  92. 92.
    Tarella C, Corradini P, Astolfi M, Bondesan P, Caracciolo D et al. 1999. Negative immunomagnetic ex vivo purging combined with high-dose chemotherapy with peripheral blood progenitor cell autograft in follicular lymphoma patients: evidence for long-term clinical and molecular remissions. Leukemia 13:1456–62
    [Google Scholar]
  93. 93.
    Ruella M, Xu J, Barrett DM, Fraietta JA, Reich TJ et al. 2018. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat. Med. 24:1499–503
    [Google Scholar]
  94. 94.
    Glickman MS, Sawyers CL 2012. Converting cancer therapies into cures: lessons from infectious diseases. Cell 148:1089–98
    [Google Scholar]
  95. 95.
    June CH, Warshauer JT, Bluestone JA 2017. Is autoimmunity the Achilles’ heel of cancer immunotherapy?. Nat. Med. 23:540–47
    [Google Scholar]
  96. 96.
    Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE et al. 2012. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119:2709–20
    [Google Scholar]
  97. 97.
    Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL et al. 2016. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov 6:664–79
    [Google Scholar]
  98. 98.
    Davila ML, Riviere I, Wang X, Bartido S, Park J et al. 2014. Efficacy and toxicity management of 19–28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6:224ra25
    [Google Scholar]
  99. 99.
    Marshall A 2017. CAR-T death strikes Kite. Nat. Biotechnol 35492
    [Google Scholar]
  100. 100.
    Gust J, Hay KA, Hanafi LA, Li D, Myerson D et al. 2017. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov 7:1404–19
    [Google Scholar]
  101. 101.
    Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL et al. 2013. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368:1509–18
    [Google Scholar]
  102. 102.
    Maude SL, Barrett D, Teachey DT, Grupp SA 2014. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J 20:119–22
    [Google Scholar]
  103. 103.
    Ruella M, June CH 2018. Predicting dangerous rides in CAR T cells: bridging the gap between mice and humans. Mol. Ther. 26:1401–3
    [Google Scholar]
  104. 104.
    Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A et al. 2018. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24:739–48
    [Google Scholar]
  105. 105.
    Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M 2018. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24:731–38
    [Google Scholar]
  106. 106.
    Ruella M, June CH 2016. Chimeric antigen receptor T cells for B cell neoplasms: choose the right CAR for you. Curr. Hematol. Malig. Rep. 11:368–84
    [Google Scholar]
  107. 107.
    Chinnasamy N, Wargo JA, Yu Z, Rao M, Frankel TL et al. 2011. A TCR targeting the HLA-A*0201-restricted epitope of MAGE-A3 recognizes multiple epitopes of the MAGE-A antigen superfamily in several types of cancer. J. Immunol. 186:685–96
    [Google Scholar]
  108. 108.
    Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V et al. 2013. Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci. Transl. Med. 5:197ra03
    [Google Scholar]
  109. 109.
    Raman MC, Rizkallah PJ, Simmons R, Donnellan Z, Dukes J et al. 2016. Direct molecular mimicry enables off-target cardiovascular toxicity by an enhanced affinity TCR designed for cancer immunotherapy. Sci. Rep. 6:18851
    [Google Scholar]
  110. 110.
    Gajewski TF, Woo SR, Zha Y, Spaapen R, Zheng Y et al. 2013. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr. Opin. Immunol. 25:268–76
    [Google Scholar]
  111. 111.
    Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ 2011. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29:235–71
    [Google Scholar]
  112. 112.
    Rabinovich GA, Gabrilovich D, Sotomayor EM 2007. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 25:267–96
    [Google Scholar]
  113. 113.
    Arina A, Bronte V 2015. Myeloid-derived suppressor cell impact on endogenous and adoptively transferred T cells. Curr. Opin. Immunol. 33:120–25
    [Google Scholar]
  114. 114.
    Moon EK, Wang LC, Dolfi DV, Wilson CB, Ranganathan R et al. 2014. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin. Cancer Res. 20:4262–73
    [Google Scholar]
  115. 115.
    Morrison C 2015. ‘Financial toxicity’ looms as cancer combinations proliferate. Nat. Biotechnol. 33:783–84
    [Google Scholar]
  116. 116.
    Chen Q, Jain N, Ayer T, Wierda WG, Flowers CR et al. 2017. Economic burden of chronic lymphocytic leukemia in the era of oral targeted therapies in the United States. J. Clin. Oncol. 35:166–74
    [Google Scholar]
  117. 117.
    Carr DR, Bradshaw SE 2016. Gene therapies: the challenge of super-high-cost treatments and how to pay for them. Regen. Med. 11:381–93
    [Google Scholar]
  118. 118.
    Hettle R, Corbett M, Hinde S, Hodgson R, Jones-Diette J et al. 2017. The assessment and appraisal of regenerative medicines and cell therapy products: an exploration of methods for review, economic evaluation and appraisal. Health Technol. Assess. 21:1–204
    [Google Scholar]
  119. 119.
    Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G et al. 2012. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci. Transl. Med. 4:132ra53
    [Google Scholar]
  120. 120.
    Kawalekar OU, O'Connor RS, Fraietta JA, Guo L, McGettigan SE et al. 2016. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44:380–90
    [Google Scholar]
  121. 121.
    Song DG, Ye Q, Poussin M, Harms GM, Figini M, Powell DJ Jr 2012. CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood 119:696–706
    [Google Scholar]
  122. 122.
    Guedan S, Chen X, Madar A, Carpenito C, McGettigan SE et al. 2014. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood 124:1070–80
    [Google Scholar]
  123. 123.
    Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM et al. 2010. CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin. Cancer Res. 16:6122–31
    [Google Scholar]
  124. 124.
    Donia M, Junker N, Ellebaek E, Andersen MH, Straten PT, Svane IM 2012. Characterization and comparison of ‘standard’ and ‘young’ tumour-infiltrating lymphocytes for adoptive cell therapy at a Danish translational research institution. Scand. J. Immunol. 75:157–67
    [Google Scholar]
  125. 125.
    Ghassemi S, Nunez-Cruz S, O'Connor RS, Fraietta JA, Patel PR et al. 2018. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol. Res. 6:1100–9
    [Google Scholar]
  126. 126.
    Cieri N, Camisa B, Cocchiarella F, Forcato M, Oliveira G et al. 2013. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 121:573–84
    [Google Scholar]
  127. 127.
    Xu Y, Zhang M, Ramos CA, Durett A, Liu E et al. 2014. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 123:3750–59
    [Google Scholar]
  128. 128.
    Santegoets SJ, Turksma AW, Suhoski MM, Stam AG, Albelda SM et al. 2013. IL-21 promotes the expansion of CD27+ CD28+ tumor infiltrating lymphocytes with high cytotoxic potential and low collateral expansion of regulatory T cells. J. Transl. Med. 11:37
    [Google Scholar]
  129. 129.
    Klebanoff CA, Scott CD, Leonardi AJ, Yamamoto TN, Cruz AC et al. 2016. Memory T cell-driven differentiation of naive cells impairs adoptive immunotherapy. J. Clin. Investig. 126:318–34
    [Google Scholar]
  130. 130.
    Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM et al. 2011. A human memory T cell subset with stem cell-like properties. Nat. Med. 17:1290–97
    [Google Scholar]
  131. 131.
    Crompton JG, Sukumar M, Roychoudhuri R, Clever D, Gros A et al. 2015. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res 75:296–305
    [Google Scholar]
  132. 132.
    van der Waart AB, van de Weem NM, Maas F, Kramer CS, Kester MG et al. 2014. Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy. Blood 124:3490–500
    [Google Scholar]
  133. 133.
    Paulos CM, Carpenito C, Plesa G, Suhoski MM, Varela-Rohena A et al. 2010. The inducible costimulator (ICOS) is critical for the development of human TH17 cells. Sci. Transl. Med. 2:55ra78
    [Google Scholar]
  134. 134.
    Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA et al. 2018. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558:307–12
    [Google Scholar]
  135. 135.
    Kim MY, Yu KR, Kenderian SS, Ruella M, Chen S et al. 2018. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell 173:1439–53.e19
    [Google Scholar]
  136. 136.
    Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS et al. 2016. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Investig. 126:3130–44
    [Google Scholar]
  137. 137.
    Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y 2017. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23:2255–66
    [Google Scholar]
  138. 138.
    Ren J, Zhang X, Liu X, Fang C, Jiang S et al. 2017. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget 8:17002–11
    [Google Scholar]
  139. 139.
    Odorizzi PM, Pauken KE, Paley MA, Sharpe A, Wherry EJ 2015. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J. Exp. Med. 212:1125–37
    [Google Scholar]
  140. 140.
    Wartewig T, Kurgyis Z, Keppler S, Pechloff K, Hameister E et al. 2017. PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis. Nature 552:121–25. Erratum. 2017 Nature 553:238
    [Google Scholar]
  141. 141.
    Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M et al. 2017. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543:113–17
    [Google Scholar]
  142. 142.
    Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee CC et al. 2013. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 210:1125–35
    [Google Scholar]
  143. 143.
    Wang LC, Lo A, Scholler J, Sun J, Majumdar RS et al. 2014. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol. Res. 2:154–66
    [Google Scholar]
  144. 144.
    Gulati P, Ruhl J, Kannan A, Pircher M, Schuberth P et al. 2018. Aberrant Lck signal via CD28 costimulation augments antigen-specific functionality and tumor control by redirected T cells with PD-1 blockade in humanized mice. Clin. Cancer Res. 24:3981–93
    [Google Scholar]
  145. 145.
    Ruella M, Klichinsky M, Kenderian SS, Shestova O, Ziober A et al. 2017. Overcoming the immunosuppressive tumor microenvironment of Hodgkin lymphoma using chimeric antigen receptor T cells. Cancer Discov 7:1154–67
    [Google Scholar]
  146. 146.
    Caruana I, Savoldo B, Hoyos V, Weber G, Liu H et al. 2015. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat. Med. 21:524–29
    [Google Scholar]
  147. 147.
    Hegde M, Corder A, Chow KK, Mukherjee M, Ashoori A et al. 2013. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol. Ther. 21:2087–101
    [Google Scholar]
  148. 148.
    Barrett DM, Liu X, Jiang S, June CH, Grupp SA, Zhao Y 2013. Regimen-specific effects of RNA-modified chimeric antigen receptor T cells in mice with advanced leukemia. Hum. Gene Ther. 24:717–27
    [Google Scholar]
  149. 149.
    Hegde M, Mukherjee M, Grada Z, Pignata A, Landi D et al. 2016. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J. Clin. Investig. 126:3036–52
    [Google Scholar]
  150. 150.
    Ruella M, Barrett DM, Kenderian SS, Shestova O, Hofmann TJ et al. 2016. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J. Clin. Investig. 126:3814–26
    [Google Scholar]
  151. 151.
    Qin H, Haso W, Nguyen SM, Fry TJ 2015. Preclinical development of bispecific chimeric antigen receptor targeting both CD19 and CD22. Blood 126:4427
    [Google Scholar]
  152. 152.
    Zah E, Lin MY, Silva-Benedict A, Jensen MC, Chen YY 2016. T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol. Res 4:498–508 Addendum. 2016 Cancer Immunol. Res 4:639–41
    [Google Scholar]
  153. 153.
    Zhang L, Kerkar SP, Yu Z, Zheng Z, Yang S et al. 2011. Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol. Ther. 19:751–59
    [Google Scholar]
  154. 154.
    Wagner HJ, Bollard CM, Vigouroux S, Huls MH, Anderson R et al. 2004. A strategy for treatment of Epstein-Barr virus-positive Hodgkin's disease by targeting interleukin 12 to the tumor environment using tumor antigen-specific T cells. Cancer Gene Ther 11:81–91
    [Google Scholar]
  155. 155.
    Chmielewski M, Kopecky C, Hombach AA, Abken H 2011. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res 71:5697–706
    [Google Scholar]
  156. 156.
    Pegram HJ, Lee JC, Hayman EG, Imperato GH, Tedder TF et al. 2012. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119:4133–41
    [Google Scholar]
  157. 157.
    Cohen J 1995. IL-12 deaths: explanation and a puzzle. Science 270:908
    [Google Scholar]
  158. 158.
    Koneru M, O'Cearbhaill R, Pendharkar S, Spriggs DR, Brentjens RJ 2015. A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16(ecto) directed chimeric antigen receptors for recurrent ovarian cancer. J. Transl. Med. 13:102
    [Google Scholar]
  159. 159.
    Zhang L, Morgan RA, Beane JD, Zheng Z, Dudley ME et al. 2015. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin. Cancer Res. 21:2278–88
    [Google Scholar]
  160. 160.
    Hurton LV, Singh H, Najjar AM, Switzer KC, Mi T et al. 2016. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. PNAS 113:E7788–97
    [Google Scholar]
  161. 161.
    Hu B, Ren J, Luo Y, Keith B, Young RM et al. 2017. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep 20:3025–33
    [Google Scholar]
  162. 162.
    Chmielewski M, Abken H 2017. CAR T cells releasing IL-18 convert to T-Bethigh FoxO1low effectors that exhibit augmented activity against advanced solid tumors. Cell Rep 21:3205–19
    [Google Scholar]
  163. 163.
    Kunert A, Chmielewski M, Wijers R, Berrevoets C, Abken H, Debets R 2017. Intra-tumoral production of IL18, but not IL12, by TCR-engineered T cells is non-toxic and counteracts immune evasion of solid tumors. Oncoimmunology 7:e1378842
    [Google Scholar]
  164. 164.
    Curran KJ, Seinstra BA, Nikhamin Y, Yeh R, Usachenko Y et al. 2015. Enhancing antitumor efficacy of chimeric antigen receptor T cells through constitutive CD40L expression. Mol. Ther. 23:769–78
    [Google Scholar]
  165. 165.
    Zhao Z, Condomines M, van der Stegen SJC, Perna F, Kloss CC et al. 2015. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28:415–28
    [Google Scholar]
  166. 166.
    Posey AD, Schwab RD, Boesteanu AC, Steentoft C, Mandel U et al. 2016. Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 44:1444–54
    [Google Scholar]
  167. 167.
    Johnson LA, June CH 2017. Driving gene-engineered T cell immunotherapy of cancer. Cell Res 27:38–58
    [Google Scholar]
  168. 168.
    Chmielewski M, Hombach A, Heuser C, Adams GP, Abken H 2004. T cell activation by antibody-like immunoreceptors: Increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity. J. Immunol. 173:7647–53
    [Google Scholar]
  169. 169.
    Liu X, Jiang S, Fang C, Yang S, Olalere D et al. 2015. Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res 75:3596–607
    [Google Scholar]
  170. 170.
    Caruso HG, Hurton LV, Najjar A, Rushworth D, Ang S et al. 2015. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res 75:3505–18
    [Google Scholar]
  171. 171.
    Lupo-Stanghellini MT, Provasi E, Bondanza A, Ciceri F, Bordignon C, Bonini C 2010. Clinical impact of suicide gene therapy in allogeneic hematopoietic stem cell transplantation. Hum. Gene Ther. 21:241–50
    [Google Scholar]
  172. 172.
    Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A et al. 2011. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365:1673–83
    [Google Scholar]
  173. 173.
    Lim WA, June CH 2017. The principles of engineering immune cells to treat cancer. Cell 168:724–40
    [Google Scholar]
  174. 174.
    Sadelain M, Rivière I, Riddell S 2017. Therapeutic T cell engineering. Nature 545:423–31
    [Google Scholar]
  175. 175.
    Fedorov VD, Themeli M, Sadelain M 2013. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl. Med. 5:215ra172
    [Google Scholar]
  176. 176.
    Kenderian SS, Ruella M, Shestova O, Klichinsky M, Aikawa V et al. 2015. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia 29:1637–47
    [Google Scholar]
  177. 177.
    Adusumilli PS, Cherkassky L, Villena-Vargas J, Colovos C, Servais E et al. 2014. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci. Transl. Med. 6:261ra151
    [Google Scholar]
  178. 178.
    Tchou J, Zhao Y, Levine BL, Zhang PJ, Davis MM et al. 2017. Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol. Res. 5:1152–61
    [Google Scholar]
  179. 179.
    Ruella M, Kenderian SS 2017. Next-generation chimeric antigen receptor T-cell therapy: going off the shelf. BioDrugs 31:473–81
    [Google Scholar]
  180. 180.
    Torikai H, Reik A, Liu PQ, Zhou Y, Zhang L et al. 2012. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 119:5697–705
    [Google Scholar]
  181. 181.
    Berdien B, Mock U, Atanackovic D, Fehse B 2014. TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer. Gene Ther 21:539–48
    [Google Scholar]
  182. 182.
    Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P et al. 2017. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci. Transl. Med 9: eaaj2013. Erratum. 2017 Sci. Transl. Med. 9:aam9292
    [Google Scholar]
  183. 183.
    Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I et al. 2015. Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer Res 75:3853–64
    [Google Scholar]
  184. 184.
    Mandal PK, Ferreira LM, Collins R, Meissner TB, Boutwell CL et al. 2014. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell 15:643–52
    [Google Scholar]
  185. 185.
    Bridgeman JS, Hawkins RE, Bagley S, Blaylock M, Holland M, Gilham DE 2010. The optimal antigen response of chimeric antigen receptors harboring the CD3ζ transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. J. Immunol. 184:6938–49
    [Google Scholar]
  186. 186.
    Bridgeman JS, Ladell K, Sheard VE, Miners K, Hawkins RE et al. 2014. CD3ζ-based chimeric antigen receptors mediate T cell activation via cis- and trans-signalling mechanisms: implications for optimization of receptor structure for adoptive cell therapy. Clin. Exp. Immunol. 175:258–67
    [Google Scholar]
  187. 187.
    John LB, Kershaw MH, Darcy PK 2013. Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. Oncoimmunology 2:e26286
    [Google Scholar]
  188. 188.
    Moon EK, Ranganathan R, Eruslanov E, Kim S, Newick K et al. 2016. Blockade of programmed death 1 augments the ability of human T cells engineered to target NY-ESO-1 to control tumor growth after adoptive transfer. Clin. Cancer Res. 22:436–47
    [Google Scholar]
  189. 189.
    Chong EA, Melenhorst JJ, Lacey SF, Ambrose DE, Gonzalez V et al. 2017. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood 129:1039–41
    [Google Scholar]
  190. 190.
    Fraietta JA, Beckwith KA, Patel PR, Ruella M, Zheng Z et al. 2016. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood 127:1117–27
    [Google Scholar]
  191. 191.
    Ruella M, Kenderian SS, Shestova O, Fraietta JA, Qayyum S et al. 2016. The addition of the BTK inhibitor ibrutinib to anti-CD19 chimeric antigen receptor T cells (CART19) improves responses against mantle cell lymphoma. Clin. Cancer Res. 22:2684–96
    [Google Scholar]
  192. 192.
    Watanabe K, Luo Y, Da T, Guedan S, Ruella M et al. 2018. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight 3:99573
    [Google Scholar]
  193. 193.
    Nishio N, Diaconu I, Liu H, Cerullo V, Caruana I et al. 2014. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res 74:5195–205
    [Google Scholar]
  194. 194.
    Tanoue K, Rosewell Shaw A, Watanabe N, Porter C, Rana B et al. 2017. Armed oncolytic adenovirus-expressing PD-L1 mini-body enhances antitumor effects of chimeric antigen receptor T cells in solid tumors. Cancer Res 77:2040–51
    [Google Scholar]
  195. 195.
    Fajardo CA, Guedan S, Rojas LA, Moreno R, Arias-Badia M et al. 2017. Oncolytic adenoviral delivery of an EGFR-targeting T-cell engager improves antitumor efficacy. Cancer Res 77:2052–63
    [Google Scholar]
  196. 196.
    McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R et al. 2016. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351:1463–69
    [Google Scholar]
  197. 197.
    Levine BL, June CH 2013. Perspective: assembly line immunotherapy. Nature 498:S17
    [Google Scholar]
  198. 198.
    McGarrity GJ, Hoyah G, Winemiller A, Andre K, Stein D et al. 2013. Patient monitoring and follow-up in lentiviral clinical trials. J. Gene Med. 15:78–82
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-042718-041407
Loading
/content/journals/10.1146/annurev-immunol-042718-041407
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error