1932

Abstract

Cytokines are secreted or otherwise released polypeptide factors that exert autocrine and/or paracrine actions, with most cytokines acting in the immune and/or hematopoietic system. They are typically pleiotropic, controlling development, cell growth, survival, and/or differentiation. Correspondingly, cytokines are clinically important, and augmenting or attenuating cytokine signals can have deleterious or therapeutic effects. Besides physiological fine-tuning of cytokine signals, altering the nature or potency of the signal can be important in pathophysiological responses and can also provide novel therapeutic approaches. Here, we give an overview of cytokines, their signaling and actions, and the physiological mechanisms and pharmacologic strategies to fine-tune their actions. In particular, the differential utilization of STAT proteins by a single cytokine or by different cytokines and STAT dimerization versus tetramerization are physiological mechanisms of fine-tuning, whereas anticytokine and anticytokine receptor antibodies and cytokines with altered activities, including cytokine superagonists, partial agonists, and antagonists, represent new ways of fine-tuning cytokine signals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042718-041447
2019-04-26
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/immunol/37/1/annurev-immunol-042718-041447.html?itemId=/content/journals/10.1146/annurev-immunol-042718-041447&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Cohen S, Bigazzi PE, Yoshida T 1974. Similarities of T cell function in cell-mediated immunity and antibody production. Cell Immunol 12:150–59
    [Google Scholar]
  2. 2.
    Leonard WJ 2013. Type I cytokines and interferons, and their receptors. Fundamental Immunology WE Paul 601–38 Philadelphia, PA: Wolters Kluwer Lippincott Williams Wilkins
    [Google Scholar]
  3. 3.
    Milburn MV, Hassell AM, Lambert MH, Jordan SR, Proudfoot AE et al. 1993. A novel dimer configuration revealed by the crystal structure at 2.4 Å resolution of human interleukin-5. Nature 363:172–76
    [Google Scholar]
  4. 4.
    Tamada T, Honjo E, Maeda Y, Okamoto T, Ishibashi M et al. 2006. Homodimeric cross-over structure of the human granulocyte colony-stimulating factor (GCSF) receptor signaling complex. PNAS 103:3135–40
    [Google Scholar]
  5. 5.
    Vignali DA, Kuchroo VK 2012. IL-12 family cytokines: immunological playmakers. Nat. Immunol. 13:722–28
    [Google Scholar]
  6. 6.
    Wang X, Lupardus P, Laporte SL, Garcia KC 2009. Structural biology of shared cytokine receptors. Annu. Rev. Immunol. 27:29–60
    [Google Scholar]
  7. 7.
    Negishi H, Taniguchi T, Yanai H 2017. The Interferon (IFN) class of cytokines and the IFN regulatory factor (IRF) transcription factor family. Cold Spring Harb. Perspect. Biol In press
    [Google Scholar]
  8. 8.
    Wang X, Wong K, Ouyang W, Rutz S 2017. Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb. Perspect. Biol In press
    [Google Scholar]
  9. 9.
    Dudakov JA, Hanash AM, van den Brink MR 2015. Interleukin-22: immunobiology and pathology. Annu. Rev. Immunol. 33:747–85
    [Google Scholar]
  10. 10.
    Renauld JC 2003. Class II cytokine receptors and their ligands: key antiviral and inflammatory modulators. Nat. Rev. Immunol. 3:667–76
    [Google Scholar]
  11. 11.
    Dinarello CA 2018. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 281:8–27
    [Google Scholar]
  12. 12.
    Croft M, Siegel RM 2017. Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. Nat. Rev. Rheumatol. 13:217–33
    [Google Scholar]
  13. 13.
    Iwakura Y, Ishigame H, Saijo S, Nakae S 2011. Functional specialization of interleukin-17 family members. Immunity 34:149–62
    [Google Scholar]
  14. 14.
    Monin L, Gaffen SL 2018. Interleukin 17 family cytokines: signaling mechanisms, biological activities, and therapeutic implications. Cold Spring Harb. Perspect. Biol. 10:a028522
    [Google Scholar]
  15. 15.
    Wallach D 2017. The tumor necrosis factor family: family conventions and private idiosyncrasies. Cold Spring Harb. Perspect. Biol In press
    [Google Scholar]
  16. 16.
    Lin JX, Mietz J, Modi WS, John S, Leonard WJ 1996. Cloning of human Stat5B: reconstitution of interleukin-2-induced Stat5A and Stat5B DNA binding activity in COS-7 cells. J. Biol. Chem. 271:10738–44
    [Google Scholar]
  17. 17.
    Leonard WJ, O'Shea JJ 1998. Jaks and STATs: biological implications. Annu. Rev. Immunol. 16:293–322
    [Google Scholar]
  18. 18.
    Levy DE, Darnell JE Jr 2002. Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3:651–62
    [Google Scholar]
  19. 19.
    Noguchi M, Yi H, Rosenblatt HM, Filipovich AH, Adelstein S et al. 1993. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73:147–57
    [Google Scholar]
  20. 20.
    Russell SM, Tayebi N, Nakajima H, Riedy MC, Roberts JL et al. 1995. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270:797–800
    [Google Scholar]
  21. 21.
    Macchi P, Villa A, Giliani S, Sacco MG, Frattini A et al. 1995. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377:65–68
    [Google Scholar]
  22. 22.
    Puel A, Ziegler SF, Buckley RH, Leonard WJ 1998. Defective IL7R expression in TB+NK+ severe combined immunodeficiency. Nat. Genet. 20:394–97
    [Google Scholar]
  23. 23.
    Roifman CM, Zhang J, Chitayat D, Sharfe N 2000. A partial deficiency of interleukin-7Rα is sufficient to abrogate T-cell development and cause severe combined immunodeficiency. Blood 96:2803–7
    [Google Scholar]
  24. 24.
    Giliani S, Mori L, de Saint Basile G, Le Deist F, Rodriguez-Perez C et al. 2005. Interleukin-7 receptor alpha (IL-7Rα) deficiency: cellular and molecular bases; analysis of clinical, immunological, and molecular features in 16 novel patients. Immunol. Rev. 203:110–26
    [Google Scholar]
  25. 25.
    Lin JX, Migone TS, Tsang M, Friedmann M, Weatherbee JA et al. 1995. The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity 2:331–39
    [Google Scholar]
  26. 26.
    Greenlund AC, Morales MO, Viviano BL, Yan H, Krolewski J, Schreiber RD 1995. Stat recruitment by tyrosine-phosphorylated cytokine receptors: an ordered reversible affinity-driven process. Immunity 2:677–87
    [Google Scholar]
  27. 27.
    Weber-Nordt RM, Riley JK, Greenlund AC, Moore KW, Darnell JE, Schreiber RD 1996. Stat3 recruitment by two distinct ligand-induced, tyrosine-phosphorylated docking sites in the interleukin-10 receptor intracellular domain. J. Biol. Chem. 271:27954–61
    [Google Scholar]
  28. 28.
    Zeng R, Spolski R, Casas E, Zhu W, Levy DE, Leonard WJ 2007. The molecular basis of IL-21-mediated proliferation. Blood 109:4135–42
    [Google Scholar]
  29. 29.
    Franke A, Balschun T, Karlsen TH, Hedderich J, May S et al. 2008. Replication of signals from recent studies of Crohn's disease identifies previously unknown disease loci for ulcerative colitis. Nat. Genet. 40:713–15
    [Google Scholar]
  30. 30.
    Int. Consort. Syst. Lupus Erythematosus Genet. Harley JB, Alarcon-Riquelme ME, Criswell LA, Jacob CO et al. 2008. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40:204–10
    [Google Scholar]
  31. 31.
    Anderson CA, Massey DC, Barrett JC, Prescott NJ, Tremelling M et al. 2009. Investigation of Crohn's disease risk loci in ulcerative colitis further defines their molecular relationship. Gastroenterology 136:523–29.e3
    [Google Scholar]
  32. 32.
    Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mullally A et al. 2009. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat. Genet. 41:455–59
    [Google Scholar]
  33. 33.
    Lee YH, Woo JH, Choi SJ, Ji JD, Song GG 2010. Association between the rs7574865 polymorphism of STAT4 and rheumatoid arthritis: a meta-analysis. Rheumatol. Int. 30:661–66
    [Google Scholar]
  34. 34.
    Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE et al. 2012. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 44:1341–48
    [Google Scholar]
  35. 35.
    Nakamura M, Nishida N, Kawashima M, Aiba Y, Tanaka A et al. 2012. Genome-wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population. Am. J. Hum. Genet. 91:721–28
    [Google Scholar]
  36. 36.
    Ellinghaus D, Ellinghaus E, Nair RP, Stuart PE, Esko T et al. 2012. Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am. J. Hum. Genet. 90:636–47
    [Google Scholar]
  37. 37.
    Kirino Y, Bertsias G, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I et al. 2013. Genome-wide association analysis identifies new susceptibility loci for Behcet's disease and epistasis between HLA-B*51 and ERAP1. Nat. Genet. 45:202–7
    [Google Scholar]
  38. 38.
    Slattery ML, Lundgreen A, Hines LM, Torres-Mejia G, Wolff RK et al. 2014. Genetic variation in the JAK/STAT/SOCS signaling pathway influences breast cancer-specific mortality through interaction with cigarette smoking and use of aspirin/NSAIDs: the Breast Cancer Health Disparities Study. Breast Cancer Res. Treat. 147:145–58
    [Google Scholar]
  39. 39.
    Tapper W, Jones AV, Kralovics R, Harutyunyan AS, Zoi K et al. 2015. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat. Commun. 6:6691
    [Google Scholar]
  40. 40.
    McIntosh LA, Marion MC, Sudman M, Comeau ME, Becker ML et al. 2017. Genome-wide association meta-analysis reveals novel juvenile idiopathic arthritis susceptibility loci. Arthritis Rheumatol 69:2222–32
    [Google Scholar]
  41. 41.
    Ito N, Eto M, Nakamura E, Takahashi A, Tsukamoto T et al. 2007. STAT3 polymorphism predicts interferon-alfa response in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 25:2785–91
    [Google Scholar]
  42. 42.
    Kreil S, Waghorn K, Ernst T, Chase A, White H et al. 2010. A polymorphism associated with STAT3 expression and response of chronic myeloid leukemia to interferon alpha. Haematologica 95:148–52
    [Google Scholar]
  43. 43.
    Lamana A, Balsa A, Rueda B, Ortiz AM, Nuno L et al. 2012. The TT genotype of the STAT4 rs7574865 polymorphism is associated with high disease activity and disability in patients with early arthritis. PLOS ONE 7:e43661
    [Google Scholar]
  44. 44.
    Conigliaro P, Ciccacci C, Politi C, Triggianese P, Rufini S et al. 2017. Polymorphisms in STAT4, PTPN2, PSORS1C1 and TRAF3IP2 genes are associated with the response to TNF inhibitors in patients with rheumatoid arthritis. PLOS ONE 12:e0169956
    [Google Scholar]
  45. 45.
    Dendrou CA, Cortes A, Shipman L, Evans HG, Attfield KE et al. 2016. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci. Transl. Med. 8:363ra149
    [Google Scholar]
  46. 46.
    Swindell WR, Stuart PE, Sarkar MK, Voorhees JJ, Elder JT et al. 2014. Cellular dissection of psoriasis for transcriptome analyses and the post-GWAS era. BMC Med. Genom. 7:27
    [Google Scholar]
  47. 47.
    Harismendy O, Notani D, Song X, Rahim NG, Tanasa B et al. 2011. 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature 470:264–68
    [Google Scholar]
  48. 48.
    Lin JX, Leonard WJ 2017. The common cytokine receptor γ chain family of cytokines. Cold Spring Harb. Perspect. Biol. 10:a028449
    [Google Scholar]
  49. 49.
    Wan CK, Andraski AB, Spolski R, Li P, Kazemian M et al. 2015. Opposing roles of STAT1 and STAT3 in IL-21 function in CD4+ T cells. PNAS 112:9394–99
    [Google Scholar]
  50. 50.
    Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G et al. 2007. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med. 357:1608–19
    [Google Scholar]
  51. 51.
    Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H et al. 2007. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448:1058–62
    [Google Scholar]
  52. 52.
    Meyer zu Horste G, Przybylski D, Schramm MA, Wang C, Schnell A et al. 2018. Fas promotes T helper 17 cell differentiation and inhibits T helper 1 cell development by binding and sequestering transcription factor STAT1. Immunity 48:556–69.e7
    [Google Scholar]
  53. 53.
    Li P, Spolski R, Liao W, Wang L, Murphy TL et al. 2012. BATF-JUN is critical for IRF4-mediated transcription in T cells. Nature 490:543–46
    [Google Scholar]
  54. 54.
    Glasmacher E, Agrawal S, Chang AB, Murphy TL, Zeng W et al. 2012. A genomic regulatory element that directs assembly and function of immune-specific AP-1-IRF complexes. Science 338:975–80
    [Google Scholar]
  55. 55.
    Kwon H, Thierry-Mieg D, Thierry-Mieg J, Kim HP, Oh J et al. 2009. Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity 31:941–52
    [Google Scholar]
  56. 56.
    Ciofani M, Madar A, Galan C, Sellars M, Mace K et al. 2012. A validated regulatory network for Th17 cell specification. Cell 151:289–303
    [Google Scholar]
  57. 57.
    Tussiwand R, Lee WL, Murphy TL, Mashayekhi M, Kc W et al. 2012. Compensatory dendritic cell development mediated by BATF-IRF interactions. Nature 490:502–7
    [Google Scholar]
  58. 58.
    Liao W, Spolski R, Li P, Du N, West EE et al. 2014. Opposing actions of IL-2 and IL-21 on Th9 differentiation correlate with their differential regulation of BCL6 expression. PNAS 111:3508–13
    [Google Scholar]
  59. 59.
    Johnston RJ, Choi YS, Diamond JA, Yang JA, Crotty S 2012. STAT5 is a potent negative regulator of TFH cell differentiation. J. Exp. Med. 209:243–50
    [Google Scholar]
  60. 60.
    Oestreich KJ, Mohn SE, Weinmann AS 2012. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nat. Immunol. 13:405–11
    [Google Scholar]
  61. 61.
    Manel N, Unutmaz D, Littman DR 2008. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nat. Immunol. 9:641–49
    [Google Scholar]
  62. 62.
    Zhou L, Ivanov II, Spolski R, Min R, Shenderov K et al. 2007. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8:967–74
    [Google Scholar]
  63. 63.
    Zhou L, Lopes JE, Chong MM, Ivanov II, Min R et al. 2008. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453:236–40
    [Google Scholar]
  64. 64.
    Korn T, Bettelli E, Gao W, Awasthi A, Jager A et al. 2007. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448:484–87
    [Google Scholar]
  65. 65.
    Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD et al. 2007. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–83
    [Google Scholar]
  66. 66.
    McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B et al. 2009. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol. 10:314–24
    [Google Scholar]
  67. 67.
    Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z et al. 2007. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26:371–81
    [Google Scholar]
  68. 68.
    Liao W, Lin JX, Wang L, Li P, Leonard WJ 2011. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat. Immunol. 12:551–59
    [Google Scholar]
  69. 69.
    Lazarevic V, Chen X, Shim JH, Hwang ES, Jang E et al. 2011. T-bet represses TH17 differentiation by preventing Runx1-mediated activation of the gene encoding RORγt. Nat. Immunol. 12:96–104
    [Google Scholar]
  70. 70.
    Dai H, He F, Tsokos GC, Kyttaris VC 2017. IL-23 limits the production of IL-2 and promotes autoimmunity in lupus. J. Immunol. 199:903–10
    [Google Scholar]
  71. 71.
    Aparicio-Siegmund S, Garbers C 2015. The biology of interleukin-27 reveals unique pro- and anti-inflammatory functions in immunity. Cytokine Growth Factor Rev 26:579–86
    [Google Scholar]
  72. 72.
    Hirahara K, Onodera A, Villarino AV, Bonelli M, Sciume G et al. 2015. Asymmetric action of STAT transcription factors drives transcriptional outputs and cytokine specificity. Immunity 42:877–89
    [Google Scholar]
  73. 73.
    Robinson DS, O'Garra A 2002. Further checkpoints in Th1 development. Immunity 16:755–58
    [Google Scholar]
  74. 74.
    Bettelli E, Korn T, Oukka M, Kuchroo VK 2008. Induction and effector functions of TH17 cells. Nature 453:1051–57
    [Google Scholar]
  75. 75.
    Patel DD, Kuchroo VK 2015. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity 43:1040–51
    [Google Scholar]
  76. 76.
    Langowski JL, Zhang X, Wu L, Mattson JD, Chen T et al. 2006. IL-23 promotes tumour incidence and growth. Nature 442:461–65
    [Google Scholar]
  77. 77.
    Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B et al. 2012. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491:254–58
    [Google Scholar]
  78. 78.
    Yan J, Smyth MJ, Teng MWL 2018. Interleukin (IL)-12 and IL-23 and their conflicting roles in cancer. Cold Spring Harb. Perspect. Biol. 10:a028530
    [Google Scholar]
  79. 79.
    Teng MW, Bowman EP, McElwee JJ, Smyth MJ, Casanova JL et al. 2015. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 21:719–29
    [Google Scholar]
  80. 80.
    Fragoulis GE, Siebert S, McInnes IB 2016. Therapeutic targeting of IL-17 and IL-23 cytokines in immune-mediated diseases. Annu. Rev. Med. 67:337–53
    [Google Scholar]
  81. 81.
    Bloch Y, Bouchareychas L, Merceron R, Skladanowska K, Van den Bossche L et al. 2018. Structural activation of pro-inflammatory human cytokine IL-23 by cognate IL-23 receptor enables recruitment of the shared receptor IL-12Rβ1. Immunity 48:45–58.e6
    [Google Scholar]
  82. 82.
    Zhu J, Guo L, Watson CJ, Hu-Li J, Paul WE 2001. Stat6 is necessary and sufficient for IL-4’s role in Th2 differentiation and cell expansion. J. Immunol. 166:7276–81
    [Google Scholar]
  83. 83.
    Zhu J, Cote-Sierra J, Guo L, Paul WE 2003. Stat5 activation plays a critical role in Th2 differentiation. Immunity 19:739–48
    [Google Scholar]
  84. 84.
    Cote-Sierra J, Foucras G, Guo L, Chiodetti L, Young HA et al. 2004. Interleukin 2 plays a central role in Th2 differentiation. PNAS 101:3880–85
    [Google Scholar]
  85. 85.
    Liao W, Schones DE, Oh J, Cui Y, Cui K et al. 2008. Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor alpha-chain expression. Nat. Immunol. 9:1288–96
    [Google Scholar]
  86. 86.
    Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell JE Jr, Kuriyan J 1998. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 93:827–39
    [Google Scholar]
  87. 87.
    Becker S, Groner B, Müller CW 1998. Three-dimensional structure of the Stat3β homodimer bound to DNA. Nature 394:145–51
    [Google Scholar]
  88. 88.
    Xu X, Sun YL, Hoey T 1996. Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science 273:794–97
    [Google Scholar]
  89. 89.
    Vinkemeier U, Cohen SL, Moarefi I, Chait BT, Kuriyan J, Darnell JE Jr 1996. DNA binding of in vitro activated Stat1α, Stat1β and truncated Stat1: interaction between NH2-terminal domains stabilizes binding of two dimers to tandem DNA sites. EMBO J 15:5616–26
    [Google Scholar]
  90. 90.
    Soldaini E, John S, Moro S, Bollenbacher J, Schindler U, Leonard WJ 2000. DNA binding site selection of dimeric and tetrameric Stat5 proteins reveals a large repertoire of divergent tetrameric Stat5a binding sites. Mol. Cell. Biol. 20:389–401
    [Google Scholar]
  91. 91.
    Chen X, Bhandari R, Vinkemeier U, Van Den Akker F, Darnell JE Jr, Kuriyan J 2003. A reinterpretation of the dimerization interface of the N-terminal domains of STATs. Protein Sci 12:361–65
    [Google Scholar]
  92. 92.
    Ota N, Brett TJ, Murphy TL, Fremont DH, Murphy KM 2004. N-domain-dependent nonphosphorylated STAT4 dimers required for cytokine-driven activation. Nat. Immunol. 5:208–15
    [Google Scholar]
  93. 93.
    Mao X, Ren Z, Parker GN, Sondermann H, Pastorello MA et al. 2005. Structural bases of unphosphorylated STAT1 association and receptor binding. Mol. Cell 17:761–71
    [Google Scholar]
  94. 94.
    Mertens C, Zhong M, Krishnaraj R, Zou W, Chen X, Darnell JE Jr 2006. Dephosphorylation of phosphotyrosine on STAT1 dimers requires extensive spatial reorientation of the monomers facilitated by the N-terminal domain. Genes Dev 20:3372–81
    [Google Scholar]
  95. 95.
    Wenta N, Strauss H, Meyer S, Vinkemeier U 2008. Tyrosine phosphorylation regulates the partitioning of STAT1 between different dimer conformations. PNAS 105:9238–43
    [Google Scholar]
  96. 96.
    Zhong M, Henriksen MA, Takeuchi K, Schaefer O, Liu B et al. 2005. Implications of an antiparallel dimeric structure of nonphosphorylated STAT1 for the activation-inactivation cycle. PNAS 102:3966–71
    [Google Scholar]
  97. 97.
    Lin JX, Li P, Liu D, Jin HT, He J et al. 2012. Critical role of STAT5 transcription factor tetramerization for cytokine responses and normal immune function. Immunity 36:586–99
    [Google Scholar]
  98. 98.
    Lin JX, Du N, Li P, Kazemian M, Gebregiorgis T et al. 2017. Critical functions for STAT5 tetramers in the maturation and survival of natural killer cells. Nat. Commun. 8:1320
    [Google Scholar]
  99. 99.
    Begitt A, Droescher M, Meyer T, Schmid CD, Baker M et al. 2014. STAT1-cooperative DNA binding distinguishes type 1 from type 2 interferon signaling. Nat. Immunol. 15:168–76
    [Google Scholar]
  100. 100.
    Cui Y, Riedlinger G, Miyoshi K, Tang W, Li C et al. 2004. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol. Cell. Biol. 24:8037–47
    [Google Scholar]
  101. 101.
    Yao Z, Cui Y, Watford WT, Bream JH, Yamaoka K et al. 2006. Stat5a/b are essential for normal lymphoid development and differentiation. PNAS 103:1000–5
    [Google Scholar]
  102. 102.
    Durbin JE, Hackenmiller R, Simon MC, Levy DE 1996. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84:443–50
    [Google Scholar]
  103. 103.
    Sathyanarayana BK, Li P, Lin JX, Leonard WJ, Lee B 2016. Molecular models of STAT5A tetramers complexed to DNA predict relative genome-wide frequencies of the spacing between the two dimer binding motifs of the tetramer binding sites. PLOS ONE 11:e0160339
    [Google Scholar]
  104. 104.
    Cheon H, Stark GR 2009. Unphosphorylated STAT1 prolongs the expression of interferon-induced immune regulatory genes. PNAS 106:9373–78
    [Google Scholar]
  105. 105.
    Cheon H, Holvey-Bates EG, Schoggins JW, Forster S, Hertzog P et al. 2013. IFNβ-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J 32:2751–63
    [Google Scholar]
  106. 106.
    Park HJ, Li J, Hannah R, Biddie S, Leal-Cervantes AI et al. 2016. Cytokine-induced megakaryocytic differentiation is regulated by genome-wide loss of a uSTAT transcriptional program. EMBO J 35:580–94
    [Google Scholar]
  107. 107.
    Meier JA, Larner AC 2014. Toward a new STATe: the role of STATs in mitochondrial function. Semin. Immunol. 26:20–28
    [Google Scholar]
  108. 108.
    Garama DJ, White CL, Balic JJ, Gough DJ 2016. Mitochondrial STAT3: powering up a potent factor. Cytokine 87:20–25
    [Google Scholar]
  109. 109.
    Lufei C, Ma J, Huang G, Zhang T, Novotny-Diermayr V et al. 2003. GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction. EMBO J 22:1325–35
    [Google Scholar]
  110. 110.
    Zhang J, Yang J, Roy SK, Tininini S, Hu J et al. 2003. The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3. PNAS 100:9342–47
    [Google Scholar]
  111. 111.
    Tammineni P, Anugula C, Mohammed F, Anjaneyulu M, Larner AC, Sepuri NB 2013. The import of the transcription factor STAT3 into mitochondria depends on GRIM-19, a component of the electron transport chain. J. Biol. Chem. 288:4723–32
    [Google Scholar]
  112. 112.
    Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q et al. 2009. Function of mitochondrial Stat3 in cellular respiration. Science 323:793–97
    [Google Scholar]
  113. 113.
    Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE 2009. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324:1713–16
    [Google Scholar]
  114. 114.
    Mackenzie GG, Huang L, Alston N, Ouyang N, Vrankova K et al. 2013. Targeting mitochondrial STAT3 with the novel phospho-valproic acid (MDC-1112) inhibits pancreatic cancer growth in mice. PLOS ONE 8:e61532
    [Google Scholar]
  115. 115.
    Genini D, Brambilla L, Laurini E, Merulla J, Civenni G et al. 2017. Mitochondrial dysfunction induced by a SH2 domain-targeting STAT3 inhibitor leads to metabolic synthetic lethality in cancer cells. PNAS 114:E4924–33
    [Google Scholar]
  116. 116.
    Ziegler PK, Bollrath J, Pallangyo CK, Matsutani T, Canli O et al. 2018. Mitophagy in intestinal epithelial cells triggers adaptive immunity during tumorigenesis. Cell 174:88–101.e16
    [Google Scholar]
  117. 117.
    Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY et al. 2013. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:307–19
    [Google Scholar]
  118. 118.
    Parker SC, Stitzel ML, Taylor DL, Orozco JM, Erdos MR et al. 2013. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. PNAS 110:17921–26
    [Google Scholar]
  119. 119.
    Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V et al. 2013. Super-enhancers in the control of cell identity and disease. Cell 155:934–47
    [Google Scholar]
  120. 120.
    Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J 2011. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:279–83
    [Google Scholar]
  121. 121.
    Vahedi G, Kanno Y, Furumoto Y, Jiang K, Parker SC et al. 2015. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520:558–62
    [Google Scholar]
  122. 122.
    Li P, Mitra S, Spolski R, Oh J, Liao W et al. 2017. STAT5-mediated chromatin interactions in superenhancers activate IL-2 highly inducible genes: functional dissection of the Il2ra gene locus. PNAS 114:12111–19
    [Google Scholar]
  123. 123.
    Simeonov DR, Gowen BG, Boontanrart M, Roth TL, Gagnon JD et al. 2017. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549:111–15
    [Google Scholar]
  124. 124.
    Changelian PS, Flanagan ME, Ball DJ, Kent CR, Magnuson KS et al. 2003. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302:875–78
    [Google Scholar]
  125. 125.
    Winthrop KL 2017. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat. Rev. Rheumatol. 13:234–43
    [Google Scholar]
  126. 126.
    Sandborn WJ, Su C, Sands BE, D'Haens GR, Vermeire S et al. 2017. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 376:1723–36
    [Google Scholar]
  127. 127.
    Wang L, Yu CR, Kim HP, Liao W, Telford WG et al. 2011. Key role for IL-21 in experimental autoimmune uveitis. PNAS 108:9542–47
    [Google Scholar]
  128. 128.
    Spolski R, Kashyap M, Robinson C, Yu Z, Leonard WJ 2008. IL-21 signaling is critical for the development of type I diabetes in the NOD mouse. PNAS 105:14028–33
    [Google Scholar]
  129. 129.
    Bubier JA, Sproule TJ, Foreman O, Spolski R, Shaffer DJ et al. 2009. A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. PNAS 106:1518–23
    [Google Scholar]
  130. 130.
    Langlais D, Fodil N, Gros P 2017. Genetics of infectious and inflammatory diseases: overlapping discoveries from association and exome-sequencing studies. Annu. Rev. Immunol. 35:1–30
    [Google Scholar]
  131. 131.
    Roederer M, Quaye L, Mangino M, Beddall MH, Mahnke Y et al. 2015. The genetic architecture of the human immune system: a bioresource for autoimmunity and disease pathogenesis. Cell 161:387–403
    [Google Scholar]
  132. 132.
    London N, Miller RM, Krishnan S, Uchida K, Irwin JJ et al. 2014. Covalent docking of large libraries for the discovery of chemical probes. Nat. Chem. Biol. 10:1066–72
    [Google Scholar]
  133. 133.
    Goedken ER, Argiriadi MA, Banach DL, Fiamengo BA, Foley SE et al. 2015. Tricyclic covalent inhibitors selectively target Jak3 through an active site thiol. J. Biol. Chem. 290:4573–89
    [Google Scholar]
  134. 134.
    Tan L, Akahane K, McNally R, Reyskens KM, Ficarro SB et al. 2015. Development of selective covalent Janus kinase 3 inhibitors. J. Med. Chem. 58:6589–606
    [Google Scholar]
  135. 135.
    Smith GA, Uchida K, Weiss A, Taunton J 2016. Essential biphasic role for JAK3 catalytic activity in IL-2 receptor signaling. Nat. Chem. Biol. 12:373–79
    [Google Scholar]
  136. 136.
    Telliez JB, Dowty ME, Wang L, Jussif J, Lin T et al. 2016. Discovery of a JAK3-selective inhibitor: functional differentiation of JAK3-selective inhibition over pan-JAK or JAK1-selective inhibition. ACS Chem. Biol. 11:3442–51
    [Google Scholar]
  137. 137.
    Thorarensen A, Dowty ME, Banker ME, Juba B, Jussif J et al. 2017. Design of a Janus kinase 3 (JAK3) specific inhibitor 1-((2S,5R)-5-((7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-methylpiperidin-1-yl)prop-2-en-1-one (PF-06651600) allowing for the interrogation of JAK3 signaling in humans. J. Med. Chem. 60:1971–93
    [Google Scholar]
  138. 138.
    Migone TS, Lin JX, Cereseto A, Mulloy JC, O'Shea JJ et al. 1995. Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science 269:79–81
    [Google Scholar]
  139. 139.
    Danial NN, Pernis A, Rothman PB 1995. Jak-STAT signaling induced by the v-abl oncogene. Science 269:1875–77
    [Google Scholar]
  140. 140.
    Yu CL, Meyer DJ, Campbell GS, Larner AC, Carter-Su C et al. 1995. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269:81–83
    [Google Scholar]
  141. 141.
    Nicot C, Mulloy JC, Ferrari MG, Johnson JM, Fu K et al. 2001. HTLV-1 p12I protein enhances STAT5 activation and decreases the interleukin-2 requirement for proliferation of primary human peripheral blood mononuclear cells. Blood 98:823–29
    [Google Scholar]
  142. 142.
    Waldmann TA, Chen J 2017. Disorders of the JAK/STAT pathway in T cell lymphoma pathogenesis: implications for immunotherapy. Annu. Rev. Immunol. 35:533–50
    [Google Scholar]
  143. 143.
    Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM 2017. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77:521–46
    [Google Scholar]
  144. 144.
    Musumeci F, Greco C, Giacchello I, Fallacara AL, Ibrahim MM et al. 2018. An update on JAK inhibitors. Curr. Med. Chem. In press
    [Google Scholar]
  145. 145.
    Quintas-Cardama A, Kantarjian H, Cortes J, Verstovsek S 2011. Janus kinase inhibitors for the treatment of myeloproliferative neoplasias and beyond. Nat. Rev. Drug Discov. 10:127–40
    [Google Scholar]
  146. 146.
    Vannucchi AM, Kiladjian JJ, Griesshammer M, Masszi T, Durrant S et al. 2015. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N. Engl. J. Med. 372:426–35
    [Google Scholar]
  147. 147.
    Meyer SC, Keller MD, Chiu S, Koppikar P, Guryanova OA et al. 2015. CHZ868, a type II JAK2 inhibitor, reverses type I JAK inhibitor persistence and demonstrates efficacy in myeloproliferative neoplasms. Cancer Cell 28:15–28
    [Google Scholar]
  148. 148.
    Weisshof R, El Jurdi K, Zmeter N, Rubin DT 2018. Emerging therapies for inflammatory bowel disease. Adv. Ther. 35:1746–62
    [Google Scholar]
  149. 149.
    Shahmarvand N, Nagy A, Shahryari J, Ohgami RS 2018. Mutations in the signal transducer and activator of transcription family of genes in cancer. Cancer Sci 109:926–33
    [Google Scholar]
  150. 150.
    Rajala HL, Porkka K, Maciejewski JP, Loughran TP Jr, Mustjoki S 2014. Uncovering the pathogenesis of large granular lymphocytic leukemia-novel STAT3 and STAT5b mutations. Ann. Med. 46:114–22
    [Google Scholar]
  151. 151.
    Rajala HL, Eldfors S, Kuusanmaki H, van Adrichem AJ, Olson T et al. 2013. Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood 121:4541–50
    [Google Scholar]
  152. 152.
    Andersson EI, Tanahashi T, Sekiguchi N, Gasparini VR, Bortoluzzi S et al. 2016. High incidence of activating STAT5B mutations in CD4-positive T-cell large granular lymphocyte leukemia. Blood 128:2465–68
    [Google Scholar]
  153. 153.
    Forbes SA, Beare D, Bindal N, Bamford S, Ward S et al. 2016. COSMIC: high-resolution cancer genetics using the catalogue of somatic mutations in cancer. Curr. Protoc. Hum. Genet. 91:10.11.1–37
    [Google Scholar]
  154. 154.
    Kucuk C, Jiang B, Hu X, Zhang W, Chan JK et al. 2015. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat. Commun. 6:6025
    [Google Scholar]
  155. 155.
    Miklossy G, Hilliard TS, Turkson J 2013. Therapeutic modulators of STAT signalling for human diseases. Nat. Rev. Drug Discov. 12:611–29
    [Google Scholar]
  156. 156.
    Johnson DE, O'Keefe RA, Grandis JR 2018. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15:234–48
    [Google Scholar]
  157. 157.
    Sen M, Thomas SM, Kim S, Yeh JI, Ferris RL et al. 2012. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer Discov 2:694–705
    [Google Scholar]
  158. 158.
    Toniolo PA, Liu S, Yeh JE, Moraes-Vieira PM, Walker SR et al. 2015. Inhibiting STAT5 by the BET bromodomain inhibitor JQ1 disrupts human dendritic cell maturation. J. Immunol. 194:3180–90
    [Google Scholar]
  159. 159.
    Elumalai N, Berg A, Rubner S, Blechschmidt L, Song C et al. 2017. Rational development of Stafib-2: a selective, nanomolar inhibitor of the transcription factor STAT5b. Sci. Rep. 7:819
    [Google Scholar]
  160. 160.
    Rondanin R, Simoni D, Maccesi M, Romagnoli R, Grimaudo S et al. 2017. Effects of pimozide derivatives on pSTAT5 in K562 cells. Chem. Med. Chem. 12:1183–90
    [Google Scholar]
  161. 161.
    Liu LJ, Wang W, Kang TS, Liang JX, Liu C et al. 2016. Antagonizing STAT5B dimerization with an osmium complex. Sci. Rep. 6:36044
    [Google Scholar]
  162. 162.
    Casanova JL, Holland SM, Notarangelo LD 2012. Inborn errors of human JAKs and STATs. Immunity 36:515–28
    [Google Scholar]
  163. 163.
    Kotlarz D, Zietara N, Milner JD, Klein C 2014. Human IL-21 and IL-21R deficiencies: two novel entities of primary immunodeficiency. Curr. Opin. Pediatr. 26:704–12
    [Google Scholar]
  164. 164.
    Milner JD, Holland SM 2013. The cup runneth over: lessons from the ever-expanding pool of primary immunodeficiency diseases. Nat. Rev. Immunol. 13:635–48
    [Google Scholar]
  165. 165.
    Sharfe N, Dadi HK, Shahar M, Roifman CM 1997. Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. PNAS 94:3168–71
    [Google Scholar]
  166. 166.
    Nadeau K, Hwa V, Rosenfeld RG 2011. STAT5b deficiency: an unsuspected cause of growth failure, immunodeficiency, and severe pulmonary disease. J. Pediatr. 158:701–8
    [Google Scholar]
  167. 167.
    Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M 2010. 20 years of gene therapy for SCID. Nat. Immunol. 11:457–60
    [Google Scholar]
  168. 168.
    Thrasher AJ, Williams DA 2017. Evolving gene therapy in primary immunodeficiency. Mol. Ther. 25:1132–41
    [Google Scholar]
  169. 169.
    Kuo CY, Kohn DB 2016. Gene therapy for the treatment of primary immune deficiencies. Curr. Allergy Asthma Rep. 16:39
    [Google Scholar]
  170. 170.
    Aiuti A, Slavin S, Aker M, Ficara F, Deola S et al. 2002. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296:2410–13
    [Google Scholar]
  171. 171.
    Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E et al. 2000. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–72
    [Google Scholar]
  172. 172.
    Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC et al. 2004. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364:2181–87
    [Google Scholar]
  173. 173.
    Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP et al. 2010. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 363:355–64
    [Google Scholar]
  174. 174.
    Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M et al. 2008. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Investig. 118:3143–50
    [Google Scholar]
  175. 175.
    Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A et al. 2008. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Investig. 118:3132–42
    [Google Scholar]
  176. 176.
    Hacein-Bey-Abina S, Pai SY, Gaspar HB, Armant M, Berry CC et al. 2014. A modified gamma-retrovirus vector for X-linked severe combined immunodeficiency. N. Engl. J. Med. 371:1407–17
    [Google Scholar]
  177. 177.
    Komor AC, Badran AH, Liu DR 2017. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168:20–36
    [Google Scholar]
  178. 178.
    Dever DP, Bak RO, Reinisch A, Camarena J, Washington G et al. 2016. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 539:384–89
    [Google Scholar]
  179. 179.
    Chang CW, Lai YS, Westin E, Khodadadi-Jamayran A, Pawlik KM et al. 2015. Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep 12:1668–77
    [Google Scholar]
  180. 180.
    Brooks EG, Schmalstieg FC, Wirt DP, Rosenblatt HM, Adkins LT et al. 1990. A novel X-linked combined immunodeficiency disease. J. Clin. Investig. 86:1623–31
    [Google Scholar]
  181. 181.
    Schmalstieg FC, Wirt DP, Adkins LT, Brooks EG, Stansberry SD et al. 1992. Postnatal development of T lymphocytes in a novel X-linked immunodeficiency disease. Clin. Immunol. Immunopathol. 64:71–77
    [Google Scholar]
  182. 182.
    Russell SM, Johnston JA, Noguchi M, Kawamura M, Bacon CM et al. 1994. Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science 266:1042–45
    [Google Scholar]
  183. 183.
    Schmalstieg FC, Leonard WJ, Noguchi M, Berg M, Rudloff HE et al. 1995. Missense mutation in exon 7 of the common gamma chain gene causes a moderate form of X-linked combined immunodeficiency. J. Clin. Investig. 95:1169–73
    [Google Scholar]
  184. 184.
    June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC 2018. CAR T cell immunotherapy for human cancer. Science 359:1361–65
    [Google Scholar]
  185. 185.
    Kagoya Y, Tanaka S, Guo T, Anczurowski M, Wang CH et al. 2018. A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat. Med. 24:352–59
    [Google Scholar]
  186. 186.
    Rosenberg SA, Mule JJ, Spiess PJ, Reichert CM, Schwarz SL 1985. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J. Exp. Med. 161:1169–88
    [Google Scholar]
  187. 187.
    Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE et al. 1985. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 313:1485–92
    [Google Scholar]
  188. 188.
    Rosenberg SA 2014. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192:5451–58
    [Google Scholar]
  189. 189.
    Rosenberg SA 2011. Cell transfer immunotherapy for metastatic solid cancer—what clinicians need to know. Nat. Rev. Clin. Oncol. 8:577–85
    [Google Scholar]
  190. 190.
    Kalos M, June CH 2013. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity 39:49–60
    [Google Scholar]
  191. 191.
    Barrett DM, Singh N, Porter DL, Grupp SA, June CH 2014. Chimeric antigen receptor therapy for cancer. Annu. Rev. Med. 65:333–47
    [Google Scholar]
  192. 192.
    Tran E, Robbins PF, Rosenberg SA 2017. ‘Final common pathway’ of human cancer immunotherapy: targeting random somatic mutations. Nat. Immunol. 18:255–62
    [Google Scholar]
  193. 193.
    Li MO, Rudensky AY 2016. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat. Rev. Immunol. 16:220–33
    [Google Scholar]
  194. 194.
    Ohkura N, Kitagawa Y, Sakaguchi S 2013. Development and maintenance of regulatory T cells. Immunity 38:414–23
    [Google Scholar]
  195. 195.
    Malek TR, Yu A, Vincek V, Scibelli P, Kong L 2002. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice: implications for the nonredundant function of IL-2. Immunity 17:167–78
    [Google Scholar]
  196. 196.
    Malek TR, Castro I 2010. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33:153–65
    [Google Scholar]
  197. 197.
    Liao W, Lin JX, Leonard WJ 2013. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38:13–25
    [Google Scholar]
  198. 198.
    Yu A, Snowhite I, Vendrame F, Rosenzwajg M, Klatzmann D et al. 2015. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low-dose IL-2 therapy in type 1 diabetes. Diabetes 64:2172–83
    [Google Scholar]
  199. 199.
    Koreth J, Matsuoka K, Kim HT, McDonough SM, Bindra B et al. 2011. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365:2055–66
    [Google Scholar]
  200. 200.
    Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M et al. 2017. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood 129:2186–97
    [Google Scholar]
  201. 201.
    Hartemann A, Bensimon G, Payan CA, Jacqueminet S, Bourron O et al. 2013. Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 1:295–305
    [Google Scholar]
  202. 202.
    Rosenzwajg M, Churlaud G, Mallone R, Six A, Derian N et al. 2015. Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. J. Autoimmun. 58:48–58
    [Google Scholar]
  203. 203.
    He J, Zhang X, Wei Y, Sun X, Chen Y et al. 2016. Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nat. Med. 22:991–93
    [Google Scholar]
  204. 204.
    von Spee-Mayer C, Siegert E, Abdirama D, Rose A, Klaus A et al. 2016. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 75:1407–15
    [Google Scholar]
  205. 205.
    Letourneau S, van Leeuwen EM, Krieg C, Martin C, Pantaleo G et al. 2010. IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor alpha subunit CD25. PNAS 107:2171–76
    [Google Scholar]
  206. 206.
    Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J 2006. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311:1924–27
    [Google Scholar]
  207. 207.
    Spangler JB, Tomala J, Luca VC, Jude KM, Dong S et al. 2015. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity 42:815–25
    [Google Scholar]
  208. 208.
    Trotta E, Bessette PH, Silveria SL, Ely LK, Jude KM et al. 2018. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat. Med. 24:1005–14
    [Google Scholar]
  209. 209.
    Rubinstein MP, Kovar M, Purton JF, Cho JH, Boyman O et al. 2006. Converting IL-15 to a superagonist by binding to soluble IL-15Rα. PNAS 103:9166–71
    [Google Scholar]
  210. 210.
    Bouchaud G, Garrigue-Antar L, Sole V, Quemener A, Boublik Y et al. 2008. The exon-3-encoded domain of IL-15Rα contributes to IL-15 high-affinity binding and is crucial for the IL-15 antagonistic effect of soluble IL-15Rα. J. Mol. Biol. 382:1–12
    [Google Scholar]
  211. 211.
    Mortier E, Quemener A, Vusio P, Lorenzen I, Boublik Y et al. 2006. Soluble interleukin-15 receptor α (IL-15Rα)-sushi as a selective and potent agonist of IL-15 action through IL-15Rβ/γ; hyperagonist IL-15⋅IL-15Rα fusion proteins. J. Biol. Chem. 281:1612–19
    [Google Scholar]
  212. 212.
    Desbois M, Le Vu P, Coutzac C, Marcheteau E, Beal C et al. 2016. IL-15 trans-signaling with the superagonist RLI promotes effector/memory CD8+ T cell responses and enhances antitumor activity of PD-1 antagonists. J. Immunol. 197:168–78
    [Google Scholar]
  213. 213.
    Kay AB 2001. Allergy and allergic diseases: first of two parts. N. Engl. J. Med. 344:30–37
    [Google Scholar]
  214. 214.
    Rochman Y, Spolski R, Leonard WJ 2009. New insights into the regulation of T cells by γc family cytokines. Nat. Rev. Immunol. 9:480–90
    [Google Scholar]
  215. 215.
    Tony HP, Shen BJ, Reusch P, Sebald W 1994. Design of human interleukin-4 antagonists inhibiting interleukin-4-dependent and interleukin-13-dependent responses in T-cells and B-cells with high efficiency. Eur. J. Biochem. 225:659–65
    [Google Scholar]
  216. 216.
    Andrews AL, Holloway JW, Holgate ST, Davies DE 2006. IL-4 receptor alpha is an important modulator of IL-4 and IL-13 receptor binding: implications for the development of therapeutic targets. J. Immunol. 176:7456–61
    [Google Scholar]
  217. 217.
    Wenzel S, Castro M, Corren J, Maspero J, Wang L et al. 2016. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet 388:31–44
    [Google Scholar]
  218. 218.
    Wenzel S, Ford L, Pearlman D, Spector S, Sher L et al. 2013. Dupilumab in persistent asthma with elevated eosinophil levels. N. Engl. J. Med. 368:2455–66
    [Google Scholar]
  219. 219.
    Shirley M 2017. Dupilumab: first global approval. Drugs 77:1115–21
    [Google Scholar]
  220. 220.
    Sheridan C 2018. Drugmakers cling to dual IL-13/IL-4 blockbuster hopes. Nat. Biotechnol. 36:3–5
    [Google Scholar]
  221. 221.
    Lowenthal JW, Greene WC 1987. Contrasting interleukin 2 binding properties of the alpha (p55) and beta (p70) protein subunits of the human high-affinity interleukin 2 receptor. J. Exp. Med. 166:1156–61
    [Google Scholar]
  222. 222.
    Wang X, Rickert M, Garcia KC 2005. Structure of the quaternary complex of interleukin-2 with its α, β, and γc receptors. Science 310:1159–63
    [Google Scholar]
  223. 223.
    Levin AM, Bates DL, Ring AM, Krieg C, Lin JT et al. 2012. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484:529–33
    [Google Scholar]
  224. 224.
    Mitra S, Ring AM, Amarnath S, Spangler JB, Li P et al. 2015. Interleukin-2 activity can be fine tuned with engineered receptor signaling clamps. Immunity 42:826–38
    [Google Scholar]
  225. 225.
    Strange PG 2008. Agonist binding, agonist affinity and agonist efficacy at G protein-coupled receptors. Br. J. Pharmacol. 153:1353–63
    [Google Scholar]
  226. 226.
    Meghnem D, Morisseau S, Frutoso M, Trillet K, Maillasson M et al. 2017. Cutting edge: differential fine-tuning of IL-2– and IL-15–dependent functions by targeting their common IL-2/15Rβ/γc receptor. J. Immunol. 198:4563–68
    [Google Scholar]
  227. 227.
    Pettit DK, Bonnert TP, Eisenman J, Srinivasan S, Paxton R et al. 1997. Structure-function studies of interleukin 15 using site-specific mutagenesis, polyethylene glycol conjugation, and homology modeling. J. Biol. Chem. 272:2312–18
    [Google Scholar]
  228. 228.
    Broudy VC 1997. Stem cell factor and hematopoiesis. Blood 90:1345–64
    [Google Scholar]
  229. 229.
    Lyman SD, Jacobsen SE 1998. c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 91:1101–34
    [Google Scholar]
  230. 230.
    Ho CCM, Chhabra A, Starkl P, Schnorr PJ, Wilmes S et al. 2017. Decoupling the functional pleiotropy of stem cell factor by tuning c-kit signaling. Cell 168:1041–52.e18
    [Google Scholar]
  231. 231.
    Kim AR, Ulirsch JC, Wilmes S, Unal E, Moraga I et al. 2017. Functional selectivity in cytokine signaling revealed through a pathogenic EPO mutation. Cell 168:1053–64.e15
    [Google Scholar]
  232. 232.
    Nakamura Y, Russell SM, Mess SA, Friedmann M, Erdos M et al. 1994. Heterodimerization of the IL-2 receptor β- and γ-chain cytoplasmic domains is required for signalling. Nature 369:330–33
    [Google Scholar]
  233. 233.
    Nelson BH, Lord JD, Greenberg PD 1994. Cytoplasmic domains of the interleukin-2 receptor β and γ chains mediate the signal for T-cell proliferation. Nature 369:333–36
    [Google Scholar]
  234. 234.
    Sockolosky JT, Trotta E, Parisi G, Picton L, Su LL et al. 2018. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359:1037–42
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-042718-041447
Loading
/content/journals/10.1146/annurev-immunol-042718-041447
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error