1932

Abstract

The intestinal microbiota plays a crucial role in influencing the development of host immunity, and in turn the immune system also acts to regulate the microbiota through intestinal barrier maintenance and immune exclusion. Normally, these interactions are homeostatic, tightly controlled, and organized by both innate and adaptive immune responses. However, a combination of environmental exposures and genetic defects can result in a break in tolerance and intestinal homeostasis. The outcomes of these interactions at the mucosal interface have broad, systemic effects on host immunity and the development of chronic inflammatory or autoimmune disease. The underlying mechanisms and pathways the microbiota can utilize to regulate these diseases are just starting to emerge. Here, we discuss the recent evidence in this area describing the impact of microbiota-immune interactions during inflammation and autoimmunity, with a focus on barrier function and CD4+ T cell regulation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042718-041841
2019-04-26
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/immunol/37/1/annurev-immunol-042718-041841.html?itemId=/content/journals/10.1146/annurev-immunol-042718-041841&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Farh KK-H, Marson A, Zhu J, Kleinewietfeld M, Housley WJ et al. 2015. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518:7539337–43
    [Google Scholar]
  2. 2.
    Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E et al. 2017. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers. 3:17016
    [Google Scholar]
  3. 3.
    Reich DS, Lucchinetti CF, Calabresi PA 2018. Multiple sclerosis. New Engl. J. Med. 378:2169–80
    [Google Scholar]
  4. 4.
    Xavier RJ, Podolsky DK 2007. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:7152427–34
    [Google Scholar]
  5. 5.
    Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P et al. 2018. Rheumatoid arthritis. Nat. Rev. Dis. Primers. 4:18001
    [Google Scholar]
  6. 6.
    Verstockt B, Smith KG, Lee JC Genome-wide association studies in Crohn's disease: past, present and future. Clin. Transl. Immunol. 7:1e1001
    [Google Scholar]
  7. 7.
    Pociot F 2017. Type 1 diabetes genome-wide association studies: not to be lost in translation. Clin. Transl. Immunol. 6:12e162
    [Google Scholar]
  8. 8.
    Bashinskaya VV, Kulakova OG, Boyko AN, Favorov AV, Favorova OO 2015. A review of genome-wide association studies for multiple sclerosis: classical and hypothesis-driven approaches. Hum. Genet. 134:11–121143–62
    [Google Scholar]
  9. 9.
    Walsh AM, Whitaker JW, Huang CC, Cherkas Y, Lamberth SL et al. 2016. Integrative genomic deconvolution of rheumatoid arthritis GWAS loci into gene and cell type associations. Genome Biol 17:79
    [Google Scholar]
  10. 10.
    Miller FW, Alfredsson L, Costenbader KH, Kamen DL, Nelson L et al. 2012. Epidemiology of environmental exposures and human autoimmune diseases: findings from a National Institute of Environmental Health Sciences Expert Panel Workshop. J. Autoimmun. 39:4259–71
    [Google Scholar]
  11. 11.
    Hooper LV, Littman DR, Macpherson AJ 2012. Interactions between the microbiota and the immune system. Science 336:1268–73
    [Google Scholar]
  12. 12.
    Okada H, Kuhn C, Feillet H, Bach J-F 2010. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin. Exp. Immunol. 160:11–9
    [Google Scholar]
  13. 13.
    Bach J-F 2002. The effect of infections on susceptibility to autoimmune and allergic diseases. New Engl. J. Med. 347:12911–20First study to show clinical data supporting the hygiene hypothesis and an autoimmune link to bacterial exposure.
    [Google Scholar]
  14. 14.
    Okin D, Medzhitov R 2012. Evolution of inflammatory diseases. Curr. Biol. 22:17R733–40
    [Google Scholar]
  15. 15.
    Birchenough GMH, Johansson ME, Gustafsson JK, Bergström JH, Hansson GC 2015. New developments in goblet cell mucus secretion and function. Mucosal Immunol 8:4712–19
    [Google Scholar]
  16. 16.
    Tailford LE, Crost EH, Kavanaugh D, Juge N 2015. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6:81
    [Google Scholar]
  17. 17.
    Johansson MEV, Larsson JMH, Hansson GC 2011. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. PNAS 108:Suppl. 14659–65
    [Google Scholar]
  18. 18.
    Kashyap PC, Marcobal A, Ursell LK, Smits SA, Sonnenburg ED et al. 2013. Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota. PNAS 110:4217059–64
    [Google Scholar]
  19. 19.
    Hooper LV, Macpherson AJ 2010. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10:3159–69
    [Google Scholar]
  20. 20.
    Bevins CL, Salzman NH 2011. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol. 9:5356–68
    [Google Scholar]
  21. 21.
    Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X et al. 2011. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334:6053255–58
    [Google Scholar]
  22. 22.
    Cullen TW, Schofield WB, Barry NA, Putnam EE, Rundell EA et al. 2015. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 347:6218170–75
    [Google Scholar]
  23. 23.
    Moal VL-L, Servin AL 2006. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin. Microbiol. Rev. 19:2315–37
    [Google Scholar]
  24. 24.
    Macpherson AJ, Yilmaz B, Limenitakis JP, Ganal-Vonarburg SC 2018. IgA function in relation to the intestinal microbiota. Annu. Rev. Immunol. 36:359–81
    [Google Scholar]
  25. 25.
    Macpherson AJ, Uhr T 2004. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:56641662–65Changed the way the field of mucosal immunology views IgA induction and interactions with the microbiota.
    [Google Scholar]
  26. 26.
    Bunker JJ, Erickson SA, Flynn TM, Henry C, Koval JC et al. 2017. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358:eaan6619
    [Google Scholar]
  27. 27.
    Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J et al. 2014. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158:51000–10
    [Google Scholar]
  28. 28.
    Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB et al. 2018. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360:795–800
    [Google Scholar]
  29. 29.
    Moon C, Baldridge MT, Wallace MA, Burnham C-AD et al. 2015. Vertically transmitted fecal IgA levels distinguish extra-chromosomal phenotypic variation. Nature 521:755090–93
    [Google Scholar]
  30. 30.
    Hapfelmeier S, Lawson MAE, Slack E, Kirundi JK, Stoel M et al. 2010. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328:59861705–9
    [Google Scholar]
  31. 31.
    Dudakov JA, Hanash AM, van den Brink MRM 2015. Interleukin-22: immunobiology and pathology. Annu. Rev. Immunol. 33:1747–85
    [Google Scholar]
  32. 32.
    Mao K, Baptista AP, Tamoutounour S, Zhuang L, Bouladoux N et al. 2018. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature 554:7691255–59
    [Google Scholar]
  33. 33.
    Hepworth MR, Monticelli LA, Fung TC, Ziegler CGK, Grunberg S et al. 2013. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498:7452113–17First to introduce and alter our view of the importance of ILC–T cell interactions in the context of the microbiota.
    [Google Scholar]
  34. 34.
    Cypowyj S, Picard C, Maródi L, Casanova J-L, Puel A 2012. Immunity to infection in IL-17-deficient mice and humans. Eur. J. Immunol. 42:92246–54
    [Google Scholar]
  35. 35.
    Amatya N, Garg AV, Gaffen SL 2017. IL-17 signaling: the yin and the yang. Trends Immunol 38:5310–22
    [Google Scholar]
  36. 36.
    Ignacio A, Morales CI, Câmara NOS, Almeida RR 2016. Innate sensing of the gut microbiota: modulation of inflammatory and autoimmune diseases. Front. Immunol. 7:54
    [Google Scholar]
  37. 37.
    Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang J-P et al. 2014. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156:51045–59
    [Google Scholar]
  38. 38.
    Monteleone I, Rizzo A, Sarra M, Sica G, Sileri P et al. 2011. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 141:1237–48.e1
    [Google Scholar]
  39. 39.
    Kubinak JL, Petersen C, Stephens WZ, Soto R, Bake E et al. 2015. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe 17:2153–63
    [Google Scholar]
  40. 40.
    Zhang L, Gallo RL 2016. Antimicrobial peptides. Curr. Biol. 26:1R14–19
    [Google Scholar]
  41. 41.
    Wang D 2018. The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity. Immunopharmacol. Immunotoxicol. 40:3187–92
    [Google Scholar]
  42. 42.
    Round JL, Mazmanian SK 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9:5313–23
    [Google Scholar]
  43. 43.
    Lee N, Kim W-U 2017. Microbiota in T-cell homeostasis and inflammatory diseases. Exp. Mol. Med. 49:5e340
    [Google Scholar]
  44. 44.
    Maynard CL, Weaver CT 2009. Intestinal effector T cells in health and disease. Immunity 31:3389–400
    [Google Scholar]
  45. 45.
    Hegazy AN, West NR, Stubbington MJT, Wendt E, Suijker KIM et al. 2017. Circulating and tissue-resident CD4+ T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology 153:51320–37.e16
    [Google Scholar]
  46. 46.
    Schietinger A, Delrow JJ, Basom RS, Blattman JN, Greenberg PD 2012. Rescued tolerant CD8 T cells are preprogrammed to reestablish the tolerant state. Science 335:6069723–27
    [Google Scholar]
  47. 47.
    Su LF, Kidd BA, Han A, Kotzin JJ, Davis MM 2013. Virus-specific CD4+ memory-phenotype T cells are abundant in unexposed adults. Immunity 38:2373–83
    [Google Scholar]
  48. 48.
    Mason D 1998. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19:9395–404
    [Google Scholar]
  49. 49.
    Wooldridge L, Ekeruche-Makinde J, van den Berg HA, Skowera A, Miles JJ et al. 2012. A single autoimmune T cell receptor recognizes more than a million different peptides. J. Biol. Chem. 287:21168–77
    [Google Scholar]
  50. 50.
    Honda K, Littman DR 2012. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30:1759–95
    [Google Scholar]
  51. 51.
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T et al. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:3485–98First paper to show microbiota induction of Th17 cells, sparking a whole new field.
    [Google Scholar]
  52. 52.
    Goto Y, Panea C, Nakato G, Cebula A, Lee C et al. 2014. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 40:4594–607
    [Google Scholar]
  53. 53.
    Viladomiu M, Kivolowitz C, Abdulhamid A, Dogan B, Victorio D et al. 2017. IgA-coated E. coli enriched in Crohn's disease spondyloarthritis promote TH17-dependent inflammation. Sci. Transl. Med. 9:376eaaf9655
    [Google Scholar]
  54. 54.
    Tan TG, Sefik E, Geva-Zatorsky N, Kua L, Naskar D et al. 2016. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. PNAS 113:50E8141–50
    [Google Scholar]
  55. 55.
    Zielinski CE, Mele F, Aschenbrenner D, Jarrossay D, Ronchi F et al. 2012. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484:7395514–18
    [Google Scholar]
  56. 56.
    Hernández-Santos N, Gaffen SL 2012. Th17 cells in immunity to Candida albicans. . Cell Host Microbe 11:5425–35
    [Google Scholar]
  57. 57.
    Yang Y, Torchinsky MB, Gobert M, Xiong H, Xu M et al. 2014. Focused specificity of intestinal Th17 cells towards commensal bacterial antigens. Nature 510:7503152–56
    [Google Scholar]
  58. 58.
    Chai JN, Peng Y, Rengarajan S, Solomon BD, Ai TL et al. 2017. Helicobacter species are potent drivers of colonic T cell responses in homeostasis and inflammation. Sci. Immunol. 2:13eaal5068
    [Google Scholar]
  59. 59.
    Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y et al. 2011. Fate mapping of interleukin 17-producing T cells in inflammatory responses. Nat. Immunol. 12:3255–63Elegant description of T cell plasticity, an increasingly important concept.
    [Google Scholar]
  60. 60.
    Wlodarska M, Luo C, Kolde R, d'Hennezel E, Annand JW et al. 2017. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe 22:125–37.e6
    [Google Scholar]
  61. 61.
    Dodd D, Spitzer MH, Treuren WV, Merrill BD, Hryckowian AJ et al. 2017. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551:7682648–52
    [Google Scholar]
  62. 62.
    Gottschalk RA, Corse E, Allison JP 2012. Expression of Helios in peripherally induced Foxp3+ regulatory T cells. J. Immunol. 188:3976–80
    [Google Scholar]
  63. 63.
    Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y et al. 2013. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:7461232–36Highlights the strains of importance in promotion of a tolerant immune response to the microbiota.
    [Google Scholar]
  64. 64.
    Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG et al. 2017. Mining the human gut microbiota for immunomodulatory organisms. Cell 168:5928–43.e11
    [Google Scholar]
  65. 65.
    Ahern PP, Faith JJ, Gordon JI 2014. Mining the human gut microbiota for effector strains that shape the immune system. Immunity 40:6815–23
    [Google Scholar]
  66. 66.
    Geuking MB, Cahenzli J, Lawson MAE, Ng DCK, Slack E et al. 2011. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34:5794–806
    [Google Scholar]
  67. 67.
    Park J, Kim M, Kang SG, Jannasch AH, Cooper B et al. 2015. Short chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol 8:180–93
    [Google Scholar]
  68. 68.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA et al. 2013. The microbial metabolites, short chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:6145569–73
    [Google Scholar]
  69. 69.
    Jaensson E, Uronen-Hansson H, Pabst O, Eksteen B, Tian J et al. 2008. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med. 205:92139–49
    [Google Scholar]
  70. 70.
    Byndloss MX, Olsan EE, Rivera-Chávez F, Tiffany CR, Cevallos SA et al. 2017. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357:6351570–75
    [Google Scholar]
  71. 71.
    Round JL, Lee SM, Li J, Tran G, Jabri B et al. 2011. The Toll-like receptor pathway establishes commensal gut colonization. Science 332:6032974–77Reimagines how a commensal bacterium is tolerated by the host.
    [Google Scholar]
  72. 72.
    Round JL, Mazmanian SK 2010. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. PNAS 107:2712204–9
    [Google Scholar]
  73. 73.
    Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M et al. 2016. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167:41125–36.e8
    [Google Scholar]
  74. 74.
    Sallusto F 2016. Heterogeneity of human CD4+ T cells against microbes. Annu. Rev. Immunol. 34:317–34
    [Google Scholar]
  75. 75.
    Harbour SN, Maynard CL, Zindl CL, Schoeb TR, Weaver CT 2015. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. PNAS 112:227061–66
    [Google Scholar]
  76. 76.
    Kaiko GE, Horvat JC, Beagley KW, Hansbro PM 2008. Immunological decision-making: How does the immune system decide to mount a helper T-cell response?. Immunology 123:3326–38
    [Google Scholar]
  77. 77.
    Trinchieri G 2007. Interleukin-10 production by effector T cells: Th1 cells show self control. J. Exp. Med. 204:2239–43
    [Google Scholar]
  78. 78.
    Powell N, Walker AW, Stolarczyk E, Canavan JB, Gökmen MR et al. 2012. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 37:4674–84
    [Google Scholar]
  79. 79.
    Atarashi K, Suda W, Luo C, Kawaguchi T, Motoo I et al. 2017. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 358:6361359–65
    [Google Scholar]
  80. 80.
    Jankovic D, Kugler DG, Sher A 2010. IL-10 production by CD4+ effector T cells: a mechanism for self-regulation. Mucosal Immunol 3:3239–46
    [Google Scholar]
  81. 81.
    Rutz S, Janke M, Kassner N, Hohnstein T, Krueger M, Scheffold A 2008. Notch regulates IL-10 production by T helper 1 cells. PNAS 105:93497–502
    [Google Scholar]
  82. 82.
    Reynolds LA, Finlay BB, Maizels RM 2015. Cohabitation in the intestine: interactions among helminth parasites, bacterial microbiota, and host immunity. J. Immunol. 195:94059–66
    [Google Scholar]
  83. 83.
    von Moltke J, Ji M, Liang H-E, Locksley RM 2016. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529:7585221–25
    [Google Scholar]
  84. 84.
    Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I et al. 2016. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529:7585226–30
    [Google Scholar]
  85. 85.
    Gerbe F, Jay P 2016. Intestinal tuft cells: epithelial sentinels linking luminal cues to the immune system. Mucosal Immunol 9:61353–59
    [Google Scholar]
  86. 86.
    Fort MM, Cheung J, Yen D, Li J, Zurawski SM et al. 2001. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15:6985–95
    [Google Scholar]
  87. 87.
    Schneider C, O'Leary CE, von Moltke J, Liang H-E, Ang QY et al. 2018. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell 174:2271–84.e14
    [Google Scholar]
  88. 88.
    Yoshimoto T 2018. The hunt for the source of primary interleukin-4: how we discovered that natural killer T cells and basophils determine T helper type 2 cell differentiation in vivo. Front. Immunol. 9:716
    [Google Scholar]
  89. 89.
    Simoni Y, Diana J, Ghazarian L, Beaudoin L, Lehuen A 2013. Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: Are we close to reality?. Clin. Exp. Immunol. 171:18–19
    [Google Scholar]
  90. 90.
    Tupin E, Kinjo Y, Kronenberg M 2007. The unique role of natural killer T cells in the response to microorganisms. Nat. Rev. Microbiol. 5:6405–17
    [Google Scholar]
  91. 91.
    Bendelac A, Savage PB, Teyton L 2007. The biology of NKT cells. Annu. Rev. Immunol. 25:1297–336
    [Google Scholar]
  92. 92.
    Brown LCW, Penaranda C, Kashyap PC, Williams BB, Clardy J et al. 2013. Production of α-galactosylceramide by a prominent member of the human gut microbiota. PLOS Biol 11:7e1001610
    [Google Scholar]
  93. 93.
    An D, Oh SF, Olszak T, Neves JF, Avci FY et al. 2014. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156:1123–33Highlights the understudied but important function of gut lipids in inflammatory disease.
    [Google Scholar]
  94. 94.
    Heaver SL, Johnson EL, Ley RE 2018. Sphingolipids in host-microbial interactions. Curr. Opin. Microbiol. 43:92–99
    [Google Scholar]
  95. 95.
    Olszak T, An D, Zeissig S, Vera MP, Richter J et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336:6080489–93
    [Google Scholar]
  96. 96.
    Ma C, Han M, Heinrich B, Fu Q, Zhang Q et al. 2018. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360:6391eaan5931
    [Google Scholar]
  97. 97.
    Paquin-Proulx D, Ching C, Vujkovic-Cvijin I, Fadrosh D, Loh L et al. 2017. Bacteroides are associated with GALT iNKT cell function and reduction of microbial translocation in HIV-1 infection. Mucosal Immunol 10:169–78
    [Google Scholar]
  98. 98.
    Rouxel O, Da Silva J, Beaudoin L, Nel I, Tard C et al. 2017. Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes. Nat. Immunol. 18:121321–31
    [Google Scholar]
  99. 99.
    Kjer-Nielsen L, Patel O, Corbett AJ, Nours JL, Meehan B et al. 2012. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491:7426717–23
    [Google Scholar]
  100. 100.
    Schmaler M, Colone A, Spagnuolo J, Zimmermann M, Lepore M et al. 2018. Modulation of bacterial metabolism by the microenvironment controls MAIT cell stimulation. Mucosal Immunol 11:1060–70
    [Google Scholar]
  101. 101.
    Dias J, Leeansyah E, Sandberg JK 2017. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. PNAS 114:27E5434–43
    [Google Scholar]
  102. 102.
    Napier RJ, Adams EJ, Gold MC, Lewinsohn DM 2015. The role of mucosal associated invariant T cells in antimicrobial immunity. Front. Immunol. 6:344
    [Google Scholar]
  103. 103.
    Ben Youssef G, Tourret M, Salou M, Ghazarian L, Houdouin V et al. 2018. Ontogeny of human mucosal-associated invariant T cells and related T cell subsets. J. Exp. Med. 215:459–79
    [Google Scholar]
  104. 104.
    Wlodarska M, Kostic AD, Xavier RJ 2015. An integrative view of microbiome-host interactions in inflammatory bowel diseases. Cell Host Microbe 17:5577–91
    [Google Scholar]
  105. 105.
    Graham DB, Xavier RJ 2013. From genetics of inflammatory bowel disease towards mechanistic insights. Trends Immunol 34:8371–78
    [Google Scholar]
  106. 106.
    Kostic AD, Xavier RJ, Gevers D 2014. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146:61489–99
    [Google Scholar]
  107. 107.
    Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W et al. 2014. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15:3382–92
    [Google Scholar]
  108. 108.
    Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG et al. 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. PNAS 105:4316731–36
    [Google Scholar]
  109. 109.
    Willing B, Halfvarson J, Dicksved J, Rosenquist M, Järnerot G et al. 2009. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm. Bowel Dis. 15:5653–60
    [Google Scholar]
  110. 110.
    Matsuoka K, Kanai T 2015. The gut microbiota and inflammatory bowel disease. Semin. Immunopathol. 37:47–55
    [Google Scholar]
  111. 111.
    Hall AB, Yassour M, Sauk J, Garner A, Jiang X et al. 2017. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med 9:1103
    [Google Scholar]
  112. 112.
    Strauss J, Kaplan GG, Beck PL, Rioux K, Panaccione R et al. 2011. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm. Bowel Dis. 17:91971–78
    [Google Scholar]
  113. 113.
    Chu H, Khosravi A, Kusumawardhani IP, Kwon AHK, Vasconcelos AC et al. 2016. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352:62891116–20
    [Google Scholar]
  114. 114.
    Lassen KG, Kuballa P, Conway KL, Patel KK, Becker CE et al. 2014. Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. PNAS 111:217741–46
    [Google Scholar]
  115. 115.
    Seregin SS, Golovchenko N, Schaf B, Chen J, Pudlo NA et al. 2017. NLRP6 protects Il10−/− mice from colitis by limiting colonization of Akkermansia muciniphila. . Cell Rep 19:4733–45 Erratum. 2017 Cell Rep19–2174
    [Google Scholar]
  116. 116.
    Tiratterra E, Franco P, Porru E, Katsanos KH, Christodoulou DK, Roda G 2018. Role of bile acids in inflammatory bowel disease. Ann. Gastroenterol. 31:3266–72
    [Google Scholar]
  117. 117.
    Ananthakrishnan AN 2016. Vitamin D and inflammatory bowel disease. Gastroenterol. Hepatol. 12:8513–15
    [Google Scholar]
  118. 118.
    Bryan P-F, Karla C, Edgar Alejandro M-T, Sara Elva E-P, Gemma F, Luz C 2016. Sphingolipids as mediators in the crosstalk between microbiota and intestinal cells: implications for inflammatory bowel disease. Mediators Inflamm 2016:9890141. Corrigendum. 2016 Mediators Inflamm 2016.7267956
    [Google Scholar]
  119. 119.
    Wan P, Liu X, Xiong Y, Ren Y, Chen J et al. 2016. Extracellular ATP mediates inflammatory responses in colitis via P2 × 7 receptor signaling. Sci. Rep. 6:19108
    [Google Scholar]
  120. 120.
    Vezza T, Rodríguez-Nogales A, Algieri F, Utrilla MP, Rodriguez-Cabezas ME, Galvez J 2016. Flavonoids in inflammatory bowel disease: a review. Nutrients 8:421
    [Google Scholar]
  121. 121.
    Nikolaus S, Schulte B, Al-Massad N, Thieme F, Schulte DM et al. 2017. Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases. Gastroenterology 153:61504–16.e2
    [Google Scholar]
  122. 122.
    Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F 2016. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:61332–45
    [Google Scholar]
  123. 123.
    Maloy KJ, Powrie F 2011. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474:7351298–306
    [Google Scholar]
  124. 124.
    Fonseca DM da, Hand TW, Han S-J, Gerner MY, Glatman Zaretsky A et al. 2015. Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity. Cell 163:2354–66
    [Google Scholar]
  125. 125.
    Hand TW, Dos Santos LM, Bouladoux N, Molloy MJ, Pagán AJ et al. 2012. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science 337:61011553–56Demonstration of an important concept to consider for the induction of IBD and gut inflammation.
    [Google Scholar]
  126. 126.
    Hand TW, Vujkovic-Cvijin I, Ridaura VK, Belkaid Y 2016. Linking the microbiota, chronic disease, and the immune system. Trends Endocrinol. Metab. 27:12831–43
    [Google Scholar]
  127. 127.
    Belkaid Y, Bouladoux N, Hand TW 2013. Effector and memory T cell responses to commensal bacteria. Trends Immunol 34:6299–306
    [Google Scholar]
  128. 128.
    Rigottier-Gois L 2013. Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J 7:71256–61
    [Google Scholar]
  129. 129.
    Ilott NE, Bollrath J, Danne C, Schiering C, Shale M et al. 2016. Defining the microbial transcriptional response to colitis through integrated host and microbiome profiling. ISME J 10:102389–404
    [Google Scholar]
  130. 130.
    Zhu W, Winter MG, Byndloss MX, Spiga L, Duerkop BA et al. 2018. Precision editing of the gut microbiota ameliorates colitis. Nature 553:7687208–11
    [Google Scholar]
  131. 131.
    Chang PV, Hao L, Offermanns S, Medzhitov R 2014. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. PNAS 111:62247–52
    [Google Scholar]
  132. 132.
    Agus A, Planchais J, Sokol H 2018. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23:6716–24
    [Google Scholar]
  133. 133.
    Chiu C-C, Ching Y-H, Wang Y-C, Liu J-Y, Li Y-P et al. 2014. Monocolonization of germ-free mice with Bacteroides fragilis protects against dextran sulfate sodium-induced acute colitis. BioMed Res. Int. 2014:675786
    [Google Scholar]
  134. 134.
    Bluestone JA, Herold K, Eisenbarth G 2010. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464:72931293–300
    [Google Scholar]
  135. 135.
    Atkinson MA, Eisenbarth GS, Michels AW 2014. Type 1 diabetes. Lancet 383:991169–82
    [Google Scholar]
  136. 136.
    Todd JA 2010. Etiology of type 1 diabetes. Immunity 32:4457–67
    [Google Scholar]
  137. 137.
    Gerold KD, Zheng P, Rainbow DB, Zernecke A, Wicker LS, Kissler S 2011. The soluble CTLA-4 splice variant protects from type 1 diabetes and potentiates regulatory T-cell function. Diabetes 60:71955–63
    [Google Scholar]
  138. 138.
    Garg G, Tyler JR, Yang JHM, Cutler AJ, Downes K et al. 2012. Type 1 diabetes-associated IL2RA variation lowers IL-2 signaling and contributes to diminished CD4+CD25+ regulatory T cell function. J. Immunol. 188:94644–53
    [Google Scholar]
  139. 139.
    Rewers M, Ludvigsson J 2016. Environmental risk factors for type 1 diabetes. Lancet 387:100352340–48
    [Google Scholar]
  140. 140.
    Anderson MS, Bluestone JA 2005. The NOD mouse: a model of immune dysregulation. Annu. Rev. Immunol. 23:1447–85
    [Google Scholar]
  141. 141.
    Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L et al. 2008. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455:72161109–13
    [Google Scholar]
  142. 142.
    Markle JGM, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM et al. 2013. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339:61231084–88
    [Google Scholar]
  143. 143.
    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J et al. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:7480451–55Demonstrates the importance of the functional output of metabolites from microbiota in promotion of tolerance.
    [Google Scholar]
  144. 144.
    Valladares R, Sankar D, Li N, Williams E, Lai KK et al. 2010. Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats. PLOS ONE 5:5e10507
    [Google Scholar]
  145. 145.
    Brown K, Godovannyi A, Ma C, Zhang Y, Ahmadi-Vand Z et al. 2016. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice. ISME J 10:2321–32
    [Google Scholar]
  146. 146.
    Becattini S, Taur Y, Pamer EG 2016. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol. Med. 22:6458–78
    [Google Scholar]
  147. 147.
    Kachapati K, Adams D, Bednar K, Ridgway WM 2012. The non-obese diabetic (NOD) mouse as a model of human type 1 diabetes. Methods Mol. Biol. 933:3–16
    [Google Scholar]
  148. 148.
    Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL et al. 2011. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5:182–91
    [Google Scholar]
  149. 149.
    Kostic AD, Gevers D, Siljander H, Vatanen T, Hyötyläinen T et al. 2015. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17:2260–73
    [Google Scholar]
  150. 150.
    Vatanen T, Kostic AD, d'Hennezel E, Siljander H, Franzosa EA et al. 2016. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165:4842–53 Erratum. 2016 Cell165–1551Demonstrates a framework of a novel mechanism of how the microbiota can trigger autoimmunity.
    [Google Scholar]
  151. 151.
    Nanjundappa RH, Ronchi F, Wang J, Clemente-Casares X, Yamanouchi J et al. 2017. A gut microbial mimic that hijacks diabetogenic autoreactivity to suppress colitis. Cell 171:3655–67.e17
    [Google Scholar]
  152. 152.
    Tanoue T, Morita S, Plichta D, Skelly A, Suda W et al. 2019. A defined commensal consortium induces CD8 T cells and anti-cancer immunity. Nature 565:6005
    [Google Scholar]
  153. 153.
    Dendrou CA, Fugger L, Friese MA 2015. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15:9545–58
    [Google Scholar]
  154. 154.
    Jangi S, Gandhi R, Cox LM, Li N, von Glehn F et al. 2016. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 7:12015
    [Google Scholar]
  155. 155.
    Constantinescu CS, Farooqi N, O'Brien K, Gran B 2011. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br. J. Pharmacol. 164:41079–106
    [Google Scholar]
  156. 156.
    Lee YK, Menezes JS, Umesaki Y, Mazmanian SK 2011. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. PNAS 108:Suppl. 14615–22
    [Google Scholar]
  157. 157.
    Berer K, Mues M, Koutrolos M, Al Rasbi Z, Boziki M et al. 2011. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479:7374538–41
    [Google Scholar]
  158. 158.
    Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, Burroughs AR, Foureau DM et al. 2009. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J. Immunol. 183:106041–50
    [Google Scholar]
  159. 159.
    Ochoa-Repáraz J, Mielcarz DW, Wang Y, Begum-Haque S, Dasgupta S et al. 2010. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol 3:5487–95
    [Google Scholar]
  160. 160.
    Juricek L, Carcaud J, Pelhaitre A, Riday TT, Chevallier A et al. 2017. AhR-deficiency as a cause of demyelinating disease and inflammation. Sci. Rep. 7:19794
    [Google Scholar]
  161. 161.
    Rothhammer V, Borucki DM, Tjon EC, Takenaka MC, Chao C et al. 2018. Microglial control of astrocytes in response to microbial metabolites. Nature 557:7707724–28
    [Google Scholar]
  162. 162.
    Cekanaviciute E, Yoo BB, Runia TF, Debelius JW, Singh S et al. 2017. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. PNAS 114:4010713–18
    [Google Scholar]
  163. 163.
    Miyake S, Kim S, Suda W, Oshima K, Nakamura M et al. 2015. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV clusters. PLOS ONE 10:9e0137429
    [Google Scholar]
  164. 164.
    Cosorich I, Dalla-Costa G, Sorini C, Ferrarese R, Messina MJ et al. 2017. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci. Adv. 3:7e1700492
    [Google Scholar]
  165. 165.
    Dopkins N, Nagarkatti PS, Nagarkatti M 2018. The role of gut microbiome and associated metabolome in the regulation of neuroinflammation in multiple sclerosis and its implications in attenuating chronic inflammation in other inflammatory and autoimmune disorders. Immunology 154:2178–85
    [Google Scholar]
  166. 166.
    McInnes IB, Schett G 2011. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365:232205–19
    [Google Scholar]
  167. 167.
    Maeda Y, Takeda K 2017. Role of gut microbiota in rheumatoid arthritis. J. Clin. Med. 6:660
    [Google Scholar]
  168. 168.
    Abdollahi-Roodsaz S, Joosten LAB, Koenders MI, Devesa I, Roelofs MF et al. 2008. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J. Clin. Investig. 118:1205–16
    [Google Scholar]
  169. 169.
    Wu HJ, Ivanov II, Darce J, Hattori K, Shima T et al. 2010. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32:6815–27
    [Google Scholar]
  170. 170.
    Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C et al. 2013. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2:e01202
    [Google Scholar]
  171. 171.
    Maeda Y, Kurakawa T, Umemoto E, Motooka D, Ito Y et al. 2016. Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rheumatol 68:112646–61
    [Google Scholar]
  172. 172.
    Chen J, Wright K, Davis JM, Jeraldo P, Marietta EV et al. 2016. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med 8:143
    [Google Scholar]
  173. 173.
    Gómez-Gallego C, Pohl S, Salminen S, De Vos WM, Kneifel W 2016. Akkermansia muciniphila: a novel functional microbe with probiotic properties. Benef. Microbes 7:4571–84
    [Google Scholar]
  174. 174.
    Plovier H, Everard A, Druart C, Depommier C, Hul MV et al. 2017. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23:1107–13
    [Google Scholar]
  175. 175.
    Ottman N, Reunanen J, Meijerink M, Pietilä TE, Kainulainen V et al. 2017. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLOS ONE 12:3e0173004
    [Google Scholar]
  176. 176.
    Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. PNAS 110:9066–71
    [Google Scholar]
  177. 177.
    Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA et al. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745–57
    [Google Scholar]
  178. 178.
    Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S et al. 2010. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328:228–31
    [Google Scholar]
  179. 179.
    Lemire P, Robertson SJ, Maughan H, Tattoli I, Streutker CJ et al. 2018. The NLR protein NLRP6 does not impact gut microbiota composition. Cell Rep 21:3653–6
    [Google Scholar]
  180. 180.
    Ubeda C, Lipuma L, Gobourne A, Viale A, Leiner I et al. 2012. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J. Exp. Med. 209:1445–56
    [Google Scholar]
  181. 181.
    Joice R, Yasuda K, Shafquat A, Morgan XC, Huttenhower C 2014. Determining microbial products and identifying molecular targets in the human microbiome. Cell Metab 20:5731–41
    [Google Scholar]
  182. 182.
    Balskus EP 2017. Deciphering the chemistry of the human gut microbiome. The Chemistry of Microbiomes: Proceedings of a Seminar Series57–64 Washington, DC: Natl. Acad. Press
    [Google Scholar]
  183. 183.
    Segata N 2018. On the road to strain-resolved comparative metagenomics. mSystems 3:2e00190–17
    [Google Scholar]
  184. 184.
    Serres MH, Gopal S, Nahum LA, Liang P, Gaasterland T, Riley M 2001. A functional update of the Escherichia coli K-12 genome. Genome Biol 2:9 research0035 1–7
    [Google Scholar]
  185. 185.
    Suez J, Elinav E 2017. The path towards microbiome-based metabolite treatment. Nat. Microbiol. 2:17075
    [Google Scholar]
  186. 186.
    Petrof EO, Gloor GB, Vanner SJ, Weese SJ, Carter D et al. 2013. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome 1:3
    [Google Scholar]
  187. 187.
    Jacob V, Crawford C, Cohen-Mekelburg S, Viladomiu M, Putzel GG et al. 2017. Single delivery of high-diversity fecal microbiota preparation by colonoscopy is safe and effective in increasing microbial diversity in active ulcerative colitis. Inflamm. Bowel Dis. 23:6903–11
    [Google Scholar]
  188. 188.
    Choi HH, Cho Y-S 2016. Fecal microbiota transplantation: current applications, effectiveness, and future perspectives. Clin. Endosc. 49:3257–65
    [Google Scholar]
  189. 189.
    Gareau MG, Sherman PM, Walker WA 2010. Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 7:9503–14
    [Google Scholar]
  190. 190.
    Panigrahi P, Parida S, Nanda NC, Satpathy R, Pradhan L et al. 2017. A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 548:7668407–12 Corrigendum. 2018 Nature 555:238
    [Google Scholar]
  191. 191.
    Dou J, Bennett MR Synthetic biology and the gut microbiome. Biotechnol. J. 13:51700159
    [Google Scholar]
  192. 192.
    Graham DB, Luo C, O'Connell DJ, Lefkovith A, Brown EM et al. 2018. Antigen discovery and specification of immunodominance hierarchies for MHCII-restricted epitopes. Nat. Med. 24:111762–72
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-042718-041841
Loading
/content/journals/10.1146/annurev-immunol-042718-041841
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error