1932

Abstract

Lymphocytes spanning the entire innate-adaptive spectrum can stably reside in tissues and constitute an integral component of the local defense network against immunological challenges. In tight interactions with the epithelium and endothelium, tissue-resident lymphocytes sense antigens and alarmins elicited by infectious microbes and abiotic stresses at barrier sites and mount effector responses to restore tissue homeostasis. Of note, such a host cell–directed immune defense system has been recently demonstrated to surveil epithelial cell transformation and carcinoma development, as well as cancer cell metastasis at selected distant organs, and thus represents a primordial cancer immune defense module. Here we review how distinct lineages of tissue-resident innate lymphoid cells, innate-like T cells, and adaptive T cells participate in a form of multilayered cancer immunity in murine models and patients, and how their convergent effector programs may be targeted through both shared and private regulatory pathways for cancer immunotherapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-083122-043836
2024-06-28
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-083122-043836.html?itemId=/content/journals/10.1146/annurev-immunol-083122-043836&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Masopust D, Soerens AG. 2019.. Tissue-resident T cells and other resident leukocytes. . Annu. Rev. Immunol. 37::52146
    [Crossref] [Google Scholar]
  2. 2.
    Fan X, Rudensky AY. 2016.. Hallmarks of tissue-resident lymphocytes. . Cell 164::1198211
    [Crossref] [Google Scholar]
  3. 3.
    Ferguson A. 1977.. Intraepithelial lymphocytes of the small intestine. . Gut 18::92137
    [Crossref] [Google Scholar]
  4. 4.
    McDonald BD, Jabri B, Bendelac A. 2018.. Diverse developmental pathways of intestinal intraepithelial lymphocytes. . Nat. Rev. Immunol. 18::51425
    [Crossref] [Google Scholar]
  5. 5.
    Janeway CA Jr. 1992.. The immune system evolved to discriminate infectious nonself from noninfectious self. . Immunol. Today 13::1116
    [Crossref] [Google Scholar]
  6. 6.
    Virchow R. 1858.. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Zwanzig Vorlesungen gehalten während der Monate Februar, März und April 1858 im pathologischen Institute zu Berlin. Berlin:: A. Hirschwald
    [Google Scholar]
  7. 7.
    Ehrlich P. 1909.. Ueber den jetzigen Stand der Karzinomforschung. . Ned. Tijdschr. Geneeskd. 5::27390
    [Google Scholar]
  8. 8.
    Thomas L. 1959.. Discussion. . In Cellular and Humoral Aspects of Hypersensitive States, ed. HS Lawrence , pp. 52932. New York:: Hoeber Harper
    [Google Scholar]
  9. 9.
    Burnet M. 1957.. Cancer—a biological approach. I. The processes of control. . Br. Med. J. 1::77986
    [Crossref] [Google Scholar]
  10. 10.
    Dunn GP, Old LJ, Schreiber RD. 2004.. The three Es of cancer immunoediting. . Annu. Rev. Immunol. 22::32960
    [Crossref] [Google Scholar]
  11. 11.
    Herzenberg LA, Herzenberg LA. 1989.. Toward a layered immune system. . Cell 59::95354
    [Crossref] [Google Scholar]
  12. 12.
    Vivier E, van de Pavert SA, Cooper MD, Belz GT. 2016.. The evolution of innate lymphoid cells. . Nat. Immunol. 17::79094
    [Crossref] [Google Scholar]
  13. 13.
    Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, et al. 2018.. Innate lymphoid cells: 10 years on. . Cell 174::105466
    [Crossref] [Google Scholar]
  14. 14.
    Kogame T, Egawa G, Nomura T, Kabashima K. 2022.. Waves of layered immunity over innate lymphoid cells. . Front. Immunol. 13::957711
    [Crossref] [Google Scholar]
  15. 15.
    Kiessling R, Klein E, Wigzell H. 1975.. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. . Eur. J. Immunol. 5::11217
    [Crossref] [Google Scholar]
  16. 16.
    Herberman RB, Nunn ME, Lavrin DH. 1975.. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. . Int. J. Cancer 16::21629
    [Crossref] [Google Scholar]
  17. 17.
    Gorelik E, Wiltrout RH, Okumura K, Habu S, Herberman RB. 1982.. Role of NK cells in the control of metastatic spread and growth of tumor cells in mice. . Int. J. Cancer 30::10712
    [Crossref] [Google Scholar]
  18. 18.
    Dadi S, Chhangawala S, Whitlock BM, Franklin RA, Luo CT, et al. 2016.. Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. . Cell 164::36577
    [Crossref] [Google Scholar]
  19. 19.
    Nixon BG, Chou C, Krishna C, Dadi S, Michel AO, et al. 2022.. Cytotoxic granzyme C-expressing ILC1s contribute to antitumor immunity and neonatal autoimmunity. . Sci. Immunol. 7::eabi8642
    [Crossref] [Google Scholar]
  20. 20.
    Friedrich C, Taggenbrock R, Doucet-Ladevèze R, Golda G, Moenius R, et al. 2021.. Effector differentiation downstream of lineage commitment in ILC1s is driven by Hobit across tissues. . Nat. Immunol. 22::125667
    [Crossref] [Google Scholar]
  21. 21.
    Di Censo C, Marotel M, Mattiola I, Müller L, Scarno G, et al. 2021.. Granzyme A and CD160 expression delineates ILC1 with graded functions in the mouse liver. . Eur. J. Immunol. 51::256875
    [Crossref] [Google Scholar]
  22. 22.
    Flommersfeld S, Bottcher JP, Ersching J, Flossdorf M, Meiser P, et al. 2021.. Fate mapping of single NK cells identifies a type 1 innate lymphoid-like lineage that bridges innate and adaptive recognition of viral infection. . Immunity 54::2288304.e7
    [Crossref] [Google Scholar]
  23. 23.
    Dhume K, Kaye B, McKinstry KK. 2022.. Regulation of CD4 T cell responses by the transcription factor eomesodermin. . Biomolecules 12::1549
    [Crossref] [Google Scholar]
  24. 24.
    Xu W, Cherrier DE, Chea S, Vosshenrich C, Serafini N, et al. 2019.. An Id2RFP-reporter mouse redefines innate lymphoid cell precursor potentials. . Immunity 50::105468.e3
    [Crossref] [Google Scholar]
  25. 25.
    Sparano C, Solis-Sayago D, Vijaykumar A, Rickenbach C, Vermeer M, et al. 2022.. Embryonic and neonatal waves generate distinct populations of hepatic ILC1s. . Sci. Immunol. 7::eabo6641
    [Crossref] [Google Scholar]
  26. 26.
    Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, et al. 2013.. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. . Immunity 38::76981
    [Crossref] [Google Scholar]
  27. 27.
    Kansler ER, Dadi S, Krishna C, Nixon BG, Stamatiades EG, et al. 2022.. Cytotoxic innate lymphoid cells sense cancer cell-expressed interleukin-15 to suppress human and murine malignancies. . Nat. Immunol. 23::90415
    [Crossref] [Google Scholar]
  28. 28.
    Bulfone-Paus S, Bulanova E, Budagian V, Paus R. 2006.. The interleukin-15/interleukin-15 receptor system as a model for juxtacrine and reverse signaling. . Bioessays 28::36277
    [Crossref] [Google Scholar]
  29. 29.
    Gao Y, Souza-Fonseca-Guimaraes F, Bald T, Ng SS, Young A, et al. 2017.. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. . Nat. Immunol. 18::100415
    [Crossref] [Google Scholar]
  30. 30.
    Vienne M, Etiennot M, Escalière B, Galluso J, Spinelli L, et al. 2021.. Type 1 innate lymphoid cells limit the antitumoral immune response. . Front. Immunol. 12::768989
    [Crossref] [Google Scholar]
  31. 31.
    Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, et al. 2008.. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. . Immunity 28::57180
    [Crossref] [Google Scholar]
  32. 32.
    Raulet DH. 2003.. Roles of the NKG2D immunoreceptor and its ligands. . Nat. Rev. Immunol. 3::78190
    [Crossref] [Google Scholar]
  33. 33.
    Karre K. 2008.. Natural killer cell recognition of missing self. . Nat. Immunol. 9::47780
    [Crossref] [Google Scholar]
  34. 34.
    Horng T, Bezbradica JS, Medzhitov R. 2007.. NKG2D signaling is coupled to the interleukin 15 receptor signaling pathway. . Nat. Immunol. 8::134552
    [Crossref] [Google Scholar]
  35. 35.
    Balint S, Lopes FB, Davis DM. 2018.. A nanoscale reorganization of the IL-15 receptor is triggered by NKG2D in a ligand-dependent manner. . Sci. Signal. 11::eaal3606
    [Crossref] [Google Scholar]
  36. 36.
    Morvan MG, Lanier LL. 2016.. NK cells and cancer: You can teach innate cells new tricks. . Nat. Rev. Cancer 16::719
    [Crossref] [Google Scholar]
  37. 37.
    López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. 2017.. Control of metastasis by NK cells. . Cancer Cell 32::13554
    [Crossref] [Google Scholar]
  38. 38.
    Lopes N, Vivier E, Narni-Mancinelli E. 2023.. Natural killer cells and type 1 innate lymphoid cells in cancer. . Semin. Immunol. 66::101709
    [Crossref] [Google Scholar]
  39. 39.
    Ducimetière L, Lucchiari G, Litscher G, Nater M, Heeb L, et al. 2021.. Conventional NK cells and tissue-resident ILC1s join forces to control liver metastasis. . PNAS 118::e2026271118
    [Crossref] [Google Scholar]
  40. 40.
    Nixon BG, Gao S, Wang X, MO Li. 2023.. TGFβ control of immune responses in cancer: a holistic immuno-oncology perspective. . Nat. Rev. Immunol. 23::34662
    [Crossref] [Google Scholar]
  41. 41.
    Viel S, Marcais A, Guimaraes FS, Loftus R, Rabilloud J, et al. 2016.. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. . Sci. Signal. 9::ra19
    [Crossref] [Google Scholar]
  42. 42.
    Cortez VS, Ulland TK, Cervantes-Barragan L, Bando JK, Robinette ML, et al. 2017.. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling. . Nat. Immunol. 18::9951003
    [Crossref] [Google Scholar]
  43. 43.
    Li Z, Ma R, Ma S, Tian L, Lu T, et al. 2022.. ILC1s control leukemia stem cell fate and limit development of AML. . Nat. Immunol. 23::71830
    [Crossref] [Google Scholar]
  44. 44.
    Cardoso Alves L, Corazza N, Micheau O, Krebs P. 2021.. The multifaceted role of TRAIL signaling in cancer and immunity. . FEBS J. 288::553054
    [Crossref] [Google Scholar]
  45. 45.
    Höfle J, Trenkner T, Kleist N, Schwane V, Vollmers S, et al. 2022.. Engagement of TRAIL triggers degranulation and IFNγ production in human natural killer cells. . EMBO Rep. 23::e54133
    [Crossref] [Google Scholar]
  46. 46.
    Bottcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, et al. 2018.. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. . Cell 172::102237.e14
    [Crossref] [Google Scholar]
  47. 47.
    Hazenberg MD, Spits H. 2014.. Human innate lymphoid cells. . Blood 124::7009
    [Crossref] [Google Scholar]
  48. 48.
    Crinier A, Milpied P, Escalière B, Piperoglou C, Galluso J, et al. 2018.. High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice. . Immunity 49::97186.e5
    [Crossref] [Google Scholar]
  49. 49.
    Wu C, Espinoza DA, Koelle SJ, Yang D, Truitt L, et al. 2018.. Clonal expansion and compartmentalized maintenance of rhesus macaque NK cell subsets. . Sci. Immunol. 3::eaat9781
    [Crossref] [Google Scholar]
  50. 50.
    Collins PL, Cella M, Porter SI, Li S, Gurewitz GL, et al. 2019.. Gene regulatory programs conferring phenotypic identities to human NK cells. . Cell 176::34860.e12
    [Crossref] [Google Scholar]
  51. 51.
    Marquardt N, Kekalainen E, Chen P, Lourda M, Wilson JN, et al. 2019.. Unique transcriptional and protein-expression signature in human lung tissue-resident NK cells. . Nat. Commun. 10::3841
    [Crossref] [Google Scholar]
  52. 52.
    Dogra P, Rancan C, Ma W, Toth M, Senda T, et al. 2020.. Tissue determinants of human NK cell development, function, and residence. . Cell 180::74963.e13
    [Crossref] [Google Scholar]
  53. 53.
    Kramer B, Nalin AP, Ma F, Eickhoff S, Lutz P, et al. 2023.. Single-cell RNA sequencing identifies a population of human liver-type ILC1s. . Cell Rep. 42::111937
    [Crossref] [Google Scholar]
  54. 54.
    Cozar B, Greppi M, Carpentier S, Narni-Mancinelli E, Chiossone L, Vivier E. 2021.. Tumor-infiltrating natural killer cells. . Cancer Discov. 11::3444
    [Crossref] [Google Scholar]
  55. 55.
    Moreno-Nieves UY, Tay JK, Saumyaa S, Horowitz NB, Shin JH, et al. 2021.. Landscape of innate lymphoid cells in human head and neck cancer reveals divergent NK cell states in the tumor microenvironment. . PNAS 118::e2101169118
    [Crossref] [Google Scholar]
  56. 56.
    Simoni Y, Fehlings M, Kloverpris HN, McGovern N, Koo SL, et al. 2017.. Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. . Immunity 46::14861
    [Crossref] [Google Scholar]
  57. 57.
    Carrega P, Orecchia P, Quatrini L, Tumino N, Vene R, et al. 2020.. Characterisation of innate lymphoid cell subsets infiltrating colorectal carcinoma. . Gut 69::226163
    [Crossref] [Google Scholar]
  58. 58.
    Trabanelli S, Curti A, Lecciso M, Salomé B, Riether C, et al. 2015.. CD127+ innate lymphoid cells are dysregulated in treatment naive acute myeloid leukemia patients at diagnosis. . Haematologica 100::e25760
    [Crossref] [Google Scholar]
  59. 59.
    Caligiuri M, Li Z, Ma R, Tang H, Zhang J, et al. 2023.. Human ILC1s target leukemia stem cells and control development of AML. . Res. Sq. https://doi.org/10.21203/rs.3.rs-2319959/v1
    [Google Scholar]
  60. 60.
    Salomé B, Gomez-Cadena A, Loyon R, Suffiotti M, Salvestrini V, et al. 2019.. CD56 as a marker of an ILC1-like population with NK cell properties that is functionally impaired in AML. . Blood Adv. 3::367487
    [Crossref] [Google Scholar]
  61. 61.
    Ikeda A, Ogino T, Kayama H, Okuzaki D, Nishimura J, et al. 2020.. Human NKp44+ group 3 innate lymphoid cells associate with tumor-associated tertiary lymphoid structures in colorectal cancer. . Cancer Immunol. Res. 8::72431
    [Crossref] [Google Scholar]
  62. 62.
    Qi J, Crinier A, Escalière B, Ye Y, Wang Z, et al. 2021.. Single-cell transcriptomic landscape reveals tumor specific innate lymphoid cells associated with colorectal cancer progression. . Cell Rep. Med. 2::100353
    [Crossref] [Google Scholar]
  63. 63.
    Mayassi T, Barreiro LB, Rossjohn J, Jabri B. 2021.. A multilayered immune system through the lens of unconventional T cells. . Nature 595::50110
    [Crossref] [Google Scholar]
  64. 64.
    Stritesky GL, Jameson SC, Hogquist KA. 2012.. Selection of self-reactive T cells in the thymus. . Annu. Rev. Immunol. 30::95114
    [Crossref] [Google Scholar]
  65. 65.
    Godfrey DI, Le Nours J, Andrews DM, Uldrich AP, Rossjohn J. 2018.. Unconventional T cell targets for cancer immunotherapy. . Immunity 48::45373
    [Crossref] [Google Scholar]
  66. 66.
    Chou C, Zhang X, Krishna C, Nixon BG, Dadi S, et al. 2022.. Programme of self-reactive innate-like T cell-mediated cancer immunity. . Nature 605::13945
    [Crossref] [Google Scholar]
  67. 67.
    Leishman AJ, Gapin L, Capone M, Palmer E, MacDonald HR, et al. 2002.. Precursors of functional MHC class I- or class II-restricted CD8αα+ T cells are positively selected in the thymus by agonist self-peptides. . Immunity 16::35564
    [Crossref] [Google Scholar]
  68. 68.
    Yamagata T, Mathis D, Benoist C. 2004.. Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells. . Nat. Immunol. 5::597605
    [Crossref] [Google Scholar]
  69. 69.
    Gangadharan D, Lambolez F, Attinger A, Wang-Zhu Y, Sullivan BA, Cheroutre H. 2006.. Identification of pre- and postselection TCRαβ+ intraepithelial lymphocyte precursors in the thymus. . Immunity 25::63141
    [Crossref] [Google Scholar]
  70. 70.
    Pobezinsky LA, Angelov GS, Tai X, Jeurling S, Van Laethem F, et al. 2012.. Clonal deletion and the fate of autoreactive thymocytes that survive negative selection. . Nat. Immunol. 13::56978
    [Crossref] [Google Scholar]
  71. 71.
    McDonald BD, Bunker JJ, Ishizuka IE, Jabri B, Bendelac A. 2014.. Elevated T cell receptor signaling identifies a thymic precursor to the TCRαβ+CD4CD8β intraepithelial lymphocyte lineage. . Immunity 41::21929
    [Crossref] [Google Scholar]
  72. 72.
    Mayans S, Stepniak D, Palida S, Larange A, Dreux J, et al. 2014.. αβT cell receptors expressed by CD4CD8αβ intraepithelial T cells drive their fate into a unique lineage with unusual MHC reactivities. . Immunity 41::20718
    [Crossref] [Google Scholar]
  73. 73.
    Ruscher R, Kummer RL, Lee YJ, Jameson SC, Hogquist KA. 2017.. CD8αα intraepithelial lymphocytes arise from two main thymic precursors. . Nat. Immunol. 18::77179
    [Crossref] [Google Scholar]
  74. 74.
    Golec DP, Hoeppli RE, Henao Caviedes LM, McCann J, Levings MK, Baldwin TA. 2017.. Thymic progenitors of TCRαβ+ CD8αα intestinal intraepithelial lymphocytes require RasGRP1 for development. . J. Exp. Med. 214::242135
    [Crossref] [Google Scholar]
  75. 75.
    Klose CSN, Hummel JF, Faller L, d'Hargues Y, Ebert K, Tanriver Y. 2018.. A committed postselection precursor to natural TCRαβ+ intraepithelial lymphocytes. . Mucosal Immunol. 11::33344
    [Crossref] [Google Scholar]
  76. 76.
    Steege JC, Buurman WA, Forget PP. 1997.. The neonatal development of intraepithelial and lamina propria lymphocytes in the murine small intestine. . Dev. Immunol. 5::12128
    [Crossref] [Google Scholar]
  77. 77.
    Ruscher R, Lee ST, Salgado OC, Breed ER, Osum SH, Hogquist KA. 2020.. Intestinal CD8αα IELs derived from two distinct thymic precursors have staggered ontogeny. . J. Exp. Med. 217::e20192336
    [Crossref] [Google Scholar]
  78. 78.
    Jabri B, Abadie V. 2015.. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. . Nat. Rev. Immunol. 15::77183
    [Crossref] [Google Scholar]
  79. 79.
    Humphrey MB, Lanier LL, Nakamura MC. 2005.. Role of ITAM-containing adapter proteins and their receptors in the immune system and bone. . Immunol. Rev. 208::5065
    [Crossref] [Google Scholar]
  80. 80.
    Sen Santara S, Lee DJ, Crespo A, Hu JJ, Walker C, et al. 2023.. The NK cell receptor NKp46 recognizes ecto-calreticulin on ER-stressed cells. . Nature 616::34856
    [Crossref] [Google Scholar]
  81. 81.
    Leishman AJ, Naidenko OV, Attinger A, Koning F, Lena CJ, et al. 2001.. T cell responses modulated through interaction between CD8αα and the nonclassical MHC class I molecule, TL. . Science 294::193639
    [Crossref] [Google Scholar]
  82. 82.
    Cheroutre H, Lambolez F. 2008.. Doubting the TCR coreceptor function of CD8αα. . Immunity 28::14959
    [Crossref] [Google Scholar]
  83. 83.
    Verstichel G, Vermijlen D, Martens L, Goetgeluk G, Brouwer M, et al. 2017.. The checkpoint for agonist selection precedes conventional selection in human thymus. . Sci. Immunol. 2::eaah4232
    [Crossref] [Google Scholar]
  84. 84.
    Park JE, Botting RA, Domínguez Conde C, Popescu DM, Lavaert M, et al. 2020.. A cell atlas of human thymic development defines T cell repertoire formation. . Science 367::eaay3224
    [Crossref] [Google Scholar]
  85. 85.
    Daley SR, Hu DY, Goodnow CC. 2013.. Helios marks strongly autoreactive CD4+ T cells in two major waves of thymic deletion distinguished by induction of PD-1 or NF-κB. . J. Exp. Med. 210::26985
    [Crossref] [Google Scholar]
  86. 86.
    Billiet L, De Cock L, Sanchez Sanchez G, Mayer RL, Goetgeluk G, et al. 2023.. Single-cell profiling identifies a novel human polyclonal unconventional T cell lineage. . J. Exp. Med. 220::e20220942
    [Crossref] [Google Scholar]
  87. 87.
    Zhang L, Yu X, Zheng L, Zhang Y, Li Y, et al. 2018.. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. . Nature 564::26872
    [Crossref] [Google Scholar]
  88. 88.
    Mlecnik B, Bindea G, Angell HK, Sasso MS, Obenauf AC, et al. 2014.. Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. . Sci. Transl. Med. 6::228ra37
    [Crossref] [Google Scholar]
  89. 89.
    Angelova M, Mlecnik B, Vasaturo A, Bindea G, Fredriksen T, et al. 2018.. Evolution of metastases in space and time under immune selection. . Cell 175::75165.e16
    [Crossref] [Google Scholar]
  90. 90.
    Koh JY, Rha MS, Choi SJ, Lee HS, Han JW, et al. 2022.. Identification of a distinct NK-like hepatic T-cell population activated by NKG2C in a TCR-independent manner. . J. Hepatol. 77::105970
    [Crossref] [Google Scholar]
  91. 91.
    Shiow LR, Rosen DB, Brdicková N, Xu Y, An J, et al. 2006.. CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. . Nature 440::54044
    [Crossref] [Google Scholar]
  92. 92.
    Matloubian M, David A, Engel S, Ryan JE, Cyster JG. 2000.. A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. . Nat. Immunol. 1::298304
    [Crossref] [Google Scholar]
  93. 93.
    Oliveira G, Stromhaug K, Klaeger S, Kula T, Frederick DT, et al. 2021.. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. . Nature 596::11925
    [Crossref] [Google Scholar]
  94. 94.
    Wiest DL. 2016.. Development of γδT cells, the special-force soldiers of the immune system. . Methods Mol. Biol. 1323::2332
    [Crossref] [Google Scholar]
  95. 95.
    Heilig JS, Tonegawa S. 1986.. Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. . Nature 322::83640
    [Crossref] [Google Scholar]
  96. 96.
    Boyden LM, Lewis JM, Barbee SD, Bas A, Girardi M, et al. 2008.. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal γδT cells. . Nat. Genet. 40::65662
    [Crossref] [Google Scholar]
  97. 97.
    Jandke A, Melandri D, Monin L, Ushakov DS, Laing AG, et al. 2020.. Butyrophilin-like proteins display combinatorial diversity in selecting and maintaining signature intraepithelial γδT cell compartments. . Nat. Commun. 11::3769
    [Crossref] [Google Scholar]
  98. 98.
    Asarnow DM, Kuziel WA, Bonyhadi M, Tigelaar RE, Tucker PW, Allison JP. 1988.. Limited diversity of γδ antigen receptor genes of Thy-1+ dendritic epidermal cells. . Cell 55::83747
    [Crossref] [Google Scholar]
  99. 99.
    Havran WL, Allison JP. 1988.. Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. . Nature 335::44345
    [Crossref] [Google Scholar]
  100. 100.
    Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, et al. 2001.. Regulation of cutaneous malignancy by γδ T cells. . Science 294::6059
    [Crossref] [Google Scholar]
  101. 101.
    Gao Y, Yang W, Pan M, Scully E, Girardi M, et al. 2003.. γδ T cells provide an early source of interferon γ in tumor immunity. . J. Exp. Med. 198::43342
    [Crossref] [Google Scholar]
  102. 102.
    Girardi M, Glusac E, Filler RB, Roberts SJ, Propperova I, et al. 2003.. The distinct contributions of murine T cell receptor (TCR)γδ+ and TCRαβ+ T cells to different stages of chemically induced skin cancer. . J. Exp. Med. 198::74755
    [Crossref] [Google Scholar]
  103. 103.
    Strid J, Roberts SJ, Filler RB, Lewis JM, Kwong BY, et al. 2008.. Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis. . Nat. Immunol. 9::14654
    [Crossref] [Google Scholar]
  104. 104.
    Strid J, Sobolev O, Zafirova B, Polic B, Hayday A. 2011.. The intraepithelial T cell response to NKG2D-ligands links lymphoid stress surveillance to atopy. . Science 334::129397
    [Crossref] [Google Scholar]
  105. 105.
    Takagaki Y, DeCloux A, Bonneville M, Tonegawa S. 1989.. Diversity of γδ T-cell receptors on murine intestinal intra-epithelial lymphocytes. . Nature 339::71214
    [Crossref] [Google Scholar]
  106. 106.
    Guy-Grand D, Vassalli P, Eberl G, Pereira P, Burlen-Defranoux O, et al. 2013.. Origin, trafficking, and intraepithelial fate of gut-tropic T cells. . J. Exp. Med. 210::183954
    [Crossref] [Google Scholar]
  107. 107.
    Di Marco Barros R, Roberts NA, Dart RJ, Vantourout P, Jandke A, et al. 2016.. Epithelia use butyrophilin-like molecules to shape organ-specific γδ T cell compartments. . Cell 167::20318.e17
    [Crossref] [Google Scholar]
  108. 108.
    Reis BS, Darcy PW, Khan IZ, Moon CS, Kornberg AE, et al. 2022.. TCR-Vγδ usage distinguishes protumor from antitumor intestinal γδ T cell subsets. . Science 377::27684
    [Crossref] [Google Scholar]
  109. 109.
    Shires J, Theodoridis E, Hayday AC. 2001.. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). . Immunity 15::41934
    [Crossref] [Google Scholar]
  110. 110.
    Boismenu R, Havran WL. 1994.. Modulation of epithelial cell growth by intraepithelial γδ T cells. . Science 266::125355
    [Crossref] [Google Scholar]
  111. 111.
    Chen Y, Chou K, Fuchs E, Havran WL, Boismenu R. 2002.. Protection of the intestinal mucosa by intraepithelial γδ T cells. . PNAS 99::1433843
    [Crossref] [Google Scholar]
  112. 112.
    Mishra R, Chen AT, Welsh RM, Szomolanyi-Tsuda E. 2010.. NK cells and γδ T cells mediate resistance to polyomavirus-induced tumors. . PLOS Pathog. 6::e1000924
    [Crossref] [Google Scholar]
  113. 113.
    Liu Z, Eltoum IEA, Guo B, Beck BH, Cloud GA, Lopez RD. 2008.. Protective immunosurveillance and therapeutic antitumor activity of γδ T cells demonstrated in a mouse model of prostate cancer. . J. Immunol. 180::604453
    [Crossref] [Google Scholar]
  114. 114.
    Ibusuki A, Kawai K, Yoshida S, Uchida Y, Nitahara-Takeuchi A, et al. 2014.. NKG2D triggers cytotoxicity in murine epidermal γδ T cells via PI3K-dependent, Syk/ZAP70-independent signaling pathway. . J. Investig. Dermatol. 134::396404
    [Crossref] [Google Scholar]
  115. 115.
    Lefranc MP. 2011.. IMGT, the international ImMunoGeneTics information system. . Cold Spring Harb. Protoc. 2011::595603
    [Google Scholar]
  116. 116.
    Krangel MS, Yssel H, Brocklehurst C, Spits H. 1990.. A distinct wave of human T cell receptor gamma/delta lymphocytes in the early fetal thymus: evidence for controlled gene rearrangement and cytokine production. . J. Exp. Med. 172::84759
    [Crossref] [Google Scholar]
  117. 117.
    Mikulak J, Oriolo F, Bruni E, Roberto A, Colombo FS, et al. 2019.. NKp46-expressing human gut-resident intraepithelial Vδ1 T cell subpopulation exhibits high antitumor activity against colorectal cancer. . JCI Insight 4::e125884
    [Crossref] [Google Scholar]
  118. 118.
    Bruni E, Cimino MM, Donadon M, Carriero R, Terzoli S, et al. 2022.. Intrahepatic CD69+Vδ1 T cells re-circulate in the blood of patients with metastatic colorectal cancer and limit tumor progression. . J. Immunother. Cancer 10::e004579
    [Crossref] [Google Scholar]
  119. 119.
    Meraviglia S, Lo Presti E, Tosolini M, La Mendola C, Orlando V, et al. 2017.. Distinctive features of tumor-infiltrating γδ T lymphocytes in human colorectal cancer. . Oncoimmunology 6::e1347742
    [Crossref] [Google Scholar]
  120. 120.
    Wu Y, Kyle-Cezar F, Woolf RT, Naceur-Lombardelli C, Owen J, et al. 2019.. An innate-like Vδ1+ γδ T cell compartment in the human breast is associated with remission in triple-negative breast cancer. . Sci. Transl. Med. 11::eaax9364
    [Crossref] [Google Scholar]
  121. 121.
    Boufea K, González-Huici V, Lindberg M, Symeonides S, Oikonomidou O, Batada NN. 2021.. Single-cell RNA sequencing of human breast tumour-infiltrating immune cells reveals a γδ T-cell subtype associated with good clinical outcome. . Life Sci. Alliance 4::e202000680
    [Crossref] [Google Scholar]
  122. 122.
    Wu Y, Biswas D, Usaite I, Angelova M, Boeing S, et al. 2022.. A local human Vδ1 T cell population is associated with survival in nonsmall-cell lung cancer. . Nat. Cancer 3::696709
    [Crossref] [Google Scholar]
  123. 123.
    Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, et al. 2015.. The prognostic landscape of genes and infiltrating immune cells across human cancers. . Nat. Med. 21::93845
    [Crossref] [Google Scholar]
  124. 124.
    Li MO, Rudensky AY. 2016.. T cell receptor signalling in the control of regulatory T cell differentiation and function. . Nat. Rev. Immunol. 16::22033
    [Crossref] [Google Scholar]
  125. 125.
    White JT, Cross EW, Kedl RM. 2017.. Antigen-inexperienced memory CD8+ T cells: where they come from and why we need them. . Nat. Rev. Immunol. 17::391400
    [Crossref] [Google Scholar]
  126. 126.
    Szabo PA, Miron M, Farber DL. 2019.. Location, location, location: tissue resident memory T cells in mice and humans. . Sci. Immunol. 4::eaas9673
    [Crossref] [Google Scholar]
  127. 127.
    Schumacher TN, Scheper W, Kvistborg P. 2019.. Cancer neoantigens. . Annu. Rev. Immunol. 37::173200
    [Crossref] [Google Scholar]
  128. 128.
    Amsen D, van Gisbergen K, Hombrink P, van Lier RAW. 2018.. Tissue-resident memory T cells at the center of immunity to solid tumors. . Nat. Immunol. 19::53846
    [Crossref] [Google Scholar]
  129. 129.
    Park SL, Gebhardt T, Mackay LK. 2019.. Tissue-resident memory T cells in cancer immunosurveillance. . Trends Immunol. 40::73547
    [Crossref] [Google Scholar]
  130. 130.
    Philip M, Schietinger A. 2022.. CD8+ T cell differentiation and dysfunction in cancer. . Nat. Rev. Immunol. 22::20923
    [Crossref] [Google Scholar]
  131. 131.
    Fonseca R, Burn TN, Gandolfo LC, Devi S, Park SL, et al. 2022.. Runx3 drives a CD8+ T cell tissue residency program that is absent in CD4+ T cells. . Nat. Immunol. 23::123645
    [Crossref] [Google Scholar]
  132. 132.
    Mueller SN, Gebhardt T, Carbone FR, Heath WR. 2013.. Memory T cell subsets, migration patterns, and tissue residence. . Annu. Rev. Immunol. 31::13761
    [Crossref] [Google Scholar]
  133. 133.
    Malik BT, Byrne KT, Vella JL, Zhang P, Shabaneh TB, et al. 2017.. Resident memory T cells in the skin mediate durable immunity to melanoma. . Sci. Immunol. 2::eaam6346
    [Crossref] [Google Scholar]
  134. 134.
    Molodtsov AK, Khatwani N, Vella JL, Lewis KA, Zhao Y, et al. 2021.. Resident memory CD8+ T cells in regional lymph nodes mediate immunity to metastatic melanoma. . Immunity 54::211732.e7
    [Crossref] [Google Scholar]
  135. 135.
    Vella JL, Molodtsov A, Angeles CV, Branchini BR, Turk MJ, Huang YH. 2021.. Dendritic cells maintain anti-tumor immunity by positioning CD8 skin-resident memory T cells. . Life Sci. Alliance 4::e202101056
    [Crossref] [Google Scholar]
  136. 136.
    Enamorado M, Iborra S, Priego E, Cueto FJ, Quintana JA, et al. 2017.. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells. . Nat. Commun. 8::16073
    [Crossref] [Google Scholar]
  137. 137.
    Gálvez-Cancino F, López E, Menares E, Díaz X, Flores C, et al. 2018.. Vaccination-induced skin-resident memory CD8+ T cells mediate strong protection against cutaneous melanoma. . Oncoimmunology 7::e1442163
    [Crossref] [Google Scholar]
  138. 138.
    Menares E, Gálvez-Cancino F, Cáceres-Morgado P, Ghorani E, López E, et al. 2019.. Tissue-resident memory CD8+ T cells amplify anti-tumor immunity by triggering antigen spreading through dendritic cells. . Nat. Commun. 10::4401
    [Crossref] [Google Scholar]
  139. 139.
    Nizard M, Roussel H, Diniz MO, Karaki S, Tran T, et al. 2017.. Induction of resident memory T cells enhances the efficacy of cancer vaccine. . Nat. Commun. 8::15221
    [Crossref] [Google Scholar]
  140. 140.
    Karaki S, Blanc C, Tran T, Galy-Fauroux I, Mougel A, et al. 2021.. CXCR6 deficiency impairs cancer vaccine efficacy and CD8+ resident memory T-cell recruitment in head and neck and lung tumors. . J. Immunother. Cancer 9::e001948
    [Crossref] [Google Scholar]
  141. 141.
    Murray T, Fuertes Marraco SA, Baumgaertner P, Bordry N, Cagnon L, et al. 2016.. Very late antigen-1 marks functional tumor-resident CD8 T cells and correlates with survival of melanoma patients. . Front. Immunol. 7::573
    [Crossref] [Google Scholar]
  142. 142.
    Park SL, Buzzai A, Rautela J, Hor JL, Hochheiser K, et al. 2019.. Tissue-resident memory CD8+ T cells promote melanoma-immune equilibrium in skin. . Nature 565::36671
    [Crossref] [Google Scholar]
  143. 143.
    Steinbach K, Vincenti I, Kreutzfeldt M, Page N, Muschaweckh A, et al. 2016.. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection. . J. Exp. Med. 213::157187
    [Crossref] [Google Scholar]
  144. 144.
    Zhong W, Myers JS, Wang F, Wang K, Lucas J, et al. 2020.. Comparison of the molecular and cellular phenotypes of common mouse syngeneic models with human tumors. . BMC Genom. 21::2
    [Crossref] [Google Scholar]
  145. 145.
    Shields BD, Koss B, Taylor EM, Storey AJ, West KL, et al. 2019.. Loss of E-cadherin inhibits CD103 antitumor activity and reduces checkpoint blockade responsiveness in melanoma. . Cancer Res. 79::111323
    [Crossref] [Google Scholar]
  146. 146.
    Le Floc'h A, Jalil A, Vergnon I, Le Maux Chansac B, Lazar V, et al. 2007.. αEβ7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. . J. Exp. Med. 204::55970
    [Crossref] [Google Scholar]
  147. 147.
    Franciszkiewicz K, Le Floc'h A, Boutet M, Vergnon I, Schmitt A, Mami-Chouaib F. 2013.. CD103 or LFA-1 engagement at the immune synapse between cytotoxic T cells and tumor cells promotes maturation and regulates T-cell effector functions. . Cancer Res. 73::61728
    [Crossref] [Google Scholar]
  148. 148.
    Medler TR, Kramer G, Bambina S, Gunderson AJ, Alice A, et al. 2023.. Tumor resident memory CD8 T cells and concomitant tumor immunity develop independently of CD4 help. . Sci. Rep. 13::6277
    [Crossref] [Google Scholar]
  149. 149.
    Mani V, Bromley SK, Aijo T, Mora-Buch R, Carrizosa E, et al. 2019.. Migratory DCs activate TGF-β to precondition naive CD8+ T cells for tissue-resident memory fate. . Science 366::eaav5728
    [Crossref] [Google Scholar]
  150. 150.
    Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP, et al. 2020.. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. . Nature 584::62429
    [Crossref] [Google Scholar]
  151. 151.
    Stark R, Hartung A, Zehn D, Frentsch M, Thiel A. 2013.. IL-12-mediated STAT4 signaling and TCR signal strength cooperate in the induction of CD40L in human and mouse CD8+ T cells. . Eur. J. Immunol. 43::151117
    [Crossref] [Google Scholar]
  152. 152.
    Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, et al. 2013.. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. . Nat. Immunol. 14::1294301
    [Crossref] [Google Scholar]
  153. 153.
    Zhang N, Bevan MJ. 2013.. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. . Immunity 39::68796
    [Crossref] [Google Scholar]
  154. 154.
    Christo SN, Evrard M, Park SL, Gandolfo LC, Burn TN, et al. 2021.. Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity. . Nat. Immunol. 22::114051
    [Crossref] [Google Scholar]
  155. 155.
    Liu M, Kuo F, Capistrano KJ, Kang D, Nixon BG, et al. 2020.. TGF-β suppresses type 2 immunity to cancer. . Nature 587::11520
    [Crossref] [Google Scholar]
  156. 156.
    Borges da Silva H, Peng C, Wang H, Wanhainen KM, Ma C, et al. 2020.. Sensing of ATP via the purinergic receptor P2RX7 promotes CD8+ Trm cell generation by enhancing their sensitivity to the cytokine TGF-β. . Immunity 53::15871.e6
    [Crossref] [Google Scholar]
  157. 157.
    Stark R, Wesselink TH, Behr FM, Kragten NAM, Arens R, et al. 2018.. TRM maintenance is regulated by tissue damage via P2RX7. . Sci. Immunol. 3::eaau1022
    [Crossref] [Google Scholar]
  158. 158.
    Hashimoto-Hill S, Friesen L, Kim M, Kim CH. 2017.. Contraction of intestinal effector T cells by retinoic acid-induced purinergic receptor P2X7. . Mucosal Immunol. 10::91223
    [Crossref] [Google Scholar]
  159. 159.
    Qiu Z, Khairallah C, Chu TH, Imperato JN, Lei X, et al. 2023.. Retinoic acid signaling during priming licenses intestinal CD103+ CD8 TRM cell differentiation. . J. Exp. Med. 220::e20210923
    [Crossref] [Google Scholar]
  160. 160.
    Burrows K, Antignano F, Bramhall M, Chenery A, Scheer S, et al. 2017.. The transcriptional repressor HIC1 regulates intestinal immune homeostasis. . Mucosal Immunol. 10::151828
    [Crossref] [Google Scholar]
  161. 161.
    Crowl JT, Heeg M, Ferry A, Milner JJ, Omilusik KD, et al. 2022.. Tissue-resident memory CD8+ T cells possess unique transcriptional, epigenetic and functional adaptations to different tissue environments. . Nat. Immunol. 23::112131
    [Crossref] [Google Scholar]
  162. 162.
    Milner JJ, Toma C, Yu B, Zhang K, Omilusik K, et al. 2017.. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. . Nature 552::25357
    [Crossref] [Google Scholar]
  163. 163.
    Chen L, Sun R, Xu J, Zhai W, Zhang D, et al. 2020.. Tumor-derived IL33 promotes tissue-resident CD8+ T cells and is required for checkpoint blockade tumor immunotherapy. . Cancer Immunol. Res. 8::138192
    [Crossref] [Google Scholar]
  164. 164.
    Skon CN, Lee JY, Anderson KG, Masopust D, Hogquist KA, Jameson SC. 2013.. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. . Nat. Immunol. 14::128593
    [Crossref] [Google Scholar]
  165. 165.
    Mackay LK, Minnich M, Kragten NA, Liao Y, Nota B, et al. 2016.. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. . Science 352::45963
    [Crossref] [Google Scholar]
  166. 166.
    Guan T, Dominguez CX, Amezquita RA, Laidlaw BJ, Cheng J, et al. 2018.. ZEB1, ZEB2, and the miR-200 family form a counterregulatory network to regulate CD8+ T cell fates. . J. Exp. Med. 215::115368
    [Crossref] [Google Scholar]
  167. 167.
    Evrard M, Wynne-Jones E, Peng C, Kato Y, Christo SN, et al. 2022.. Sphingosine 1-phosphate receptor 5 (S1PR5) regulates the peripheral retention of tissue-resident lymphocytes. . J. Exp. Med. 219::e20210116
    [Crossref] [Google Scholar]
  168. 168.
    Dean JW, Helm EY, Fu Z, Xiong L, Sun N, et al. 2023.. The aryl hydrocarbon receptor cell intrinsically promotes resident memory CD8+ T cell differentiation and function. . Cell Rep. 42::111963
    [Crossref] [Google Scholar]
  169. 169.
    Helm EY, Zhou L. 2023.. Transcriptional regulation of innate lymphoid cells and T cells by aryl hydrocarbon receptor. . Front. Immunol. 14::1056267
    [Crossref] [Google Scholar]
  170. 170.
    Hasan F, Chiu Y, Shaw RM, Wang J, Yee C. 2021.. Hypoxia acts as an environmental cue for the human tissue-resident memory T cell differentiation program. . JCI Insight 6::e138970
    [Crossref] [Google Scholar]
  171. 171.
    Labiano S, Meléndez-Rodríguez F, Palazón A, Teijeira A, Garasa S, et al. 2017.. CD69 is a direct HIF-1α target gene in hypoxia as a mechanism enhancing expression on tumor-infiltrating T lymphocytes. . Oncoimmunology 6::e1283468
    [Crossref] [Google Scholar]
  172. 172.
    Liikanen I, Lauhan C, Quon S, Omilusik K, Phan AT, et al. 2021.. Hypoxia-inducible factor activity promotes antitumor effector function and tissue residency by CD8+ T cells. . J. Clin. Investig. 131::e143729
    [Crossref] [Google Scholar]
  173. 173.
    Zawel L, Yu J, Torrance CJ, Markowitz S, Kinzler KW, et al. 2002.. DEC1 is a downstream target of TGF-β with sequence-specific transcriptional repressor activities. . PNAS 99::284853
    [Crossref] [Google Scholar]
  174. 174.
    Li C, Zhu B, Son YM, Wang Z, Jiang L, et al. 2019.. The transcription factor Bhlhe40 programs mitochondrial regulation of resident CD8+ T cell fitness and functionality. . Immunity 51::491507.e7
    [Crossref] [Google Scholar]
  175. 175.
    Pan Y, Tian T, Park CO, Lofftus SY, Mei S, et al. 2017.. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. . Nature 543::25256
    [Crossref] [Google Scholar]
  176. 176.
    Konjar S, Frising UC, Ferreira C, Hinterleitner R, Mayassi T, et al. 2018.. Mitochondria maintain controlled activation state of epithelial-resident T lymphocytes. . Sci. Immunol. 3::eaan2543
    [Crossref] [Google Scholar]
  177. 177.
    Swadling L, Pallett LJ, Diniz MO, Baker JM, Amin OE, et al. 2020.. Human liver memory CD8+ T cells use autophagy for tissue residence. . Cell Rep. 30::68798.e6
    [Crossref] [Google Scholar]
  178. 178.
    Dhodapkar MV, Dhodapkar KM. 2020.. Tissue-resident memory-like T cells in tumor immunity: clinical implications. . Semin. Immunol. 49::101415
    [Crossref] [Google Scholar]
  179. 179.
    Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, et al. 2018.. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. . Nature 557::57579
    [Crossref] [Google Scholar]
  180. 180.
    Duhen T, Duhen R, Montler R, Moses J, Moudgil T, et al. 2018.. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. . Nat. Commun. 9::2724
    [Crossref] [Google Scholar]
  181. 181.
    Lee YJ, Kim JY, Jeon SH, Nam H, Jung JH, et al. 2022.. CD39+ tissue-resident memory CD8+ T cells with a clonal overlap across compartments mediate antitumor immunity in breast cancer. . Sci. Immunol. 7::eabn8390
    [Crossref] [Google Scholar]
  182. 182.
    Philip M, Fairchild L, Sun L, Horste EL, Camara S, et al. 2017.. Chromatin states define tumour-specific T cell dysfunction and reprogramming. . Nature 545::45256
    [Crossref] [Google Scholar]
  183. 183.
    Zheng L, Qin S, Si W, Wang A, Xing B, et al. 2021.. Pan-cancer single-cell landscape of tumor-infiltrating T cells. . Science 374::abe6474
    [Crossref] [Google Scholar]
  184. 184.
    Nixon BG, Kuo F, Ji L, Liu M, Capistrano K, et al. 2022.. Tumor-associated macrophages expressing the transcription factor IRF8 promote T cell exhaustion in cancer. . Immunity 55::204458.e5
    [Crossref] [Google Scholar]
  185. 185.
    Prokhnevska N, Cardenas MA, Valanparambil RM, Sobierajska E, Barwick BG, et al. 2023.. CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. . Immunity 56::10724.e5
    [Crossref] [Google Scholar]
  186. 186.
    Boutet M, Gauthier L, Leclerc M, Gros G, de Montpreville V, et al. 2016.. TGFβ signaling intersects with CD103 integrin signaling to promote T-lymphocyte accumulation and antitumor activity in the lung tumor microenvironment. . Cancer Res. 76::175769
    [Crossref] [Google Scholar]
  187. 187.
    Cheuk S, Schlums H, Gallais Serezal I, Martini E, Chiang SC, et al. 2017.. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. . Immunity 46::287300
    [Crossref] [Google Scholar]
  188. 188.
    Richmond JM, Strassner JP, Zapata L Jr., Garg M, Riding RL, et al. 2018.. Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo. . Sci. Transl. Med. 10::eaam7710
    [Crossref] [Google Scholar]
  189. 189.
    Tang K, Seo J, Tiu BC, Le TK, Pahalyants V, et al. 2022.. Association of cutaneous immune-related adverse events with increased survival in patients treated with anti-programmed cell death 1 and anti-programmed cell death ligand 1 therapy. . JAMA Dermatol. 158::18993
    [Crossref] [Google Scholar]
  190. 190.
    Zitti B, Hoffer E, Zheng W, Pandey RV, Schlums H, et al. 2023.. Human skin-resident CD8+ T cells require RUNX2 and RUNX3 for induction of cytotoxicity and expression of the integrin CD49a. . Immunity 56::1285302.e7
    [Crossref] [Google Scholar]
  191. 191.
    Edwards J, Wilmott JS, Madore J, Gide TN, Quek C, et al. 2018.. CD103+ tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naive melanoma patients and expand significantly during anti-PD-1 treatment. . Clin. Cancer Res. 24::303645
    [Crossref] [Google Scholar]
  192. 192.
    Corgnac S, Malenica I, Mezquita L, Auclin E, Voilin E, et al. 2020.. CD103+CD8+ TRM cells accumulate in tumors of anti-PD-1-responder lung cancer patients and are tumor-reactive lymphocytes enriched with Tc17. . Cell Rep. Med. 1::100127
    [Crossref] [Google Scholar]
  193. 193.
    Banchereau R, Chitre AS, Scherl A, Wu TD, Patil NS, et al. 2021.. Intratumoral CD103+ CD8+ T cells predict response to PD-L1 blockade. . J. Immunother. Cancer 9::e002231
    [Crossref] [Google Scholar]
  194. 194.
    Krishna C, DiNatale RG, Kuo F, Srivastava RM, Vuong L, et al. 2021.. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. . Cancer Cell 39::66277.e6
    [Crossref] [Google Scholar]
  195. 195.
    Attrill GH, Owen CN, Ahmed T, Vergara IA, Colebatch AJ, et al. 2022.. Higher proportions of CD39+ tumor-resident cytotoxic T cells predict recurrence-free survival in patients with stage III melanoma treated with adjuvant immunotherapy. . J. Immunother. Cancer 10::e004771
    [Crossref] [Google Scholar]
  196. 196.
    Jaiswal A, Verma A, Dannenfelser R, Melssen M, Tirosh I, et al. 2022.. An activation to memory differentiation trajectory of tumor-infiltrating lymphocytes informs metastatic melanoma outcomes. . Cancer Cell 40::52444.e5
    [Crossref] [Google Scholar]
  197. 197.
    Jin K, Yu Y, Zeng H, Liu Z, You R, et al. 2022.. CD103+CD8+ tissue-resident memory T cell infiltration predicts clinical outcome and adjuvant therapeutic benefit in muscle-invasive bladder cancer. . Br. J. Cancer 126::158188
    [Crossref] [Google Scholar]
  198. 198.
    Caushi JX, Zhang J, Ji Z, Vaghasia A, Zhang B, et al. 2021.. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. . Nature 596::12632
    [Crossref] [Google Scholar]
  199. 199.
    Liu B, Hu X, Feng K, Gao R, Xue Z, et al. 2022.. Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. . Nat. Cancer 3::10821
    [Crossref] [Google Scholar]
  200. 200.
    Luoma AM, Suo S, Wang Y, Gunasti L, Porter CBM, et al. 2022.. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. . Cell 185::291835.e29
    [Crossref] [Google Scholar]
  201. 201.
    Hochheiser K, Wiede F, Wagner T, Freestone D, Enders MH, et al. 2021.. Ptpn2 and KLRG1 regulate the generation and function of tissue-resident memory CD8+ T cells in skin. . J. Exp. Med. 218::e20200940
    [Crossref] [Google Scholar]
  202. 202.
    Bassez A, Vos H, Van Dyck L, Floris G, Arijs I, et al. 2021.. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. . Nat. Med. 27::82032
    [Crossref] [Google Scholar]
  203. 203.
    Hellström I, Hellström KE, Pierce GE, Yang JP. 1968.. Cellular and humoral immunity to different types of human neoplasms. . Nature 220::135254
    [Crossref] [Google Scholar]
  204. 204.
    Kumar BV, Connors TJ, Farber DL. 2018.. Human T cell development, localization, and function throughout life. . Immunity 48::20213
    [Crossref] [Google Scholar]
  205. 205.
    Sellars MC, Wu CJ, Fritsch EF. 2022.. Cancer vaccines: building a bridge over troubled waters. . Cell 185::277088
    [Crossref] [Google Scholar]
  206. 206.
    Rakhra K, Abraham W, Wang C, Moynihan KD, Li N, et al. 2021.. Exploiting albumin as a mucosal vaccine chaperone for robust generation of lung-resident memory T cells. . Sci. Immunol. 6::eabd8003
    [Crossref] [Google Scholar]
  207. 207.
    Baharom F, Ramirez-Valdez RA, Tobin KKS, Yamane H, Dutertre CA, et al. 2021.. Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. . Nat. Immunol. 22::4152
    [Crossref] [Google Scholar]
  208. 208.
    Johansen P, Storni T, Rettig L, Qiu Z, Der-Sarkissian A, et al. 2008.. Antigen kinetics determines immune reactivity. . PNAS 105::518994
    [Crossref] [Google Scholar]
  209. 209.
    Sharma P, Goswami S, Raychaudhuri D, Siddiqui BA, Singh P, et al. 2023.. Immune checkpoint therapy—current perspectives and future directions. . Cell 186::165269
    [Crossref] [Google Scholar]
  210. 210.
    Dvorak HF. 2015.. Tumors: wounds that do not heal—redux. . Cancer Immunol. Res. 3::111
    [Crossref] [Google Scholar]
  211. 211.
    Restifo NP, Dudley ME, Rosenberg SA. 2012.. Adoptive immunotherapy for cancer: harnessing the T cell response. . Nat. Rev. Immunol. 12::26981
    [Crossref] [Google Scholar]
  212. 212.
    Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, et al. 1985.. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. . N. Engl. J. Med. 313::148592
    [Crossref] [Google Scholar]
  213. 213.
    Rohaan MW, Kessels R, Haanen J. 2023.. Tumor-infiltrating lymphocyte therapy in advanced melanoma. Reply. . N. Engl. J. Med. 388::85960
    [Crossref] [Google Scholar]
  214. 214.
    Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, et al. 2002.. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. . PNAS 99::1616873
    [Crossref] [Google Scholar]
  215. 215.
    Krishna S, Lowery FJ, Copeland AR, Bahadiroglu E, Mukherjee R, et al. 2020.. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. . Science 370::132834
    [Crossref] [Google Scholar]
  216. 216.
    Newick K, O'Brien S, Moon E, Albelda SM. 2017.. CAR T cell therapy for solid tumors. . Annu. Rev. Med. 68::13952
    [Crossref] [Google Scholar]
  217. 217.
    Tousley AM, Rotiroti MC, Labanieh L, Rysavy LW, Kim WJ, et al. 2023.. Co-opting signalling molecules enables logic-gated control of CAR T cells. . Nature 615::50716
    [Crossref] [Google Scholar]
  218. 218.
    Kokkinou E, Pandey RV, Mazzurana L, Gutierrez-Perez I, Tibbitt CA, et al. 2022.. CD45RA+CD62L ILCs in human tissues represent a quiescent local reservoir for the generation of differentiated ILCs. . Sci. Immunol. 7::eabj8301
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-083122-043836
Loading
/content/journals/10.1146/annurev-immunol-083122-043836
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error