1932

Abstract

Since the birth of biotechnology, hundreds of biotherapeutics have been developed and approved by the US Food and Drug Administration (FDA) for human use. These novel medicines not only bring significant benefit to patients but also represent precision tools to interrogate human disease biology. Accordingly, much has been learned from the successes and failures of hundreds of high-quality clinical trials. In this review, we discuss general and broadly applicable themes that have emerged from this collective experience. We base our discussion on insights gained from exploring some of the most important target classes, including interleukin-1 (IL-1), tumor necrosis factor α (TNF-α), IL-6, IL-12/23, IL-17, IL-4/13, IL-5, immunoglobulin E (IgE), integrins and B cells. We also describe current challenges and speculate about how emerging technological capabilities may enable the discovery and development of the next generation of biotherapeutics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101619-031510
2020-04-26
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/immunol/38/1/annurev-immunol-101619-031510.html?itemId=/content/journals/10.1146/annurev-immunol-101619-031510&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Russo E. 2003. The birth of biotechnology. Nature 421:456–57
    [Google Scholar]
  2. 2. 
    Kohler G, Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–97
    [Google Scholar]
  3. 3. 
    Masopust D, Sivula CP, Jameson SC 2017. Of mice, dirty mice, and men: using mice to understand human immunology. J. Immunol. 199:383–88
    [Google Scholar]
  4. 4. 
    Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK et al. 2019. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365:eaaw4361
    [Google Scholar]
  5. 5. 
    Dowty ME, Jesson MI, Ghosh S, Lee J, Meyer DM et al. 2014. Preclinical to clinical translation of tofacitinib, a Janus kinase inhibitor, in rheumatoid arthritis. J. Pharmacol. Exp. Ther. 348:165–73
    [Google Scholar]
  6. 6. 
    Dinarello CA. 2018. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 281:8–27
    [Google Scholar]
  7. 7. 
    Dinarello CA, Simon A, van der Meer JW 2012. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11:633–52
    [Google Scholar]
  8. 8. 
    Swanson KV, Deng M, Ting JP 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19:477–89
    [Google Scholar]
  9. 9. 
    Jesus AA, Goldbach-Mansky R. 2014. IL-1 blockade in autoinflammatory syndromes. Annu. Rev. Med. 65:223–44
    [Google Scholar]
  10. 10. 
    Mistry A, Savic S, van der Hilst JCH 2017. Interleukin-1 blockade: an update on emerging indications. BioDrugs 31:207–21
    [Google Scholar]
  11. 11. 
    Cohen SB, Moreland LW, Cush JJ, Greenwald MW, Block S et al. 2004. A multicentre, double blind, randomised, placebo controlled trial of anakinra (Kineret), a recombinant interleukin 1 receptor antagonist, in patients with rheumatoid arthritis treated with background methotrexate. Ann. Rheum. Dis. 63:1062–68
    [Google Scholar]
  12. 12. 
    Neven B, Marvillet I, Terrada C, Ferster A, Boddaert N et al. 2010. Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum 62:258–67
    [Google Scholar]
  13. 13. 
    Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, Leslie KS, Hachulla E et al. 2009. Use of canakinumab in the cryopyrin-associated periodic syndrome. N. Engl. J. Med. 360:2416–25
    [Google Scholar]
  14. 14. 
    Ruperto N, Brunner HI, Quartier P, Constantin T, Wulffraat N et al. 2012. Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 367:2396–406
    [Google Scholar]
  15. 15. 
    Hoffman HM, Throne ML, Amar NJ, Sebai M, Kivitz AJ et al. 2008. Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum 58:2443–52
    [Google Scholar]
  16. 16. 
    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH et al. 2017. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377:1119–31
    [Google Scholar]
  17. 17. 
    Ridker PM, Libby P, MacFadyen JG, Thuren T, Ballantyne C et al. 2018. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur. Heart J. 39:3499–507
    [Google Scholar]
  18. 18. 
    Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P et al. 2017. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390:1833–42
    [Google Scholar]
  19. 19. 
    Grivennikov SI, Greten FR, Karin M 2010. Immunity, inflammation, and cancer. Cell 140:883–99
    [Google Scholar]
  20. 20. 
    Coussens LM, Werb Z. 2002. Inflammation and cancer. Nature 420:860–67
    [Google Scholar]
  21. 21. 
    Bardin T. 2015. Canakinumab for the patient with difficult-to-treat gouty arthritis: review of the clinical evidence. Joint Bone Spine 82:Suppl. 1eS9–16
    [Google Scholar]
  22. 22. 
    Narazaki M, Kishimoto T. 2018. The two-faced cytokine IL-6 in host defense and diseases. Int. J. Mol. Sci. 19:E3528
    [Google Scholar]
  23. 23. 
    Calabrese LH, Rose-John S. 2014. IL-6 biology: implications for clinical targeting in rheumatic disease. Nat. Rev. Rheumatol. 10:720–27
    [Google Scholar]
  24. 24. 
    Kang S, Tanaka T, Narazaki M, Kishimoto T 2019. Targeting interleukin-6 signaling in clinic. Immunity 50:1007–23
    [Google Scholar]
  25. 25. 
    Stone JH, Tuckwell K, Dimonaco S, Klearman M, Aringer M et al. 2017. Trial of tocilizumab in giant-cell arteritis. N. Engl. J. Med. 377:317–28
    [Google Scholar]
  26. 26. 
    Yokota S, Miyamae T, Imagawa T, Iwata N, Katakura S et al. 2005. Therapeutic efficacy of humanized recombinant anti-interleukin-6 receptor antibody in children with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 52:818–25
    [Google Scholar]
  27. 27. 
    Axmann R, Bohm C, Kronke G, Zwerina J, Smolen J, Schett G 2009. Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum 60:2747–56
    [Google Scholar]
  28. 28. 
    Shimabukuro-Vornhagen A, Godel P, Subklewe M, Stemmler HJ, Schlosser HA et al. 2018. Cytokine release syndrome. J. Immunother. Cancer 6:56
    [Google Scholar]
  29. 29. 
    Li J, Piskol R, Ybarra R, Chen YJ, Li J et al. 2019. CD3 bispecific antibody-induced cytokine release is dispensable for cytotoxic T cell activity. Sci. Transl. Med. 11:508eaax8861
    [Google Scholar]
  30. 30. 
    Le RQ, Li L, Yuan W, Shord SS, Nie L et al. 2018. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist 23:943–47
    [Google Scholar]
  31. 31. 
    Khanna D, Denton CP, Jahreis A, van Laar JM, Frech TM et al. 2016. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet 387:2630–40
    [Google Scholar]
  32. 32. 
    Denton CP, Ong VH, Xu S, Chen-Harris H, Modrusan Z et al. 2018. Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: insights from the faSScinate clinical trial in systemic sclerosis. Ann. Rheum. Dis. 77:1362–71
    [Google Scholar]
  33. 33. 
    Kuhn KA, Manieri NA, Liu TC, Stappenbeck TS 2014. IL-6 stimulates intestinal epithelial proliferation and repair after injury. PLOS ONE 9:e114195
    [Google Scholar]
  34. 34. 
    Boyce EG, Rogan EL, Vyas D, Prasad N, Mai Y 2018. Sarilumab: review of a second IL-6 receptor antagonist indicated for the treatment of rheumatoid arthritis. Ann. Pharmacother. 52:780–91
    [Google Scholar]
  35. 35. 
    Xie F, Yun H, Bernatsky S, Curtis JR 2016. Brief report: risk of gastrointestinal perforation among rheumatoid arthritis patients receiving tofacitinib, tocilizumab, or other biologic treatments. Arthritis Rheumatol 68:2612–17
    [Google Scholar]
  36. 36. 
    Coley WB. 1991. The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. 1893. Clin. Orthop. Relat. Res. 262:3–11
    [Google Scholar]
  37. 37. 
    O'Malley WE, Achinstein B, Shear MJ 1988. Action of bacterial polysaccharide on tumors. II. Damage of sarcoma 37 by serum of mice treated with Serratia marcescens polysaccharide, and induced tolerance [from 1962. J. Natl. Cancer Inst 29:1169–75]. Nutr. Rev. 46 389–91
    [Google Scholar]
  38. 38. 
    Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B 1975. An endotoxin-induced serum factor that causes necrosis of tumors. PNAS 72:3666–70
    [Google Scholar]
  39. 39. 
    Beutler B, Greenwald D, Hulmes JD, Chang M, Pan YC et al. 1985. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316:552–54
    [Google Scholar]
  40. 40. 
    Gray PW, Aggarwal BB, Benton CV, Bringman TS, Henzel WJ et al. 1984. Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumour necrosis activity. Nature 312:721–24
    [Google Scholar]
  41. 41. 
    Pennica D, Nedwin GE, Hayflick JS, Seeburg PH, Derynck R et al. 1984. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312:724–29
    [Google Scholar]
  42. 42. 
    Kalliolias GD, Ivashkiv LB. 2016. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol. 12:49–62
    [Google Scholar]
  43. 43. 
    Levin AD, Wildenberg ME, van den Brink GR 2016. Mechanism of action of anti-TNF therapy in inflammatory bowel disease. J. Crohn's Colitis 10:989–97
    [Google Scholar]
  44. 44. 
    Sandborn WJ, Hanauer SB, Katz S, Safdi M, Wolf DG et al. 2001. Etanercept for active Crohn's disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology 121:1088–94
    [Google Scholar]
  45. 45. 
    Lenercept Mult. Scler. Study Group, Univ. B. C. MS/MRI Anal. Group 1999. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology 53:457–65
    [Google Scholar]
  46. 46. 
    Ramos-Casals M, Brito-Zeron P, Munoz S, Soria N, Galiana D et al. 2007. Autoimmune diseases induced by TNF-targeted therapies: analysis of 233 cases. Medicine 86:242–51
    [Google Scholar]
  47. 47. 
    Kruglov AA, Lampropoulou V, Fillatreau S, Nedospasov SA 2011. Pathogenic and protective functions of TNF in neuroinflammation are defined by its expression in T lymphocytes and myeloid cells. J. Immunol. 187:5660–70
    [Google Scholar]
  48. 48. 
    Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP 2001. TNFα promotes proliferation of oligodendrocyte progenitors and remyelination. Nat. Neurosci. 4:1116–22
    [Google Scholar]
  49. 49. 
    Almoallim H, Al-Ghamdi Y, Almaghrabi H, Alyasi O 2012. Anti-tumor necrosis factor-α induced systemic lupus erythematosus. Open Rheumatol. J. 6:315–19
    [Google Scholar]
  50. 50. 
    Sokumbi O, Wetter DA, Makol A, Warrington KJ 2012. Vasculitis associated with tumor necrosis factor-α inhibitors. Mayo Clin. Proc. 87:739–45
    [Google Scholar]
  51. 51. 
    Conrad C, Di Domizio J, Mylonas A, Belkhodja C, Demaria O et al. 2018. TNF blockade induces a dysregulated type I interferon response without autoimmunity in paradoxical psoriasis. Nat. Commun. 9:25
    [Google Scholar]
  52. 52. 
    Palucka AK, Blanck JP, Bennett L, Pascual V, Banchereau J 2005. Cross-regulation of TNF and IFN-α in autoimmune diseases. PNAS 102:3372–77
    [Google Scholar]
  53. 53. 
    Berry MA, Hargadon B, Shelley M, Parker D, Shaw DE et al. 2006. Evidence of a role of tumor necrosis factor α in refractory asthma. N. Engl. J. Med. 354:697–708
    [Google Scholar]
  54. 54. 
    Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W et al. 2009. A randomized, double-blind, placebo-controlled study of tumor necrosis factor-α blockade in severe persistent asthma. Am. J. Respir. Crit. Care Med. 179:549–58
    [Google Scholar]
  55. 55. 
    Beers SA, Chan CH, French RR, Cragg MS, Glennie MJ 2010. CD20 as a target for therapeutic type I and II monoclonal antibodies. Semin. Hematol. 47:107–14
    [Google Scholar]
  56. 56. 
    Ivanov A, Beers SA, Walshe CA, Honeychurch J, Alduaij W et al. 2009. Monoclonal antibodies directed to CD20 and HLA-DR can elicit homotypic adhesion followed by lysosome-mediated cell death in human lymphoma and leukemia cells. J. Clin. Investig. 119:2143–59
    [Google Scholar]
  57. 57. 
    Martin F, Chan AC. 2006. B cell immunobiology in disease: evolving concepts from the clinic. Annu. Rev. Immunol. 24:467–96
    [Google Scholar]
  58. 58. 
    Dass S, Rawstron AC, Vital EM, Henshaw K, McGonagle D, Emery P 2008. Highly sensitive B cell analysis predicts response to rituximab therapy in rheumatoid arthritis. Arthritis Rheum 58:2993–99
    [Google Scholar]
  59. 59. 
    Nakou M, Katsikas G, Sidiropoulos P, Bertsias G, Papadimitraki E et al. 2009. Rituximab therapy reduces activated B cells in both the peripheral blood and bone marrow of patients with rheumatoid arthritis: depletion of memory B cells correlates with clinical response. Arthritis Res. Ther. 11:R131
    [Google Scholar]
  60. 60. 
    Vos K, Thurlings RM, Wijbrandts CA, van Schaardenburg D, Gerlag DM, Tak PP 2007. Early effects of rituximab on the synovial cell infiltrate in patients with rheumatoid arthritis. Arthritis Rheum 56:772–78
    [Google Scholar]
  61. 61. 
    Md Yusof MY, Shaw D, El-Sherbiny YM, Dunn E, Rawstron AC et al. 2017. Predicting and managing primary and secondary non-response to rituximab using B-cell biomarkers in systemic lupus erythematosus. Ann. Rheum. Dis. 76:1829–36
    [Google Scholar]
  62. 62. 
    Vital EM, Dass S, Buch MH, Henshaw K, Pease CT et al. 2011. B cell biomarkers of rituximab responses in systemic lupus erythematosus. Arthritis Rheum 63:3038–47
    [Google Scholar]
  63. 63. 
    Ahuja A, Shupe J, Dunn R, Kashgarian M, Kehry MR, Shlomchik MJ 2007. Depletion of B cells in murine lupus: efficacy and resistance. J. Immunol. 179:3351–61
    [Google Scholar]
  64. 64. 
    Anolik JH, Barnard J, Owen T, Zheng B, Kemshetti S et al. 2007. Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum 56:3044–56
    [Google Scholar]
  65. 65. 
    Sanz I. 2009. Connective tissue diseases: the conundrum of B cell depletion in SLE. Nat. Rev. Rheumatol. 5:304–5
    [Google Scholar]
  66. 66. 
    Cohen SB, Emery P, Greenwald MW, Dougados M, Furie RA et al. 2006. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum 54:2793–806
    [Google Scholar]
  67. 67. 
    van Vollenhoven RF, Emery P, Bingham CO 3rd, Keystone EC, Fleischmann R et al. 2010. Longterm safety of patients receiving rituximab in rheumatoid arthritis clinical trials. J. Rheumatol. 37:558–67
    [Google Scholar]
  68. 68. 
    Cortazar FB, Pendergraft WF 3rd, Wenger J, Owens CT, Laliberte K, Niles JL 2017. Effect of continuous B cell depletion with rituximab on pathogenic autoantibodies and total IgG levels in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol 69:1045–53
    [Google Scholar]
  69. 69. 
    Bingham CO 3rd, Looney RJ, Deodhar A, Halsey N, Greenwald M et al. 2010. Immunization responses in rheumatoid arthritis patients treated with rituximab: results from a controlled clinical trial. Arthritis Rheum 62:64–74
    [Google Scholar]
  70. 70. 
    Huang H, Benoist C, Mathis D 2010. Rituximab specifically depletes short-lived autoreactive plasma cells in a mouse model of inflammatory arthritis. PNAS 107:4658–63
    [Google Scholar]
  71. 71. 
    Geffroy-Luseau A, Chiron D, Descamps G, Jego G, Amiot M, Pellat-Deceunynck C 2011. TLR9 ligand induces the generation of CD20+ plasmablasts and plasma cells from CD27+ memory B-cells. Front. Immunol. 2:83
    [Google Scholar]
  72. 72. 
    Touzani F, Pozdzik A. 2019. New insights into immune cells cross-talk during IgG4-related disease. Clin. Immunol. 198:1–10
    [Google Scholar]
  73. 73. 
    Hammarlund E, Thomas A, Amanna IJ, Holden LA, Slayden OD et al. 2017. Plasma cell survival in the absence of B cell memory. Nat. Commun. 8:1781
    [Google Scholar]
  74. 74. 
    Vincent FB, Morand EF, Schneider P, Mackay F 2014. The BAFF/APRIL system in SLE pathogenesis. Nat. Rev. Rheumatol. 10:365–73
    [Google Scholar]
  75. 75. 
    Furie R, Petri M, Zamani O, Cervera R, Wallace DJ et al. 2011. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum 63:3918–30
    [Google Scholar]
  76. 76. 
    Merrill JT, Wallace DJ, Wax S, Kao A, Fraser PA et al. 2018. Efficacy and safety of atacicept in patients with systemic lupus erythematosus: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled, parallel-arm, phase IIb study. Arthritis Rheumatol 70:266–76
    [Google Scholar]
  77. 77. 
    Isenberg D, Gordon C, Licu D, Copt S, Rossi CP, Wofsy D 2015. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann. Rheum. Dis. 74:2006–15
    [Google Scholar]
  78. 78. 
    Kappos L, Hartung HP, Freedman MS, Boyko A, Radu EW et al. 2014. Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Neurol 13:353–63
    [Google Scholar]
  79. 79. 
    Vicente-Manzanares M, Sanchez-Madrid F. 2018. Targeting the integrin interactome in human disease. Curr. Opin. Cell Biol. 55:17–23
    [Google Scholar]
  80. 80. 
    Winograd-Katz SE, Fassler R, Geiger B, Legate KR 2014. The integrin adhesome: from genes and proteins to human disease. Nat. Rev. Mol. Cell Biol. 15:273–88
    [Google Scholar]
  81. 81. 
    Ghosh S, Goldin E, Gordon FH, Malchow HA, Rask-Madsen J et al. 2003. Natalizumab for active Crohn's disease. N. Engl. J. Med. 348:24–32
    [Google Scholar]
  82. 82. 
    Polman CH, O'Connor PW, Havrdova E, Hutchinson M, Kappos L et al. 2006. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354:899–910
    [Google Scholar]
  83. 83. 
    Yousry TA, Major EO, Ryschkewitsch C, Fahle G, Fischer S et al. 2006. Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N. Engl. J. Med. 354:924–33
    [Google Scholar]
  84. 84. 
    Feagan BG, Rutgeerts P, Sands BE, Hanauer S, Colombel JF et al. 2013. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 369:699–710
    [Google Scholar]
  85. 85. 
    Sandborn WJ, Feagan BG, Rutgeerts P, Hanauer S, Colombel JF et al. 2013. Vedolizumab as induction and maintenance therapy for Crohn's disease. N. Engl. J. Med. 369:711–21
    [Google Scholar]
  86. 86. 
    Vermeire S, O'Byrne S, Keir M, Williams M, Lu TT et al. 2014. Etrolizumab as induction therapy for ulcerative colitis: a randomised, controlled, phase 2 trial. Lancet 384:309–18
    [Google Scholar]
  87. 87. 
    Lamb CA, Mansfield JC, Tew GW, Gibbons D, Long AK et al. 2017. αEβ7 integrin identifies subsets of pro-inflammatory colonic CD4+ T lymphocytes in ulcerative colitis. J. Crohn's Colitis 11:610–20
    [Google Scholar]
  88. 88. 
    Kothary N, Diak IL, Brinker A, Bezabeh S, Avigan M, Dal Pan G 2011. Progressive multifocal leukoencephalopathy associated with efalizumab use in psoriasis patients. J. Am. Acad. Dermatol. 65:546–51
    [Google Scholar]
  89. 89. 
    Abidi A, Shukla P, Ahmad A 2016. Lifitegrast: a novel drug for treatment of dry eye disease. J. Pharmacol. Pharmacother. 7:194–98
    [Google Scholar]
  90. 90. 
    Tait Wojno ED, Hunter CA, Stumhofer JS 2019. The immunobiology of the interleukin-12 family: room for discovery. Immunity 50:851–70
    [Google Scholar]
  91. 91. 
    Boisson-Dupuis S, Bustamante J, El-Baghdadi J, Camcioglu Y, Parvaneh N et al. 2015. Inherited and acquired immunodeficiencies underlying tuberculosis in childhood. Immunol. Rev. 264:103–20
    [Google Scholar]
  92. 92. 
    Ivanov II, Zhou L, Littman DR 2007. Transcriptional regulation of Th17 cell differentiation. Semin. Immunol. 19:409–17
    [Google Scholar]
  93. 93. 
    Moschen AR, Tilg H, Raine T 2019. IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting. Nat. Rev. Gastroenterol. Hepatol. 16:185–96
    [Google Scholar]
  94. 94. 
    Boutet MA, Nerviani A, Gallo Afflitto G, Pitzalis C 2018. Role of the IL-23/IL-17 axis in psoriasis and psoriatic arthritis: the clinical importance of its divergence in skin and joints. Int. J. Mol. Sci. 19:E530
    [Google Scholar]
  95. 95. 
    Brembilla NC, Senra L, Boehncke WH 2018. The IL-17 family of cytokines in psoriasis: IL-17A and beyond. Front. Immunol. 9:1682
    [Google Scholar]
  96. 96. 
    Nestle FO, Kaplan DH, Barker J 2009. Psoriasis. N. Engl. J. Med. 361:496–509
    [Google Scholar]
  97. 97. 
    Griffiths CE, Barker JN. 2007. Pathogenesis and clinical features of psoriasis. Lancet 370:263–71
    [Google Scholar]
  98. 98. 
    Fredriksson T, Pettersson U. 1978. Severe psoriasis—oral therapy with a new retinoid. Dermatologica 157:238–44
    [Google Scholar]
  99. 99. 
    Valdimarsson H, Baker BS, Jonsdottir I, Powles A, Fry L 1995. Psoriasis: a T-cell-mediated autoimmune disease induced by streptococcal superantigens?. Immunol. Today 16:145–49
    [Google Scholar]
  100. 100. 
    Johnston A, Gudjonsson JE, Sigmundsdottir H, Love TJ, Valdimarsson H 2004. Peripheral blood T cell responses to keratin peptides that share sequences with streptococcal M proteins are largely restricted to skin-homing CD8+ T cells. Clin. Exp. Immunol. 138:83–93
    [Google Scholar]
  101. 101. 
    Tsoi LC, Stuart PE, Tian C, Gudjonsson JE, Das S et al. 2017. Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants. Nat. Commun. 8:15382
    [Google Scholar]
  102. 102. 
    Abrams JR, Lebwohl MG, Guzzo CA, Jegasothy BV, Goldfarb MT et al. 1999. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J. Clin. Investig. 103:1243–52
    [Google Scholar]
  103. 103. 
    Krueger GG, Papp KA, Stough DB, Loven KH, Gulliver WP et al. 2002. A randomized, double-blind, placebo-controlled phase III study evaluating efficacy and tolerability of 2 courses of alefacept in patients with chronic plaque psoriasis. J. Am. Acad. Dermatol. 47:821–33
    [Google Scholar]
  104. 104. 
    Lebwohl M, Tyring SK, Hamilton TK, Toth D, Glazer S et al. 2003. A novel targeted T-cell modulator, efalizumab, for plaque psoriasis. N. Engl. J. Med. 349:2004–13
    [Google Scholar]
  105. 105. 
    Campanati A, Molinelli E, Brisigotti V, Offidani A 2017. Biologic therapy in psoriasis (Part I): efficacy and safety of tumor necrosis factor-α inhibitors. Curr. Pharm. Biotechnol. 18:945–63
    [Google Scholar]
  106. 106. 
    Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL 2003. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278:1910–14
    [Google Scholar]
  107. 107. 
    Hawkes JE, Chan TC, Krueger JG 2017. Psoriasis pathogenesis and the development of novel targeted immune therapies. J. Allergy Clin. Immunol. 140:645–53
    [Google Scholar]
  108. 108. 
    Papp KA, Langley RG, Lebwohl M, Krueger GG, Szapary P et al. 2008. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371:1675–84
    [Google Scholar]
  109. 109. 
    Leonardi CL, Kimball AB, Papp KA, Yeilding N, Guzzo C et al. 2008. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 371:1665–74
    [Google Scholar]
  110. 110. 
    Griffiths CE, Strober BE, van de Kerkhof P, Ho V, Fidelus-Gort R et al. 2010. Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N. Engl. J. Med. 362:118–28
    [Google Scholar]
  111. 111. 
    Reich K, Langley RG, Papp KA, Ortonne JP, Unnebrink K et al. 2011. A 52-week trial comparing briakinumab with methotrexate in patients with psoriasis. N. Engl. J. Med. 365:1586–96
    [Google Scholar]
  112. 112. 
    Strober BE, Crowley JJ, Yamauchi PS, Olds M, Williams DA 2011. Efficacy and safety results from a phase III, randomized controlled trial comparing the safety and efficacy of briakinumab with etanercept and placebo in patients with moderate to severe chronic plaque psoriasis. Br. J. Dermatol. 165:661–68
    [Google Scholar]
  113. 113. 
    Gottlieb AB, Leonardi C, Kerdel F, Mehlis S, Olds M, Williams DA 2011. Efficacy and safety of briakinumab versus etanercept and placebo in patients with moderate to severe chronic plaque psoriasis. Br. J. Dermatol. 165:652–60
    [Google Scholar]
  114. 114. 
    Altare F, Jouanguy E, Lamhamedi S, Doffinger R, Fischer A, Casanova JL 1998. Mendelian susceptibility to mycobacterial infection in man. Curr. Opin. Immunol. 10:413–17
    [Google Scholar]
  115. 115. 
    Ghosh S, Gensler LS, Yang Z, Gasink C, Chakravarty SD et al. 2019. Ustekinumab safety in psoriasis, psoriatic arthritis, and Crohn's disease: an integrated analysis of phase II/III clinical development programs. Drug Saf 42:751–68 Correction. 2019 Drug Saf 42:809
    [Google Scholar]
  116. 116. 
    Reich K, Armstrong AW, Foley P, Song M, Wasfi Y et al. 2017. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment: results from the phase III, double-blind, placebo- and active comparator-controlled VOYAGE 2 trial. J. Am. Acad. Dermatol. 76:418–31
    [Google Scholar]
  117. 117. 
    Reich K, Gooderham M, Thaci D, Crowley JJ, Ryan C et al. 2019. Risankizumab compared with adalimumab in patients with moderate-to-severe plaque psoriasis (IMMvent): a randomised, double-blind, active-comparator-controlled phase 3 trial. Lancet 394:576–86
    [Google Scholar]
  118. 118. 
    Reich K, Papp KA, Blauvelt A, Tyring SK, Sinclair R et al. 2017. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): results from two randomised controlled, phase 3 trials. Lancet 390:276–88
    [Google Scholar]
  119. 119. 
    Foley P, Gordon K, Griffiths CEM, Wasfi Y, Randazzo B et al. 2018. Efficacy of guselkumab compared with adalimumab and placebo for psoriasis in specific body regions: a secondary analysis of 2 randomized clinical trials. JAMA Dermatol 154:676–83
    [Google Scholar]
  120. 120. 
    Oh J, Byrd AL, Deming C, Conlan S, Program NCS et al. 2014. Biogeography and individuality shape function in the human skin metagenome. Nature 514:59–64
    [Google Scholar]
  121. 121. 
    Kyriakou A, Patsatsi A, Vyzantiadis TA, Sotiriadis D 2014. Serum levels of TNF-α, IL-12/23p40, and IL-17 in plaque psoriasis and their correlation with disease severity. J. Immunol. Res. 2014:467541
    [Google Scholar]
  122. 122. 
    Pirowska M, Obtulowicz A, Lipko-Godlewska S, Gozdzialska A, Podolec K, Wojas-Pelc A 2018. The level of proinflammatory cytokines: interleukins 12, 23, 17 and tumor necrosis factor α in patients with metabolic syndrome accompanying severe psoriasis and psoriatic arthritis. Postepy Dermatol. Alergol. 35:360–66
    [Google Scholar]
  123. 123. 
    Kulig P, Musiol S, Freiberger SN, Schreiner B, Gyulveszi G et al. 2016. IL-12 protects from psoriasiform skin inflammation. Nat. Commun. 7:13466
    [Google Scholar]
  124. 124. 
    Lee YK, Turner H, Maynard CL, Oliver JR, Chen D et al. 2009. Late developmental plasticity in the T helper 17 lineage. Immunity 30:92–107
    [Google Scholar]
  125. 125. 
    Cooper AM, Khader SA. 2007. IL-12p40: an inherently agonistic cytokine. Trends Immunol 28:33–38
    [Google Scholar]
  126. 126. 
    Papp KA, Gooderham M, Jenkins R, Vender R, Szepietowski JC et al. 2018. Granulocyte-macrophage colony-stimulating factor (GM-CSF) as a therapeutic target in psoriasis: randomized, controlled investigation using namilumab, a specific human anti-GM-CSF monoclonal antibody. Br. J. Dermatol. 180:1352–60
    [Google Scholar]
  127. 127. 
    Caproni M, Antiga E, Melani L, Volpi W, Del Bianco E, Fabbri P 2009. Serum levels of IL-17 and IL-22 are reduced by etanercept, but not by acitretin, in patients with psoriasis: a randomized-controlled trial. J. Clin. Immunol. 29:210–14
    [Google Scholar]
  128. 128. 
    Bagel J, Nia J, Hashim PW, Patekar M, de Vera A et al. 2018. Secukinumab is superior to ustekinumab in clearing skin in patients with moderate to severe plaque psoriasis (16-week CLARITY results). Dermatol. Ther. 8:571–79
    [Google Scholar]
  129. 129. 
    Thaci D, Blauvelt A, Reich K, Tsai TF, Vanaclocha F et al. 2015. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate to severe plaque psoriasis: CLEAR, a randomized controlled trial. J. Am. Acad. Dermatol. 73:400–9
    [Google Scholar]
  130. 130. 
    Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CE et al. 2014. Secukinumab in plaque psoriasis—results of two phase 3 trials. N. Engl. J. Med. 371:326–38
    [Google Scholar]
  131. 131. 
    Gordon KB, Blauvelt A, Papp KA, Langley RG, Luger T et al. 2016. Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis. N. Engl. J. Med. 375:345–56
    [Google Scholar]
  132. 132. 
    Paul C, Griffiths CEM, van de Kerkhof PCM, Puig L, Dutronc Y et al. 2019. Ixekizumab provides superior efficacy compared with ustekinumab over 52 weeks of treatment: results from IXORA-S, a phase 3 study. J. Am. Acad. Dermatol. 80:70–79.e3
    [Google Scholar]
  133. 133. 
    Griffiths CE, Reich K, Lebwohl M, van de Kerkhof P, Paul C et al. 2015. Comparison of ixekizumab with etanercept or placebo in moderate-to-severe psoriasis (UNCOVER-2 and UNCOVER-3): results from two phase 3 randomised trials. Lancet 386:541–51
    [Google Scholar]
  134. 134. 
    Papp KA, Reich K, Paul C, Blauvelt A, Baran W et al. 2016. A prospective phase III, randomized, double-blind, placebo-controlled study of brodalumab in patients with moderate-to-severe plaque psoriasis. Br. J. Dermatol. 175:273–86
    [Google Scholar]
  135. 135. 
    Lebwohl M, Strober B, Menter A, Gordon K, Weglowska J et al. 2015. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N. Engl. J. Med. 373:1318–28
    [Google Scholar]
  136. 136. 
    Papp KA, Merola JF, Gottlieb AB, Griffiths CEM, Cross N et al. 2018. Dual neutralization of both interleukin 17A and interleukin 17F with bimekizumab in patients with psoriasis: results from BE ABLE 1, a 12-week randomized, double-blinded, placebo-controlled phase 2b trial. J. Am. Acad. Dermatol. 79:277–86.e10
    [Google Scholar]
  137. 137. 
    Saunte DM, Mrowietz U, Puig L, Zachariae C 2017. Candida infections in patients with psoriasis and psoriatic arthritis treated with interleukin-17 inhibitors and their practical management. Br. J. Dermatol. 177:47–62
    [Google Scholar]
  138. 138. 
    Mease PJ, van der Heijde D, Ritchlin CT, Okada M, Cuchacovich RS et al. 2017. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann. Rheum. Dis. 76:79–87
    [Google Scholar]
  139. 139. 
    Baumgart DC, Sandborn WJ. 2012. Crohn's disease. Lancet 380:1590–605
    [Google Scholar]
  140. 140. 
    Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF 2017. Ulcerative colitis. Lancet 389:1756–70
    [Google Scholar]
  141. 141. 
    Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP et al. 2012. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–24
    [Google Scholar]
  142. 142. 
    Feagan BG, Sandborn WJ, Gasink C, Jacobstein D, Lang Y et al. 2016. Ustekinumab as induction and maintenance therapy for Crohn's disease. N. Engl. J. Med. 375:1946–60
    [Google Scholar]
  143. 143. 
    Danese S, Sands BE, O'Brien CD, Zhang H, Johanns J et al. 2019. Efficacy and safety of ustekinumab through Week 16 in patients with moderate-to-severe ulcerative colitis randomised to ustekinumab: results from the UNIFI induction trial. J. Crohn's Colitis 13:S61–62
    [Google Scholar]
  144. 144. 
    Sandborn WJ, Sands BE, Panaccione R, O'Brien CD, Zhang H et al. 2019. Efficacy and safety of ustekinumab as maintenance therapy in ulcerative colitis: Week 44 results from UNIFI. J. Crohn's Colitis 13:S025–26
    [Google Scholar]
  145. 145. 
    Sands BE, Chen J, Feagan BG, Penney M, Rees WA et al. 2017. Efficacy and safety of MEDI2070, an antibody against interleukin 23, in patients with moderate to severe Crohn's disease: a phase 2a study. Gastroenterology 153:77–86.e6
    [Google Scholar]
  146. 146. 
    Feagan BG, Sandborn WJ, D'Haens G, Panes J, Kaser A et al. 2017. Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn's disease: a randomised, double-blind, placebo-controlled phase 2 study. Lancet 389:1699–709
    [Google Scholar]
  147. 147. 
    Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W et al. 2012. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61:1693–700
    [Google Scholar]
  148. 148. 
    Targan SR, Feagan B, Vermeire S, Panaccione R, Melmed GY et al. 2016. A randomized, double-blind, placebo-controlled phase 2 study of brodalumab in patients with moderate-to-severe Crohn's disease. Am. J. Gastroenterol. 111:1599–607
    [Google Scholar]
  149. 149. 
    Maxwell JR, Zhang Y, Brown WA, Smith CL, Byrne FR et al. 2015. Differential roles for interleukin-23 and interleukin-17 in intestinal immunoregulation. Immunity 43:739–50
    [Google Scholar]
  150. 150. 
    Braun J, Baraliakos X, Deodhar A, Poddubnyy D, Emery P et al. 2018. Secukinumab shows sustained efficacy and low structural progression in ankylosing spondylitis: 4-year results from the MEASURE 1 study. Rheumatology 58:859–68
    [Google Scholar]
  151. 151. 
    Mease PJ, Kavanaugh A, Reimold A, Tahir H, Rech J et al. 2018. Secukinumab in the treatment of psoriatic arthritis: efficacy and safety results through 3 years from the year 1 extension of the randomised phase III FUTURE 1 trial. RMD Open 4:e000723
    [Google Scholar]
  152. 152. 
    Kivitz AJ, Wagner U, Dokoupilova E, Supronik J, Martin R et al. 2018. Efficacy and safety of secukinumab 150 mg with and without loading regimen in ankylosing spondylitis: 104-week results from MEASURE 4 study. Rheumatol. Ther. 5:447–62
    [Google Scholar]
  153. 153. 
    Genovese MC, Weinblatt ME, Mease PJ, Aelion JA, Peloso PM et al. 2018. Dual inhibition of tumour necrosis factor and interleukin-17A with ABT-122: open-label long-term extension studies in rheumatoid arthritis or psoriatic arthritis. Rheumatology 57:1972–81
    [Google Scholar]
  154. 154. 
    Mease P, van der Heijde D, Landewe R, Mpofu S, Rahman P et al. 2018. Secukinumab improves active psoriatic arthritis symptoms and inhibits radiographic progression: primary results from the randomised, double-blind, phase III FUTURE 5 study. Ann. Rheum. Dis. 77:890–97
    [Google Scholar]
  155. 155. 
    Bissonnette R, Luger T, Thaci D, Toth D, Lacombe A et al. 2018. Secukinumab demonstrates high sustained efficacy and a favourable safety profile in patients with moderate-to-severe psoriasis through 5 years of treatment (SCULPTURE Extension Study). J. Eur. Acad. Dermatol. Venereol. 32:1507–14
    [Google Scholar]
  156. 156. 
    Bissonnette R, Luger T, Thaci D, Toth D, Messina I et al. 2017. Secukinumab sustains good efficacy and favourable safety in moderate-to-severe psoriasis after up to 3 years of treatment: results from a double-blind extension study. Br. J. Dermatol. 177:1033–42
    [Google Scholar]
  157. 157. 
    Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A et al. 2018. Multiple sclerosis. Nat. Rev. Dis. Primers 4:43
    [Google Scholar]
  158. 158. 
    Zephir H. 2018. Progress in understanding the pathophysiology of multiple sclerosis. Rev. Neurol. 174:358–63
    [Google Scholar]
  159. 159. 
    Didonna A, Oksenberg JR. 2017. The genetics of multiple sclerosis. Multiple Sclerosis: Perspectives in Treatment and Pathogenesis IS Zagon, PJ McLaughlin Brisbane, Aust: Codon
    [Google Scholar]
  160. 160. 
    Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A et al. 2017. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 376:209–20
    [Google Scholar]
  161. 161. 
    Havrdova E, Belova A, Goloborodko A, Tisserant A, Wright A et al. 2016. Activity of secukinumab, an anti-IL-17A antibody, on brain lesions in RRMS: results from a randomized, proof-of-concept study. J. Neurol. 263:1287–95
    [Google Scholar]
  162. 162. 
    Segal BM, Constantinescu CS, Raychaudhuri A, Kim L, Fidelus-Gort R et al. 2008. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: phase II, double-blind, placebo-controlled randomized, dose-ranging study. Lancet Neurol 7:796–804
    [Google Scholar]
  163. 163. 
    Thakker P, Leach MW, Kuang W, Benoit SE, Leonard JP, Marusic S 2007. IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis. J. Immunol. 178:2589–98
    [Google Scholar]
  164. 164. 
    Saulep-Easton D, Vincent FB, Quah PS, Wei A, Ting SB et al. 2016. The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells. Leukemia 30:163–72
    [Google Scholar]
  165. 165. 
    Harris NL, Loke P. 2017. Recent advances in type-2-cell-mediated immunity: insights from helminth infection. Immunity 47:1024–36
    [Google Scholar]
  166. 166. 
    Arron JR, Scheerens H, Matthews JG 2013. Redefining approaches to asthma: developing targeted biologic therapies. Adv. Pharmacol. 66:1–49
    [Google Scholar]
  167. 167. 
    Roan F, Obata-Ninomiya K, Ziegler SF 2019. Epithelial cell-derived cytokines: more than just signaling the alarm. J. Clin. Investig. 129:1441–51
    [Google Scholar]
  168. 168. 
    Haspeslagh E, Heyndrickx I, Hammad H, Lambrecht BN 2018. The hygiene hypothesis: immunological mechanisms of airway tolerance. Curr. Opin. Immunol. 54:102–8
    [Google Scholar]
  169. 169. 
    Lambrecht BN, Hammad H, Fahy JV 2019. The cytokines of asthma. Immunity 50:975–91
    [Google Scholar]
  170. 170. 
    Jackson DJ, Gern JE, Lemanske RF Jr 2017. Lessons learned from birth cohort studies conducted in diverse environments. J. Allergy Clin. Immunol. 139:379–86
    [Google Scholar]
  171. 171. 
    Kaur R, Chupp G. 2019. Phenotypes and endotypes of adult asthma: moving toward precision medicine. J. Allergy Clin. Immunol. 144:1–12
    [Google Scholar]
  172. 172. 
    Siddiqui S, Denlinger LC, Fowler SJ, Akuthota P, Shaw DE et al. 2019. Unmet needs in severe asthma subtyping and precision medicine trials: bridging clinical and patient perspectives. Am. J. Respir. Crit. Care Med. 199:823–29
    [Google Scholar]
  173. 173. 
    Braman SS. 2006. The global burden of asthma. Chest 130:4S–12S
    [Google Scholar]
  174. 174. 
    McGregor MC, Krings JG, Nair P, Castro M 2019. Role of biologics in asthma. Am. J. Respir. Crit. Care Med. 199:433–45
    [Google Scholar]
  175. 175. 
    Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB et al. 1999. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am. J. Respir. Crit. Care Med. 160:1001–8
    [Google Scholar]
  176. 176. 
    Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR et al. 2009. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med. 180:388–95
    [Google Scholar]
  177. 177. 
    Staton TL, Choy DF, Arron JR 2016. Biomarkers in the clinical development of asthma therapies. Biomark. Med. 10:165–76
    [Google Scholar]
  178. 178. 
    Arron JR, Izuhara K. 2015. Asthma biomarkers: what constitutes a ‘gold standard’. ? Thorax 70:105–7
    [Google Scholar]
  179. 179. 
    Staton TL, Arron JR, Olsson J, Holweg CTJ, Matthews JG, Choy DF 2017. Seasonal variability of severe asthma exacerbations and clinical benefit from lebrikizumab. J. Allergy Clin. Immunol. 139:1682–84.e3
    [Google Scholar]
  180. 180. 
    Busse WW, Morgan WJ, Gergen PJ, Mitchell HE, Gern JE et al. 2011. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N. Engl. J. Med. 364:1005–15
    [Google Scholar]
  181. 181. 
    Sese BT, Grant A, Reid BJ 2009. Toxicity of polycyclic aromatic hydrocarbons to the nematode Caenorhabditis elegans. J. Toxicol. Environ. Health A 72:1168–80
    [Google Scholar]
  182. 182. 
    Chang TW. 2000. The pharmacological basis of anti-IgE therapy. Nat. Biotechnol. 18:157–62
    [Google Scholar]
  183. 183. 
    Fahy JV, Fleming HE, Wong HH, Liu JT, Su JQ et al. 1997. The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am. J. Respir. Crit. Care Med. 155:1828–34
    [Google Scholar]
  184. 184. 
    Gauvreau GM, El-Gammal AI, O'Byrne PM 2015. Allergen-induced airway responses. Eur. Respir. J. 46:819–31
    [Google Scholar]
  185. 185. 
    Normansell R, Walker S, Milan SJ, Walters EH, Nair P 2014. Omalizumab for asthma in adults and children. Cochrane Database Syst. Rev. 2014.CD003559
    [Google Scholar]
  186. 186. 
    Hanania NA, Wenzel S, Rosen K, Hsieh HJ, Mosesova S et al. 2013. Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am. J. Respir. Crit. Care Med. 187:804–11
    [Google Scholar]
  187. 187. 
    Gauvreau GM, Harris JM, Boulet LP, Scheerens H, Fitzgerald JM et al. 2014. Targeting membrane-expressed IgE B cell receptor with an antibody to the M1 prime epitope reduces IgE production. Sci. Transl. Med. 6:243ra85
    [Google Scholar]
  188. 188. 
    Harris JM, Maciuca R, Bradley MS, Cabanski CR, Scheerens H et al. 2016. A randomized trial of the efficacy and safety of quilizumab in adults with inadequately controlled allergic asthma. Respir. Res. 17:29
    [Google Scholar]
  189. 189. 
    Farne HA, Wilson A, Powell C, Bax L, Milan SJ 2017. Anti-IL5 therapies for asthma. Cochrane Database Syst. Rev. 2017. 9:CD010834
    [Google Scholar]
  190. 190. 
    Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W et al. 2009. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med. 360:973–84
    [Google Scholar]
  191. 191. 
    Leckie MJ, ten Brinke A, Khan J, Diamant Z, O'Connor BJ et al. 2000. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356:2144–48
    [Google Scholar]
  192. 192. 
    Walker BL, Leigh R. 2008. Use of biologicals as immunotherapy in asthma and related diseases. Expert Rev. Clin. Immunol. 4:743–56
    [Google Scholar]
  193. 193. 
    Scheerens H, Arron JR, Zheng Y, Putnam WS, Erickson RW et al. 2014. The effects of lebrikizumab in patients with mild asthma following whole lung allergen challenge. Clin. Exp. Allergy 44:38–46
    [Google Scholar]
  194. 194. 
    Brightling CE, Chanez P, Leigh R, O'Byrne PM, Korn S et al. 2015. Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir. Med. 3:692–701
    [Google Scholar]
  195. 195. 
    Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV et al. 2011. Lebrikizumab treatment in adults with asthma. N. Engl. J. Med. 365:1088–98
    [Google Scholar]
  196. 196. 
    Hanania NA, Noonan M, Corren J, Korenblat P, Zheng Y et al. 2015. Lebrikizumab in moderate-to-severe asthma: pooled data from two randomised placebo-controlled studies. Thorax 70:748–56
    [Google Scholar]
  197. 197. 
    Piper E, Brightling C, Niven R, Oh C, Faggioni R et al. 2013. A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur. Respir. J. 41:330–38
    [Google Scholar]
  198. 198. 
    Wenzel S, Castro M, Corren J, Maspero J, Wang L et al. 2016. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet 388:31–44
    [Google Scholar]
  199. 199. 
    Wenzel S, Ford L, Pearlman D, Spector S, Sher L et al. 2013. Dupilumab in persistent asthma with elevated eosinophil levels. N. Engl. J. Med. 368:2455–66
    [Google Scholar]
  200. 200. 
    Castro M, Corren J, Pavord ID, Maspero J, Wenzel S et al. 2018. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N. Engl. J. Med. 378:2486–96
    [Google Scholar]
  201. 201. 
    Hanania NA, Korenblat P, Chapman KR, Bateman ED, Kopecky P et al. 2016. Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir. Med. 4:781–96
    [Google Scholar]
  202. 202. 
    Panettieri RA Jr, Sjobring U, Peterffy A, Wessman P, Bowen K et al. 2018. Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, double-blind, placebo-controlled, phase 3 clinical trials. Lancet Respir. Med. 6:511–25
    [Google Scholar]
  203. 203. 
    Townsend MJ, Arron JR. 2016. Reducing the risk of failure: biomarker-guided trial design. Nat. Rev. Drug Discov. 15:517–18
    [Google Scholar]
  204. 204. 
    Doran E, Cai F, Holweg CTJ, Wong K, Brumm J, Arron JR 2017. Interleukin-13 in asthma and other eosinophilic disorders. Front. Med. 4:139
    [Google Scholar]
  205. 205. 
    Corren J, Parnes JR, Wang L, Mo M, Roseti SL et al. 2017. Tezepelumab in adults with uncontrolled asthma. N. Engl. J. Med. 377:936–46
    [Google Scholar]
  206. 206. 
    Choy DF, Hart KM, Borthwick LA, Shikotra A, Nagarkar DR et al. 2015. TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. Sci. Transl. Med. 7:301ra129
    [Google Scholar]
  207. 207. 
    Peters MC, McGrath KW, Hawkins GA, Hastie AT, Levy BD et al. 2016. Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respir. Med. 4:574–84
    [Google Scholar]
  208. 208. 
    Bhakta NR, Christenson SA, Nerella S, Solberg OD, Nguyen CP et al. 2018. IFN-stimulated gene expression, type 2 inflammation, and endoplasmic reticulum stress in asthma. Am. J. Respir. Crit. Care Med. 197:313–24
    [Google Scholar]
  209. 209. 
    Raundhal M, Morse C, Khare A, Oriss TB, Milosevic J et al. 2015. High IFN-γ and low SLPI mark severe asthma in mice and humans. J. Clin. Investig. 125:3037–50
    [Google Scholar]
  210. 210. 
    Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF et al. 2015. The airway microbiome in patients with severe asthma: associations with disease features and severity. J. Allergy Clin. Immunol. 136:874–84
    [Google Scholar]
  211. 211. 
    Busse WW, Holgate S, Kerwin E, Chon Y, Feng J et al. 2013. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am. J. Respir. Crit. Care Med. 188:1294–302
    [Google Scholar]
  212. 212. 
    Ghebre MA, Pang PH, Diver S, Desai D, Bafadhel M et al. 2018. Biological exacerbation clusters demonstrate asthma and chronic obstructive pulmonary disease overlap with distinct mediator and microbiome profiles. J. Allergy Clin. Immunol. 141:2027–36.e12
    [Google Scholar]
  213. 213. 
    Bieber T. 2008. Atopic dermatitis. N. Engl. J. Med. 358:1483–94
    [Google Scholar]
  214. 214. 
    Simpson EL, Bieber T, Guttman-Yassky E, Beck LA, Blauvelt A et al. 2016. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N. Engl. J. Med. 375:2335–48
    [Google Scholar]
  215. 215. 
    Simpson EL, Flohr C, Eichenfield LF, Bieber T, Sofen H et al. 2018. Efficacy and safety of lebrikizumab (an anti-IL-13 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical corticosteroids: a randomized, placebo-controlled phase II trial (TREBLE). J. Am. Acad. Dermatol. 78:863–71.e11
    [Google Scholar]
  216. 216. 
    Wollenberg A, Howell MD, Guttman-Yassky E, Silverberg JI, Kell C et al. 2019. Treatment of atopic dermatitis with tralokinumab, an anti-IL-13 mAb. J. Allergy Clin. Immunol. 143:135–41
    [Google Scholar]
  217. 217. 
    Saini SS, Kaplan AP. 2018. Chronic spontaneous urticaria: the devil's itch. J. Allergy Clin. Immunol. Pract. 6:1097–106
    [Google Scholar]
  218. 218. 
    Maurer M, Rosen K, Hsieh HJ, Saini S, Grattan C et al. 2013. Omalizumab for the treatment of chronic idiopathic or spontaneous urticaria. N. Engl. J. Med. 368:924–35
    [Google Scholar]
  219. 219. 
    Ogbogu PU, Klion AD. 2015. Hypereosinophilic disorders. J. Allergy Clin. Immunol. Pract. 3:304–5
    [Google Scholar]
  220. 220. 
    Kuang FL, Klion AD. 2017. Biologic agents for the treatment of hypereosinophilic syndromes. J. Allergy Clin. Immunol. Pract. 5:1502–9
    [Google Scholar]
  221. 221. 
    Wechsler ME, Akuthota P, Jayne D, Khoury P, Klion A et al. 2017. Mepolizumab or placebo for eosinophilic granulomatosis with polyangiitis. N. Engl. J. Med. 376:1921–32
    [Google Scholar]
  222. 222. 
    Yousuf A, Ibrahim W, Greening NJ, Brightling CE 2019. T2 biologics for chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. Pract. 7:1405–16
    [Google Scholar]
  223. 223. 
    Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P et al. 2018. Rheumatoid arthritis. Nat. Rev. Dis. Primers 4:18001
    [Google Scholar]
  224. 224. 
    Young CL, Adamson TC 3rd, Vaughan JH, Fox RI 1984. Immunohistologic characterization of synovial membrane lymphocytes in rheumatoid arthritis. Arthritis Rheum 27:32–39
    [Google Scholar]
  225. 225. 
    Dennis G Jr, Holweg CT, Kummerfeld SK, Choy DF, Setiadi AF et al. 2014. Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics. Arthritis Res. Ther. 16:R90
    [Google Scholar]
  226. 226. 
    Humby F, Lewis M, Ramamoorthi N, Hackney JA, Barnes MR et al. 2019. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann. Rheum. Dis. 78:761–72
    [Google Scholar]
  227. 227. 
    Haddick PC, Larson JL, Rathore N, Bhangale TR, Phung QT et al. 2017. A common variant of IL-6R is associated with elevated IL-6 pathway activity in Alzheimer's disease brains. J. Alzheimer's Dis. 56:1037–54
    [Google Scholar]
  228. 228. 
    Lee JC, Biasci D, Roberts R, Gearry RB, Mansfield JC et al. 2017. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease. Nat. Genet. 49:262–68
    [Google Scholar]
  229. 229. 
    Bomba L, Walter K, Soranzo N 2017. The impact of rare and low-frequency genetic variants in common disease. Genome Biol 18:77
    [Google Scholar]
  230. 230. 
    Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH 2006. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354:1264–72
    [Google Scholar]
  231. 231. 
    Carter PJ, Lazar GA. 2018. Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat. Rev. Drug Discov. 17:197–223
    [Google Scholar]
  232. 232. 
    Sears CL, Pardoll DM. 2018. The intestinal microbiome influences checkpoint blockade. Nat. Med. 24:254–55
    [Google Scholar]
  233. 233. 
    Ekins S, Puhl AC, Zorn KM, Lane TR, Russo DP et al. 2019. Exploiting machine learning for end-to-end drug discovery and development. Nat. Mater. 18:435–41
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101619-031510
Loading
/content/journals/10.1146/annurev-immunol-101619-031510
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error