1932

Abstract

Modulation of the immune system is an important therapeutic strategy in a wide range of diseases, and is fundamental to the development of vaccines. However, optimally safe and effective immunotherapy requires precision in the delivery of stimulatory cues to the right cells at the right place and time, to avoid toxic overstimulation in healthy tissues or incorrect programming of the immune response. To this end, biomaterials are being developed to control the location, dose, and timing of vaccines and immunotherapies. Here we discuss fundamental concepts of how biomaterials are used to enhance immune modulation, and evidence from preclinical and clinical studies of how biomaterials-mediated immune engineering can impact the development of new therapeutics. We focus on immunological mechanisms of action and in vivo modulation of the immune system, and we also discuss challenges to be overcome to speed translation of these technologies to the clinic.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101721-040259
2023-04-26
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/immunol/41/1/annurev-immunol-101721-040259.html?itemId=/content/journals/10.1146/annurev-immunol-101721-040259&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ratner BD. 2019. Biomaterials: been there, done that, and evolving into the future. Annu. Rev. Biomed. Eng. 21:171–91
    [Google Scholar]
  2. 2.
    Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. 2018. Advances in biomaterials for drug delivery. Adv. Mater. 30:291705328–29
    [Google Scholar]
  3. 3.
    Mitrousis N, Fokina A, Shoichet MS. 2018. Biomaterials for cell transplantation. Nat. Rev. Mater. 3:11441–56
    [Google Scholar]
  4. 4.
    Badeau BA, DeForest CA. 2019. Programming stimuli-responsive behavior into biomaterials. Annu. Rev. Biomed. Eng. 21:241–65
    [Google Scholar]
  5. 5.
    Urquhart L. 2022. Top companies and drugs by sales in 2021. Nat. Rev. Drug. Discov. 21:4251
    [Google Scholar]
  6. 6.
    Hou X, Zaks T, Langer R, Dong Y. 2021. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6:121078–94
    [Google Scholar]
  7. 7.
    Cent. Biol. Eval. Res 2022. Vaccines licensed for use in the US. U.S. Food and Drug Administration July 5. https://www.fda.gov/vaccines-blood-biologics/vaccines/vaccines-licensed-use-united-states
    [Google Scholar]
  8. 8.
    Rappuoli R, Gregorio ED, Giudice GD, Phogat S, Pecetta S et al. 2021. Vaccinology in the post−COVID-19 era. PNAS 118:3e2020368118
    [Google Scholar]
  9. 9.
    Excler J-L, Saville M, Berkley S, Kim JH. 2021. Vaccine development for emerging infectious diseases. Nat. Med. 27:4591–600
    [Google Scholar]
  10. 10.
    Irvine DJ, Aung A, Silva M. 2020. Controlling timing and location in vaccines. Adv. Drug Deliver Rev. 158:91–115
    [Google Scholar]
  11. 11.
    Chaudhary N, Weissman D, Whitehead KA. 2021. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug. Discov. 20:11817–38
    [Google Scholar]
  12. 12.
    Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV et al. 2014. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507:7493519–22
    [Google Scholar]
  13. 13.
    Mehta NK, Pradhan RV, Soleimany AP, Moynihan KD, Rothschilds AM et al. 2020. Pharmacokinetic tuning of protein-antigen fusions enhances the immunogenicity of T-cell vaccines. Nat. Biomed. Eng. 4:6636–48
    [Google Scholar]
  14. 14.
    Martin JT, Hartwell BL, Kumarapperuma SC, Melo MB, Carnathan DG et al. 2021. Combined PET and whole-tissue imaging of lymphatic-targeting vaccines in non-human primates. Biomaterials 275:120868
    [Google Scholar]
  15. 15.
    Schudel A, Francis DM, Thomas SN. 2019. Material design for lymph node drug delivery. Nat. Rev. Mater. 4:6415–28
    [Google Scholar]
  16. 16.
    Reddy S, van der Vlies A, Simeoni E, Angeli V, Randolph G et al. 2007. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25:101159–64
    [Google Scholar]
  17. 17.
    Singh A. 2021. Eliciting B cell immunity against infectious diseases using nanovaccines. Nat. Nanotechnol. 16:116–24
    [Google Scholar]
  18. 18.
    Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ. 2016. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16:4489–96
    [Google Scholar]
  19. 19.
    Moynihan KD, Holden RL, Mehta NK, Wang C, Karver MR et al. 2018. Enhancement of peptide vaccine immunogenicity by increasing lymphatic drainage and boosting serum stability. Cancer Immunol. Res. 6:91025–38
    [Google Scholar]
  20. 20.
    Steinbuck MP, Seenappa LM, Jakubowski A, McNeil LK, Haqq CM, DeMuth PC. 2020. A lymph node–targeted Amphiphile vaccine induces potent cellular and humoral immunity to SARS-CoV-2. Sci. Adv. 7:6eabe5819
    [Google Scholar]
  21. 21.
    Marcandalli J, Fiala B, Ols S, Perotti M, de van der Schueren W et al. 2019. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. Cell 176:61420–31.e17
    [Google Scholar]
  22. 22.
    Brouwer PJM, Brinkkemper M, Maisonnasse P, Dereuddre-Bosquet N, Grobben M et al. 2021. Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell 184:51188–200.e19
    [Google Scholar]
  23. 23.
    Lynn GM, Sedlik C, Baharom F, Zhu Y, Ramirez-Valdez RA et al. 2020. Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat. Biotechnol. 38:3320–32
    [Google Scholar]
  24. 24.
    Silva M, Kato Y, Melo MB, Phung I, Freeman BL et al. 2021. A particulate saponin/TLR agonist vaccine adjuvant alters lymph flow and modulates adaptive immunity. Sci Immunol 6:66eabf1152
    [Google Scholar]
  25. 25.
    Schudel A, Chapman AP, Yau M-K, Higginson CJ, Francis DM et al. 2020. Programmable multistage drug delivery to lymph nodes. Nat. Nanotechnol. 15:6491–99
    [Google Scholar]
  26. 26.
    Tokatlian T, Read BJ, Jones CA, Kulp DW, Menis S et al. 2019. Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers. Science 363:6427649–54
    [Google Scholar]
  27. 27.
    Read BJ, Won L, Kraft JC, Sappington I, Aung A et al. 2022. Mannose-binding lectin and complement mediate follicular localization and enhanced immunogenicity of diverse protein nanoparticle immunogens. Cell Rep 38:2110217
    [Google Scholar]
  28. 28.
    Zhang Y-N, Lazarovits J, Poon W, Ouyang B, Nguyen LNM et al. 2019. Nanoparticle size influences antigen retention and presentation in lymph node follicles for humoral immunity. Nano Lett. 19:107226–35
    [Google Scholar]
  29. 29.
    Hartwell BL, Melo MB, Xiao P, Lemnios AA, Li N et al. 2022. Intranasal vaccination with lipid-conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity. Sci. Transl. Med. 14:654eabn1413
    [Google Scholar]
  30. 30.
    Rakhra K, Abraham W, Wang C, Moynihan KD, Li N et al. 2021. Exploiting albumin as a mucosal vaccine chaperone for robust generation of lung-resident memory T cells. Sci. Immunol. 6:57eabd8003
    [Google Scholar]
  31. 31.
    Akinc A, Maier MA, Manoharan M, Fitzgerald K, Jayaraman M et al. 2019. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14:121084–87
    [Google Scholar]
  32. 32.
    Kranz LM, Diken M, Haas H, Kreiter S, Loquai C et al. 2016. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534:7607396–401
    [Google Scholar]
  33. 33.
    Hajj KA, Whitehead KA. 2017. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2:1017056
    [Google Scholar]
  34. 34.
    Alameh M-G, Tombácz I, Bettini E, Lederer K, Ndeupen S et al. 2021. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54:122877–92.e7
    [Google Scholar]
  35. 35.
    Li C, Lee A, Grigoryan L, Arunachalam PS, Scott MKD et al. 2022. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 23:4543–55
    [Google Scholar]
  36. 36.
    Tahtinen S, Tong A-J, Himmels P, Oh J, Paler-Martinez A et al. 2022. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 23:4532–42
    [Google Scholar]
  37. 37.
    Miao L, Li L, Huang Y, Delcassian D, Chahal J et al. 2019. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37:101174–85
    [Google Scholar]
  38. 38.
    Roth GA, Picece VCTM, Ou BS, Luo W, Pulendran B, Appel EA. 2021. Designing spatial and temporal control of vaccine responses. Nat. Rev. Mater. 7:3174–95
    [Google Scholar]
  39. 39.
    Cirelli KM, Carnathan DG, Nogal B, Martin JT, Rodriguez OL et al. 2019. Slow delivery immunization enhances HIV neutralizing antibody and germinal center responses via modulation of immunodominance. Cell 177:51153–71.e28
    [Google Scholar]
  40. 40.
    Tam HH, Melo MB, Kang M, Pelet JM, Ruda VM et al. 2016. Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. PNAS 113:43E6639–48
    [Google Scholar]
  41. 41.
    Lee JH, Sutton HJ, Cottrell CA, Phung I, Ozorowski G et al. 2022. Long-primed germinal centres with enduring affinity maturation and clonal migration. Nature 609:7929998–1004
    [Google Scholar]
  42. 42.
    Moyer TJ, Kato Y, Abraham W, Chang JYH, Kulp DW et al. 2020. Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nat. Med. 26:3430–40
    [Google Scholar]
  43. 43.
    Roth GA, Gale EC, Alcántara-Hernández M, Luo W, Axpe E et al. 2020. Injectable hydrogels for sustained codelivery of subunit vaccines enhance humoral immunity. ACS Central Sci 6:101800–12
    [Google Scholar]
  44. 44.
    Boopathy AV, Mandal A, Kulp DW, Menis S, Bennett NR et al. 2019. Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. PNAS 116:3316473–78
    [Google Scholar]
  45. 45.
    McHugh KJ, Nguyen TD, Linehan AR, Yang D, Behrens AM et al. 2017. Fabrication of fillable microparticles and other complex 3D microstructures. Science 359:63561138–42
    [Google Scholar]
  46. 46.
    Garcea RL, Meinerz NM, Dong M, Funke H, Ghazvini S, Randolph TW. 2020. Single-administration, thermostable human papillomavirus vaccines prepared with atomic layer deposition technology. npj Vaccines 5:145
    [Google Scholar]
  47. 47.
    Tran KTM, Gavitt TD, Farrell NJ, Curry EJ, Mara AB et al. 2021. Transdermal microneedles for the programmable burst release of multiple vaccine payloads. Nat. Biomed. Eng. 5:9998–1007
    [Google Scholar]
  48. 48.
    Caudill C, Perry JL, Iliadis K, Tessema AT, Lee BJ et al. 2021. Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity. PNAS 118:39e2102595118
    [Google Scholar]
  49. 49.
    Andrabi R, Bhiman JN, Burton DR. 2018. Strategies for a multi-stage neutralizing antibody-based HIV vaccine. Curr. Opin. Immunol. 53:143–51
    [Google Scholar]
  50. 50.
    Steichen JM, Kulp DW, Tokatlian T, Escolano A, Dosenovic P et al. 2016. HIV vaccine design to target germline precursors of glycan-dependent broadly neutralizing antibodies. Immunity 45:3483–96
    [Google Scholar]
  51. 51.
    Veneziano R, Moyer TJ, Stone MB, Wamhoff E-C, Read BJ et al. 2019. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. Nat. Nanotechnol. 15:8716–23
    [Google Scholar]
  52. 52.
    Hainline KM, Shores LS, Votaw NL, Bernstein ZJ, Kelly SH et al. 2021. Modular complement assemblies for mitigating inflammatory conditions. PNAS 118:15e2018627118
    [Google Scholar]
  53. 53.
    Chen J, Pompano RR, Santiago FW, Maillat L, Sciammas R et al. 2013. The use of self-adjuvanting nanofiber vaccines to elicit high-affinity B cell responses to peptide antigens without inflammation. 34348776–85
  54. 54.
    Wilson DS, Hirosue S, Raczy MM, Bonilla-Ramirez L, Jeanbart L et al. 2019. Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat. Mater. 18:2175–85
    [Google Scholar]
  55. 55.
    Callmann CE, Cole LE, Kusmierz CD, Huang Z, Horiuchi D, Mirkin CA. 2020. Tumor cell lysate-loaded immunostimulatory spherical nucleic acids as therapeutics for triple-negative breast cancer. PNAS 117:3017543–50
    [Google Scholar]
  56. 56.
    Mosquera MJ, Kim S, Zhou H, Jing TT, Luna M et al. 2019. Immunomodulatory nanogels overcome restricted immunity in a murine model of gut microbiome-mediated metabolic syndrome. Sci. Adv. 5:3eaav9788
    [Google Scholar]
  57. 57.
    Baharom F, Ramirez-Valdez RA, Tobin KKS, Yamane H, Dutertre C-A et al. 2020. Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. Nat. Immunol. 22:141–52
    [Google Scholar]
  58. 58.
    Ali OA, Huebsch N, Cao L, Dranoff G, Mooney DJ. 2009. Infection-mimicking materials to program dendritic cells in situ. Nat. Mater. 8:2151–58
    [Google Scholar]
  59. 59.
    Ali OA, Emerich D, Dranoff G, Mooney DJ. 2009. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci. Transl. Med. 1:88ra19
    [Google Scholar]
  60. 60.
    Kim J, Li WA, Choi Y, Lewin SA, Verbeke CS et al. 2014. Injectable, spontaneously assembling inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat. Biotechnol. 33:164–72
    [Google Scholar]
  61. 61.
    HogenEsch H, O'Hagan DT, Fox CB 2018. Optimizing the utilization of aluminum adjuvants in vaccines: You might just get what you want. npj Vaccines 3:51
    [Google Scholar]
  62. 62.
    Korman AJ, Garrett-Thomson SC, Lonberg N 2022. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat. Rev. Drug Discov. 21:7509–28
    [Google Scholar]
  63. 63.
    Weber EW, Maus MV, Mackall CL. 2020. The emerging landscape of immune cell therapies. Cell 181:146–62
    [Google Scholar]
  64. 64.
    Finck AV, Blanchard T, Roselle CP, Golinelli G, June CH. 2022. Engineered cellular immunotherapies in cancer and beyond. Nat. Med. 28:4678–89
    [Google Scholar]
  65. 65.
    Fajgenbaum DC, June CH. 2020. Cytokine storm. New Engl. J. Med. 383:232255–73
    [Google Scholar]
  66. 66.
    Gangadhar TC, Vonderheide RH. 2014. Mitigating the toxic effects of anticancer immunotherapy. Nat. Rev. Clin. Oncol. 11:291–99
    [Google Scholar]
  67. 67.
    Melero I, Castanon E, Alvarez M, Champiat S, Marabelle A. 2021. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat. Rev. Clin. Oncol. 18:9558–76
    [Google Scholar]
  68. 68.
    Dummer R, Gyorki DE, Hyngstrom J, Berger AC, Conry R et al. 2021. Neoadjuvant talimogene laherparepvec plus surgery versus surgery alone for resectable stage IIIB-IVM1a melanoma: a randomized, open-label, phase 2 trial. Nat. Med. 27:101789–96
    [Google Scholar]
  69. 69.
    Momin N, Palmeri JR, Lutz EA, Jailkhani N, Mak H et al. 2022. Maximizing response to intratumoral immunotherapy in mice by tuning local retention. Nat. Commun. 13:1109
    [Google Scholar]
  70. 70.
    Tzeng A, Kwan BH, Opel CF, Navaratna T, Wittrup KD. 2015. Antigen specificity can be irrelevant to immunocytokine efficacy and biodistribution. PNAS 112:113320–25
    [Google Scholar]
  71. 71.
    Momin N, Mehta NK, Bennett NR, Ma L, Palmeri JR et al. 2019. Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy. Sci. Translational Med. 11:498eaaw2614
    [Google Scholar]
  72. 72.
    Mansurov A, Ishihara J, Hosseinchi P, Potin L, Marchell TM et al. 2020. Collagen-binding IL-12 enhances tumour inflammation and drives the complete remission of established immunologically cold mouse tumours. Nat. Biomed. Eng. 4:5531–43
    [Google Scholar]
  73. 73.
    Ishihara J, Ishihara A, Sasaki K, Lee SS-Y, Williford J-M et al. 2019. Targeted antibody and cytokine cancer immunotherapies through collagen affinity. Sci. Transl. Med. 11:487eaau3259
    [Google Scholar]
  74. 74.
    Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES et al. 2020. Localized interleukin-12 for cancer immunotherapy. Front. Immunol. 11:575597
    [Google Scholar]
  75. 75.
    Mills BN, Connolly KA, Ye J, Murphy JD, Uccello TP et al. 2019. Stereotactic body radiation and interleukin-12 combination therapy eradicates pancreatic tumors by repolarizing the immune microenvironment. Cell Rep 29:2406–21.e5
    [Google Scholar]
  76. 76.
    Yin Q, Yu W, Grzeskowiak CL, Li J, Huang H et al. 2021. Nanoparticle-enabled innate immune stimulation activates endogenous tumor-infiltrating T cells with broad antigen specificities. PNAS 118:21e2016168118
    [Google Scholar]
  77. 77.
    Wang F, Su H, Xu D, Dai W, Zhang W et al. 2020. Tumour sensitization via the extended intratumoural release of a STING agonist and camptothecin from a self-assembled hydrogel. Nat. Biomed. Eng. 4:111090–101
    [Google Scholar]
  78. 78.
    Wang H, Najibi AJ, Sobral MC, Seo BR, Lee JY et al. 2020. Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors. Nat. Commun. 11:15696
    [Google Scholar]
  79. 79.
    Nash AM, Jarvis MI, Aghlara-Fotovat S, Mukherjee S, Hernandez A et al. 2022. Clinically translatable cytokine delivery platform for eradication of intraperitoneal tumors. Sci. Adv. 8:9eabm1032
    [Google Scholar]
  80. 80.
    Chen Q, Wang C, Zhang X, Chen G, Hu Q et al. 2018. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14:189–97
    [Google Scholar]
  81. 81.
    Park CG, Hartl CA, Schmid D, Carmona EM, Kim H-J, Goldberg MS. 2018. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci. Transl. Med. 10:433eaar1916
    [Google Scholar]
  82. 82.
    Zhang J, Chen C, Li A, Jing W, Sun P et al. 2021. Immunostimulant hydrogel for the inhibition of malignant glioma relapse post-resection. Nat. Nanotechnol. 16:5538–48
    [Google Scholar]
  83. 83.
    Huang ZN, Callmann CE, Cole LE, Wang S, Mirkin CA 2021. Synergistic immunostimulation through the dual activation of Toll-like receptor 3/9 with spherical nucleic acids. ACS Nano 15:813329–38
    [Google Scholar]
  84. 84.
    Agarwal Y, Milling LE, Chang JYH, Santollani L, Sheen A et al. 2022. Intratumourally injected alum-tethered cytokines elicit potent and safer local and systemic anticancer immunity. Nat. Biomed. Eng. 6:2129–43
    [Google Scholar]
  85. 85.
    Hotz C, Wagenaar TR, Gieseke F, Bangari DS, Callahan M et al. 2021. Local delivery of mRNA-encoding cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl. Med. 13:610eabc7804
    [Google Scholar]
  86. 86.
    Li W, Zhang X, Zhang C, Yan J, Hou X et al. 2021. Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy. Nat. Commun. 12:17264
    [Google Scholar]
  87. 87.
    Hewitt SL, Bai A, Bailey D, Ichikawa K, Zielinski J et al. 2019. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci. Transl. Med. 11:477eaat9143
    [Google Scholar]
  88. 88.
    Tzeng SY, Patel KK, Wilson DR, Meyer RA, Rhodes KR, Green JJ. 2020. In situ genetic engineering of tumors for long-lasting and systemic immunotherapy. PNAS 117:84043–52
    [Google Scholar]
  89. 89.
    de Lázaro I, Mooney DJ. 2021. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 20:111469–79
    [Google Scholar]
  90. 90.
    Miller MA, Zheng Y-R, Gadde S, Pfirschke C, Zope H et al. 2015. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat. Commun. 6:8692
    [Google Scholar]
  91. 91.
    Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R et al. 2018. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2:8578–88
    [Google Scholar]
  92. 92.
    Schmid D, Park CG, Hartl CA, Subedi N, Cartwright AN et al. 2017. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun. 8:11747
    [Google Scholar]
  93. 93.
    Zhang Y, Li N, Suh H, Irvine DJ. 2018. Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity. Nat. Commun. 9:16
    [Google Scholar]
  94. 94.
    Dane EL, Belessiotis-Richards A, Backlund C, Wang J, Hidaka K et al. 2022. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nat. Mater. 21:6710–20
    [Google Scholar]
  95. 95.
    Li L, Zou J, Dai Y, Fan W, Niu G et al. 2020. Burst release of encapsulated annexin A5 in tumours boosts cytotoxic T-cell responses by blocking the phagocytosis of apoptotic cells. Nat. Biomed. Eng. 4:111102–16
    [Google Scholar]
  96. 96.
    Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. 2019. Immunogenic cell death in cancer therapy: present and emerging inducers. J. Cell. Mol. Med. 23:84854–65
    [Google Scholar]
  97. 97.
    Kroemer G, Galassi C, Zitvogel L, Galluzzi L. 2022. Immunogenic cell stress and death. Nat. Immunol. 23:4487–500
    [Google Scholar]
  98. 98.
    Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. 2016. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17:297–111
    [Google Scholar]
  99. 99.
    Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. 2012. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12:12860–75
    [Google Scholar]
  100. 100.
    Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T et al. 2020. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 11:111013
    [Google Scholar]
  101. 101.
    Yatim N, Cullen S, Albert ML. 2017. Dying cells actively regulate adaptive immune responses. Nat. Rev. Immunol. 17:4262–75
    [Google Scholar]
  102. 102.
    Nagata S, Hanayama R, Kawane K. 2010. Autoimmunity and the clearance of dead cells. Cell 140:5619–30
    [Google Scholar]
  103. 103.
    Wang Z, Little N, Chen J, Lambesis KT, Le KT et al. 2021. Immunogenic camptothesome nanovesicles comprising sphingomyelin-derived camptothesome bilayers for safe and synergistic cancer immunochemotherapy. Nat. Nanotechnol. 16:101130–40
    [Google Scholar]
  104. 104.
    Duan X, Chan C, Han W, Guo N, Weichselbaum RR, Lin W. 2019. Immunostimulatory nanomedicines synergize with checkpoint blockade immunotherapy to eradicate colorectal tumors. Nat. Commun. 10:11899
    [Google Scholar]
  105. 105.
    Wang Q, Wang Y, Ding J, Wang C, Zhou X et al. 2020. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 579:7799421–26
    [Google Scholar]
  106. 106.
    Ding J, Wang K, Liu W, She Y, Sun Q et al. 2016. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:7610111–16
    [Google Scholar]
  107. 107.
    Hou J, Zhao R, Xia W, Chang C-W, You Y et al. 2020. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumor necrosis. Nat. Cell Biol. 22:101264–75
    [Google Scholar]
  108. 108.
    Yu X, Dai Y, Zhao Y, Qi S, Liu L et al. 2020. Melittin-lipid nanoparticles target to lymph nodes and elicit a systemic anti-tumor immune response. Nat. Commun. 11:11110
    [Google Scholar]
  109. 109.
    Chatterjee DK, Fong LS, Zhang Y. 2008. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv. Drug Deliv. Rev. 60:151627–37
    [Google Scholar]
  110. 110.
    Castano AP, Mroz P, Hamblin MR. 2006. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer. 6:7535–45
    [Google Scholar]
  111. 111.
    Evans SS, Repasky EA, Fisher DT. 2015. Fever and the thermal regulation of immunity: The immune system feels the heat. Nat. Rev. Immunol. 15:6335–49
    [Google Scholar]
  112. 112.
    Zhang C, Zeng Z, Cui D, He S, Jiang Y et al. 2021. Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy. Nat. Commun. 12:12934
    [Google Scholar]
  113. 113.
    Jiang Y, Huang J, Xu C, Pu K. 2021. Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer. Nat. Commun. 12:1742
    [Google Scholar]
  114. 114.
    Saez-Ibañez AR, Upadhaya S, Partridge T, Shah M, Correa D, Campbell J. 2022. Landscape of cancer cell therapies: trends and real-world data. Nat. Rev. Drug Discov. 21:9631–32
    [Google Scholar]
  115. 115.
    June CH, Sadelain M. 2018. Chimeric antigen receptor therapy. New Engl. J. Med. 379:164–73
    [Google Scholar]
  116. 116.
    Hong M, Clubb JD, Chen YY. 2020. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell 38:4473–88
    [Google Scholar]
  117. 117.
    Bluestone JA, Tang Q. 2018. Treg cells—the next frontier of cell therapy. Science 362:6411154–55
    [Google Scholar]
  118. 118.
    June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC 2018. CAR T cell immunotherapy for human cancer. Science 359:63821361–65
    [Google Scholar]
  119. 119.
    Newick K, O'Brien S, Moon E, Albelda SM. 2017. CAR T cell therapy for solid tumors. Annu. Rev. Med. 68:139–52
    [Google Scholar]
  120. 120.
    Zhang L, Morgan RA, Beane JD, Zheng Z, Dudley ME et al. 2015. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin. Cancer Res. 21:102278–88
    [Google Scholar]
  121. 121.
    Hsu C, Jones SA, Cohen CJ, Zheng Z, Kerstann K et al. 2007. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene. Blood 109:125168–77
    [Google Scholar]
  122. 122.
    Stephan MT, Stephan SB, Bak P, Chen J, Irvine DJ 2012. Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles. Biomaterials 33:235776–87
    [Google Scholar]
  123. 123.
    Stephan MT, Moon JJ, Um SH, Bershteyn A, Irvine DJ. 2010. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16:91035–41
    [Google Scholar]
  124. 124.
    Siriwon N, Kim YJ, Siegler E, Chen X, Rohrs JA et al. 2018. CAR-T cells surface-engineered with drug-encapsulated nanoparticles can ameliorate intratumoral T-cell hypofunction. Cancer Immunol. Res. 6:7812–24
    [Google Scholar]
  125. 125.
    Tang L, Zheng Y, Melo MB, Mabardi L, Castaño AP et al. 2018. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36:8707–16
    [Google Scholar]
  126. 126.
    Huang B, Abraham WD, Zheng Y, López SCB, Luo SS, Irvine DJ. 2015. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Science Transl. Med. 7:291291ra94
    [Google Scholar]
  127. 127.
    Eskandari SK, Sulkaj I, Melo MB, Li N, Allos H et al. 2019. Regulatory T cells engineered with TCR signaling-responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter. Sci. Transl. Med. 12:569eaaw4744
    [Google Scholar]
  128. 128.
    Shields CW, Evans MA, Wang LL-W, Baugh N, Iyer S et al. 2020. Cellular backpacks for macrophage immunotherapy. Sci. Adv. 6:18eaaz6579
    [Google Scholar]
  129. 129.
    Reap EA, Suryadevara CM, Batich KA, Sanchez-Perez L, Archer GE et al. 2017. Dendritic cells enhance polyfunctionality of adoptively transferred T cells that target cytomegalovirus in glioblastoma. Cancer Res. 78:1256–64
    [Google Scholar]
  130. 130.
    Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Xu YY et al. 2014. Combination immunotherapy after ASCT for multiple myeloma using MAGE-A3/Poly-ICLC immunizations followed by adoptive transfer of vaccine-primed and costimulated autologous T cells. Clin. Cancer Res. 20:51355–65
    [Google Scholar]
  131. 131.
    Sixt M, Kanazawa N, Selg M, Samson T, Roos G et al. 2005. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22:119–29
    [Google Scholar]
  132. 132.
    Reinhard K, Rengstl B, Oehm P, Michel K, Billmeier A et al. 2020. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science 367:6476446–53
    [Google Scholar]
  133. 133.
    Haanen J, Mackensen A, Koenecke C, Alsdorf W, Desuki A et al. 2021. LBA1 BNT211: a phase I/II trial to evaluate safety and efficacy of CLDN6 CAR-T cells and CARVac-mediated in vivo expansion in patients with CLDN6+ advanced solid tumors. Ann. Oncol. 32:S1392
    [Google Scholar]
  134. 134.
    Coon ME, Stephan SB, Gupta V, Kealey CP, Stephan MT. 2020. Nitinol thin films functionalized with CAR-T cells for the treatment of solid tumours. Nat. Biomed. Eng. 4:2195–206
    [Google Scholar]
  135. 135.
    Stephan SB, Taber AM, Jileaeva I, Pegues EP, Sentman CL, Stephan MT. 2014. Biopolymer implants enhance the efficacy of adoptive T cell therapy. Nat. Biotechnol. 33:197–101
    [Google Scholar]
  136. 136.
    Hu Q, Li H, Archibong E, Chen Q, Ruan H et al. 2021. Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat. Biomed. Eng. 5:9103847
    [Google Scholar]
  137. 137.
    Parayath NN, Stephan MT. 2021. In situ programming of CAR T cells. Annu. Rev. Biomed. Eng. 23:385–405
    [Google Scholar]
  138. 138.
    Agarwalla P, Ogunnaike EA, Ahn S, Froehlich KA, Jansson A et al. 2022. Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells. Nat. Biotechnol. 40:81250–58
    [Google Scholar]
  139. 139.
    Agarwalla P, Ogunnaike EA, Ahn S, Ligler FS, Dotti G, Brudno Y 2020. Scaffold-mediated static transduction of T cells for CAR-T cell therapy. Adv. Healthc. Mater. 9:14e2000275
    [Google Scholar]
  140. 140.
    Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W et al. 2017. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12:8813–20
    [Google Scholar]
  141. 141.
    Parayath NN, Stephan SB, Koehne AL, Nelson PS, Stephan MT. 2020. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat. Commun. 11:16080
    [Google Scholar]
  142. 142.
    Rurik JG, Tombácz I, Yadegari A, Fernández POM, Shewale SV et al. 2022. CAR T cells produced in vivo to treat cardiac injury. Science 375:657691–96
    [Google Scholar]
  143. 143.
    Gearty SV, Dündar F, Zumbo P, Espinosa-Carrasco G, Shakiba M et al. 2022. An autoimmune stem-like CD8 T cell population drives type 1 diabetes. Nature 602:7895156–61
    [Google Scholar]
  144. 144.
    Rosenblum MD, Gratz IK, Paw JS, Abbas AK. 2012. Treating human autoimmunity: current practice and future prospects. Sci. Transl. Med. 4:125125sr1
    [Google Scholar]
  145. 145.
    Kuppan P, Kelly S, Polishevska K, Hojanepesov O, Seeberger K et al. 2019. Co-localized immune protection using dexamethasone-eluting micelles in a murine islet allograft model. Am. J. Transplant. 20:3714–25
    [Google Scholar]
  146. 146.
    Liu JMH, Zhang X, Joe S, Luo X, Shea LD. 2018. Evaluation of biomaterial scaffold delivery of IL-33 as a localized immunomodulatory agent to support cell transplantation in adipose tissue. J. Immunol. Regen. Med. 1:1–12
    [Google Scholar]
  147. 147.
    Headen DM, Woodward KB, Coronel MM, Shrestha P, Weaver JD et al. 2018. Local immunomodulation with Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nat. Mater. 17:8732–39
    [Google Scholar]
  148. 148.
    Coronel MM, Martin KE, Hunckler MD, Barber G, O'Neill EB et al. 2020. Immunotherapy via PD-L1-presenting biomaterials leads to long-term islet graft survival. Sci. Adv. 6:35eaba5573
    [Google Scholar]
  149. 149.
    Karabin NB, Allen S, Kwon H-K, Bobbala S, Firlar E et al. 2018. Sustained micellar delivery via inducible transitions in nanostructure morphology. Nat. Commun. 9:1624
    [Google Scholar]
  150. 150.
    Li H, Tsokos MG, Bickerton S, Sharabi A, Li Y et al. 2018. Precision DNA demethylation ameliorates disease in lupus-prone mice. JCI Insight 3:16e120880
    [Google Scholar]
  151. 151.
    Dold NM, Zeng Q, Zeng X, Jewell CM. 2017. A poly(beta-amino ester) activates macrophages independent of NF-κB signaling. Acta Biomater. 68:168–77
    [Google Scholar]
  152. 152.
    Carroll EC, Jin L, Mori A, Muñoz-Wolf N, Oleszycka E et al. 2015. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 44:3597–608
    [Google Scholar]
  153. 153.
    Allen RP, Bolandparvaz A, Ma JA, Manickam VA, Lewis JS. 2018. Latent, immunosuppressive nature of poly(lactic-co-glycolic acid) microparticles. ACS Biomater. Sci. Eng. 4:3900–18
    [Google Scholar]
  154. 154.
    Griffith TS, Ferguson TA. 2011. Cell death in the maintenance and abrogation of tolerance: the five Ws of dying cells. Immunity 35:4456–66
    [Google Scholar]
  155. 155.
    Horst AK, Neumann K, Diehl L, Tiegs G. 2016. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell. Mol. Immunol. 13:327792
    [Google Scholar]
  156. 156.
    Lutterotti A, Yousef S, Sputtek A, Stürner KH, Stellmann J-P et al. 2013. Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. Sci. Transl. Med. 5:188188ra75
    [Google Scholar]
  157. 157.
    Prasad S, Neef T, Xu D, Podojil JR, Getts DR et al. 2018. Tolerogenic Ag-PLG nanoparticles induce tregs to suppress activated diabetogenic CD4 and CD8 T cells. J. Autoimmun. 89:112–24
    [Google Scholar]
  158. 158.
    Podojil JR, Genardi S, Chiang M-Y, Kakade S, Neef T et al. 2022. Tolerogenic immune-modifying nanoparticles encapsulating multiple recombinant pancreatic β cell proteins prevent onset and progression of type 1 diabetes in nonobese diabetic mice. J. Immunol. 209:3465–75
    [Google Scholar]
  159. 159.
    Saito E, Gurczynski SJ, Kramer KR, Wilke CA, Miller SD et al. 2020. Modulating lung immune cells by pulmonary delivery of antigen-specific nanoparticles to treat autoimmune disease. Sci. Adv. 6:42eabc9317
    [Google Scholar]
  160. 160.
    Wilson DS, Damo M, Hirosue S, Raczy MM, Brünggel K et al. 2019. Synthetically glycosylated antigens induce antigen-specific tolerance and prevent the onset of diabetes. Nat. Biomed. Eng. 3:10817–29
    [Google Scholar]
  161. 161.
    Liu Q, Wang X, Liu X, Kumar S, Gochman G et al. 2019. Use of polymeric nanoparticle platform targeting the liver to induce Treg-mediated antigen-specific immune tolerance in a pulmonary allergen sensitization model. ACS Nano 13:44778–94
    [Google Scholar]
  162. 162.
    Lewis JS, Dolgova NV, Zhang Y, Xia CQ, Wasserfall CH et al. 2015. A combination dual-sized microparticle system modulates dendritic cells and prevents type 1 diabetes in prediabetic NOD mice. Clin. Immunol. 160:190–102
    [Google Scholar]
  163. 163.
    Cho JJ, Stewart JM, Drashansky TT, Brusko MA, Zuniga AN et al. 2017. An antigen-specific semi-therapeutic treatment with local delivery of tolerogenic factors through a dual-sized microparticle system blocks experimental autoimmune encephalomyelitis. Biomaterials 143:79–92
    [Google Scholar]
  164. 164.
    Lewis JS, Stewart JM, Marshall GP, Carstens MR, Zhang Y et al. 2019. Dual-sized microparticle system for generating suppressive dendritic cells prevents and reverses type 1 diabetes in the nonobese diabetic mouse model. ACS Biomater. Sci. Eng. 5:52631–46
    [Google Scholar]
  165. 165.
    Mazor R, King EM, Onda M, Cuburu N, Addissie S et al. 2018. Tolerogenic nanoparticles restore the antitumor activity of recombinant immunotoxins by mitigating immunogenicity. PNAS 115:4E73342
    [Google Scholar]
  166. 166.
    Kishimoto TK, Ferrari JD, LaMothe RA, Kolte PN, Griset AP et al. 2016. Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles. Nat. Nanotechnol. 11:10890–99
    [Google Scholar]
  167. 167.
    Maldonado RA, LaMothe RA, Ferrari JD, Zhang A-H, Rossi RJ et al. 2015. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. PNAS 112:2E156–65
    [Google Scholar]
  168. 168.
    Sands E, Kivitz A, DeHaan W, Leung SS, Johnston L, Kishimoto TK. 2022. Tolerogenic nanoparticles mitigate the formation of anti-drug antibodies against pegylated uricase in patients with hyperuricemia. Nat. Commun. 13:1272
    [Google Scholar]
  169. 169.
    Tsai S, Shameli A, Yamanouchi J, Clemente-Casares X, Wang J et al. 2010. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 32:4568–80
    [Google Scholar]
  170. 170.
    Umeshappa CS, Singha S, Blanco J, Shao K, Nanjundappa RH et al. 2019. Suppression of a broad spectrum of liver autoimmune pathologies by single peptide-MHC-based nanomedicines. Nat. Commun. 10:12150
    [Google Scholar]
  171. 171.
    Umeshappa CS, Solé P, Yamanouchi J, Mohapatra S, Surewaard BGJ et al. 2022. Re-programming mouse liver-resident invariant natural killer T cells for suppressing hepatic and diabetogenic autoimmunity. Nat. Commun. 13:13279
    [Google Scholar]
  172. 172.
    Hartwell BL, Pickens CJ, Leon M, Northrup L, Christopher MA et al. 2018. Soluble antigen arrays disarm antigen-specific B cells to promote lasting immune tolerance in experimental autoimmune encephalomyelitis. J. Autoimmun. 93:76–88
    [Google Scholar]
  173. 173.
    Leon MA, Firdessa-Fite R, Ruffalo JK, Pickens CJ, Sestak JO et al. 2019. Soluble antigen arrays displaying mimotopes direct the response of diabetogenic T cells. ACS Chem. Biol. 14:71436–48
    [Google Scholar]
  174. 174.
    Firdessa-Fite R, Johnson SN, Leon MA, Khosravi-Maharlooei M, Baker RL et al. 2021. Soluble antigen arrays efficiently deliver peptides and arrest spontaneous autoimmune diabetes. Diabetes 70:6133446
    [Google Scholar]
  175. 175.
    Sadtler K, Singh A, Wolf MT, Wang X, Pardoll DM, Elisseeff JH. 2016. Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat. Rev. Mater. 1:716040
    [Google Scholar]
  176. 176.
    Sadtler K, Estrellas K, Allen BW, Wolf MT, Fan H et al. 2016. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 352:6283366–70
    [Google Scholar]
  177. 177.
    Sicari BM, Rubin JP, Dearth CL, Wolf MT, Ambrosio F et al. 2014. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci. Transl. Med. 6:234234ra58
    [Google Scholar]
  178. 178.
    Brown BN, Londono R, Tottey S, Zhang L, Kukla KA et al. 2012. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8:3978–87
    [Google Scholar]
  179. 179.
    Anderson AE, Wu I, Parrillo AJ, Wolf MT, Maestas DR et al. 2022. An immunologically active, adipose-derived extracellular matrix biomaterial for soft tissue reconstruction: concept to clinical trial. npj Regen Med 7:16
    [Google Scholar]
  180. 180.
    Kwee BJ, Seo BR, Najibi AJ, Li AW, Shih T-Y et al. 2018. Treating ischemia via recruitment of antigen-specific T cells. Sci. Adv. 5:7eaav6313
    [Google Scholar]
  181. 181.
    Lee D, Huntoon K, Wang Y, Jiang W, Kim BYS. 2021. Harnessing innate immunity using biomaterials for cancer immunotherapy. Adv. Mater. 33:272007576
    [Google Scholar]
  182. 182.
    Demaria O, Cornen S, Daëron M, Morel Y, Medzhitov R, Vivier E. 2019. Harnessing innate immunity in cancer therapy. Nature 574:777645–56
    [Google Scholar]
  183. 183.
    Schön MP. 2019. Adaptive and innate immunity in psoriasis and other inflammatory disorders. Front. Immunol. 10:1764
    [Google Scholar]
  184. 184.
    Mulder WJM, Ochando J, Joosten LAB, Fayad ZA, Netea MG. 2019. Therapeutic targeting of trained immunity. Nat. Rev. Drug Discov. 18:7553–66
    [Google Scholar]
  185. 185.
    Tu Z, Zhong Y, Hu H, Shao D, Haag R et al. 2022. Design of therapeutic biomaterials to control inflammation. Nat. Rev. Mater. 7:7557–74
    [Google Scholar]
  186. 186.
    Netea MG, Joosten LAB, Latz E, Mills KHG, Natoli G et al. 2016. Trained immunity: A program of innate immune memory in health and disease. Science 352:6284aaf1098
    [Google Scholar]
  187. 187.
    Netea MG, van der Meer JWM 2017. Trained immunity: an ancient way of remembering. Cell Host Microbe 21:3297–300
    [Google Scholar]
  188. 188.
    Braza MS, van Leent MMT, Lameijer M, Sanchez-Gaytan BL, Arts RJW et al. 2018. Inhibiting inflammation with myeloid cell-specific nanobiologics promotes organ transplant acceptance. Immunity 49:5819–28.e6
    [Google Scholar]
  189. 189.
    Priem B, van Leent MMT, Teunissen AJP, Sofias AM, Mourits VP et al. 2020. Trained immunity-promoting nanobiologic therapy suppresses tumor growth and potentiates checkpoint inhibition. Cell 183:3786–801.e19
    [Google Scholar]
  190. 190.
    Beldman TJ, Senders ML, Alaarg A, Pérez-Medina C, Tang J et al. 2017. Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis. ACS Nano 11:65785–99
    [Google Scholar]
  191. 191.
    Beldman TJ, Malinova TS, Desclos E, Grootemaat AE, Misiak ALS et al. 2019. Nanoparticle-aided characterization of arterial endothelial architecture during atherosclerosis progression and metabolic therapy. ACS Nano 13:1213759–74
    [Google Scholar]
  192. 192.
    Yi S, Allen SD, Liu Y-G, Ouyang BZ, Li X et al. 2016. Tailoring nanostructure morphology for enhanced targeting of dendritic cells in atherosclerosis. ACS Nano 10:1211290–303
    [Google Scholar]
  193. 193.
    Basak S, Khare HA, Kempen PJ, Kamaly N, Almdal K. 2022. Nanoconfined anti-oxidizing RAFT nitroxide radical polymer for reduction of low-density lipoprotein oxidation and foam cell formation. Nanoscale Adv 4:3742–53
    [Google Scholar]
  194. 194.
    Khait NL, Ho E, Shoichet MS. 2021. Wielding the double-edged sword of inflammation: building biomaterial-based strategies for immunomodulation in ischemic stroke treatment. Adv. Funct. Mater. 31:442010674
    [Google Scholar]
  195. 195.
    Thaiss CA, Zmora N, Levy M, Elinav E. 2016. The microbiome and innate immunity. Nature 535:761065–74
    [Google Scholar]
  196. 196.
    Lee Y, Sugihara K, Gillilland MG, Jon S, Kamada N, Moon JJ 2019. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat. Mater. 19:118–26
    [Google Scholar]
  197. 197.
    Han K, Nam J, Xu J, Sun X, Huang X et al. 2021. Generation of systemic antitumour immunity via the in situ modulation of the gut microbiome by an orally administered inulin gel. Nat. Biomed. Eng. 5:111377–88
    [Google Scholar]
  198. 198.
    Zheng D-W, Deng W-W, Song W-F, Wu C-C, Liu J et al. 2022. Biomaterial-mediated modulation of oral microbiota synergizes with PD-1 blockade in mice with oral squamous cell carcinoma. Nat. Biomed. Eng. 6:132–43
    [Google Scholar]
  199. 199.
    Park J, Zhang Y, Saito E, Gurczynski SJ, Moore BB et al. 2019. Intravascular innate immune cells reprogrammed via intravenous nanoparticles to promote functional recovery after spinal cord injury. PNAS 116:3014947–54
    [Google Scholar]
  200. 200.
    Getts DR, Terry RL, Getts MT, Deffrasnes C, Müller M et al. 2014. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci. Transl. Med. 6:219219ra7
    [Google Scholar]
  201. 201.
    Sharp P, Jacks T, Hockfield S. 2016. Convergence: The Future of Health Cambridge, MA: Mass. Inst. Technol.
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101721-040259
Loading
/content/journals/10.1146/annurev-immunol-101721-040259
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error