1932

Abstract

Living cells are an active soft material with fascinating mechanical properties. Under mechanical loading, cells exhibit creep and stress relaxation behavior that follows a power-law response rather than a classical exponential response. Such a response puts cells in the context of soft colloidal glasses and other disordered metastable materials that share the same properties. In cells, however, both the power-law exponent and stiffness are related to the contractile prestress in the cytoskeleton. In addition, cells are made of a highly nonlinear material that stiffens and fluidizes under mechanical stress. They show active and adaptive mechanical behavior such as contraction and remodeling that sets them apart from any other nonliving material. Strikingly, all these observations can be linked by simple relationships with the power-law exponent as the only organizing parameter. Current theoretical models capture specific facets of cell mechanical behavior, but a comprehensive understanding is still emerging.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-062910-100351
2011-08-04
2024-04-27
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-matsci-062910-100351
Loading
/content/journals/10.1146/annurev-matsci-062910-100351
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error