1932

Abstract

The phase-field method has recently emerged as a powerful computational approach to modeling and predicting mesoscale morphological and microstructure evolution in materials. It describes a microstructure using a set of conserved and nonconserved field variables that are continuous across the interfacial regions. The temporal and spatial evolution of the field variables is governed by the Cahn-Hilliard nonlinear diffusion equation and the Allen-Cahn relaxation equation. With the fundamental thermodynamic and kinetic information as the input, the phase-field method is able to predict the evolution of arbitrary morphologies and complex microstructures without explicitly tracking the positions of interfaces. This paper briefly reviews the recent advances in developing phase-field models for various materials processes including solidification, solid-state structural phase transformations, grain growth and coarsening, domain evolution in thin films, pattern formation on surfaces, dislocation microstructures, crack propagation, and electromigration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.matsci.32.112001.132041
2002-08-01
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/matsci/32/1/annurev.matsci.32.112001.132041.html?itemId=/content/journals/10.1146/annurev.matsci.32.112001.132041&mimeType=html&fmt=ahah

Literature Cited

  1. Rowlinson JS. 1979. J. Stat. Phys. 20:197 [Google Scholar]
  2. van der Waals JD. 1894. Z. Phys. Chem. 13:657 [Google Scholar]
  3. Cahn JW, Hilliard JE. 1958. J. Chem. Phys. 28:258–67 [Google Scholar]
  4. Cahn JW. 1961. Acta Metall. 9:795–801 [Google Scholar]
  5. Allen SM, Cahn JW. 1977. J. Phys. 38:C7–51 [Google Scholar]
  6. Hohenberg PC, Halperin BI. 1977. Rev. Mod. Phys. 49:435–79 [Google Scholar]
  7. Gunton JD, Miguel MS, Sahni PS. 1983. The dynamics of first-order phase transitions. In Phase Transitions and Critical Phenomena, ed. C Domb, JL Lebowitz 267–466 New York: Academic [Google Scholar]
  8. Elder KR, Grant M, Provatas N, Kosterlitz JM. 2001. Phys. Rev. E 64:021604 [Google Scholar]
  9. Langer JS. 1986. Models of pattern formation in first-order phase transitions. In Directions in Condensed Matter Physics, ed. G Grinstein, G Mazenko 165–86 Singapore: World Scientific [Google Scholar]
  10. Fix GJ. 1983. In Free Boundary Problems: Theory and Applications, ed. A Fasano, M Primicerio, Boston: Piman 580 pp.
  11. Collins JB, Levine H. 1985. Phys. Rev. B 31:6119 [Google Scholar]
  12. Karma A. 2001. Phase field methods. In Encyclopedia of Materials Science and Technology, ed. KHJ Buschow, RW Cahn, MC Flemings, BB Ilschner, EJ Kramer, et al 6873–86 Oxford, UK: Elsevier [Google Scholar]
  13. Ode M, Kim SG, Suzuki T. 2001. ISIJ Int. 41:1076–82 [Google Scholar]
  14. Chen LQ, Wang YZ. 1996. J. Miner. Met. Mater. Soc. 48:13–18 [Google Scholar]
  15. Wang YZ, Chen LQ. 1999. Simulation of microstructure evolution. In Methods in Materials Research, ed. EN Kaufmann, R Abbaschian, A Bocarsly, CL Chien, D Dollimore, et al 2a.3.1 New York: Wiley & Sons [Google Scholar]
  16. Chen LQ, Yang W. 1994. Phys. Rev. B 50:15752–56 [Google Scholar]
  17. Steinbach I, Pezzolla F, Nestler B, Seesselberg M, Prieler R. et al. 1996. Physica D 94:135–47 [Google Scholar]
  18. Lusk MT. 1999. Proc. R. Soc. London Ser. A. 455:677–700 [Google Scholar]
  19. Kobayashi R, Warren JA, Carter WC. 2000. Physica D 140:141–50 [Google Scholar]
  20. Li YL, Hu SY, Liu ZK, Chen LQ. 2001. Appl. Phys. Lett. 78:3878–80 [Google Scholar]
  21. Leo PH, Johnson WC. 2001. Acta Mater. 49:1771–87 [Google Scholar]
  22. Lu W, Suo Z. 2001. J. Mech. Phys. Solids 49:1937–50 [Google Scholar]
  23. Aranson IS, Kalatsky VA, Vinokur VM. 2000. Phys. Rev. Lett. 85:118–21 [Google Scholar]
  24. Karma A, Kessler DA, Levine H. 2001. Phys. Rev. Lett. 87:045501 [Google Scholar]
  25. Kassner K, Misbah C, Muller J, Kappey J, Kohlert P. 2001. J. Cryst. Growth 25:289–93 [Google Scholar]
  26. Kassner K, Misbah C, Muller J, Kappey J, Kohlert P. 2001. Phys. Rev. E 63:036117 [Google Scholar]
  27. Leonard F, Desai RC. 1998. Phys. Rev. B 58:8277–88 [Google Scholar]
  28. Hu SY, Chen LQ. 2001. Acta Mater. 49:463–72 [Google Scholar]
  29. Wang YU, Jin YM, Cuitino AM, Khachaturyan AG. 2001. Appl. Phys. Lett. 78:2324–26 [Google Scholar]
  30. Mahadevan M, Bradley RM. 1999. Physica D 126:201–13 [Google Scholar]
  31. Bhate DN, Kumar A, Bower AF. 2000. J. Appl. Phys. 87:1712–21 [Google Scholar]
  32. Wu K, Morral JE, Wang Y. 2001. Acta Mater. 49:3401–8 [Google Scholar]
  33. Oono Y, Puri S. 1988. Phys. Rev. A 38:434–53 [Google Scholar]
  34. Blowey JF, Elliott CM. 1991. Eur. J. Appl. Math. 2:233–79 [Google Scholar]
  35. Caginalp G, Chen X. 1992. Phase field equations in the singular limit of sharp interface problems. In On the Evolution of Phase Boundaries, ed. ME Gurtin, GB McFadden 431–27 New York: Springer-Verlag [Google Scholar]
  36. Lai ZW. 1990. Phys. Rev. B 41:9239–56 [Google Scholar]
  37. Braun RJ, Cahn JW, McFadden GB, Rushmeier HE, Wheeler AA. 1997. Acta Mater. 46:1–12 [Google Scholar]
  38. Braun RJ, Cahn JW, McFadden GB, Wheeler AA. 1997. Philos. Trans. R. Soc. London Ser. A 355:1787–833 [Google Scholar]
  39. Wang Y, Banerjee D, Su CC, Khachaturyan AG. 1998. Acta Mater. 46:2983–3001 [Google Scholar]
  40. Li DY, Chen LQ. 1998. Acta Mater. 47:247–57 [Google Scholar]
  41. Devonshire AF. 1954. Philos. Mag. Suppl. 3:85 [Google Scholar]
  42. Nambu S, Sagala DA. 1994. Phys. Rev. B 50:5838–47 [Google Scholar]
  43. Hu HL, Chen LQ. 1998. J. Am. Ceram. Soc. 81:492–500 [Google Scholar]
  44. Hu HL, Chen LQ. 1997. Mater. Sci. Eng. A 238:182–91 [Google Scholar]
  45. Landau LD. 1937. J. Exp. Theor. Phys. 7:19 [Google Scholar]
  46. Khachaturyan AG. 1983. Theory of Structural Transformations in Solids. New York: Wiley & Sons [Google Scholar]
  47. Kobayashi R. 1993. Physica D 63:410 [Google Scholar]
  48. Wheeler AA, Murray BT, Schaefer RJ. 1993. Physica D 66:243–62 [Google Scholar]
  49. Eggleston JJ, McFadden GB, Voorhees PW. 2001. Physica D 150:91–103 [Google Scholar]
  50. Taylor JE, Cahn JW. 1998. Physica D 112:381–411 [Google Scholar]
  51. Abinandanan TA, Haider F. 2001. Philos. Mag. A 81:2457–79 [Google Scholar]
  52. Onuki A. 1989. J. Phys. Soc. Jpn. 58:3065–68 [Google Scholar]
  53. Chen LQ. 2000. On the elastic field coupling in the diffuse-interface modeling of coherent microstructures. In Phase Transformations and Evolution in Materials, ed. PEA Turchi, A Gonis 209–20 Warrendale, PA: Miner. Met. Mater. Soc [Google Scholar]
  54. Khachaturyan AG, Shatalov GA. 1969. Sov. Phys. Solid State 11:118–23 [Google Scholar]
  55. Nishimori H, Onuki A. 1990. Phys. Rev. B 42:980–83 [Google Scholar]
  56. Sagui C, Orlikowski D, Somoza A, Roland C. 1998. Phys. Rev. E. 58:569–77 [Google Scholar]
  57. Hu SY, Chen LQ. 2001. Acta Mater. 49:1879–90 [Google Scholar]
  58. Leo PH, Lowengrub JS, Hou HJ. 1998. Acta Mater. 61:2113–30 [Google Scholar]
  59. Zhu JZ, Chen LQ, Shen J. 2001. Model. Simulat. Mater. Sci. Eng. 9:499–511 [Google Scholar]
  60. Semenovskaya S, Khachaturyan AG. 1998. Ferroelectrics 206:157–80 [Google Scholar]
  61. Wang Y, Chen LQ, Khachaturyan AG. 1993. Acta Metall. Mater. 41:279–96 [Google Scholar]
  62. Fan D, Chen LQ. 1995. J. Am. Ceram. Soc. 78:769–73 [Google Scholar]
  63. Wang YZ, Chen LQ, Khachaturyan AG. 1996. J. Am. Ceram. Soc. 79:987–91 [Google Scholar]
  64. Chen LQ, Shen J. 1998. Comput. Phys. Commun. 108:147–58 [Google Scholar]
  65. Zhu JZ, Chen LQ, Shen J, Tikare V. 1999. Phys. Rev. E 60:3564–72 [Google Scholar]
  66. Shen J. 1994. SIAM J. Sci. Comput. 15:1489–505 [Google Scholar]
  67. Shen J. 1995. SIAM J. Sci. Comput. 16:74–87 [Google Scholar]
  68. Provatas N, Goldenfeld N, Dantzig J. 1998. Phys. Rev. Lett. 80:3308–11 [Google Scholar]
  69. Jeong JH, Goldenfeld N, Dantzig JA. 2001. Phys. Rev. E. 64:041602 [Google Scholar]
  70. Plapp M, Karma A. 2000. J. Comput. Phys. 165:592–619 [Google Scholar]
  71. Karma A, Rappel WJ. 1999. Phys. Rev. E 60:3614–25 [Google Scholar]
  72. Bragard J, Karma A, Lee YH, Plapp M. 2001. Interface Sci. Preprint [Google Scholar]
  73. Anderson DM, McFadden GB, Wheeler AA. 1998. Annu. Rev. Fluid Mech. 30:139–65 [Google Scholar]
  74. Denniston C, Yeomans JM. 1999. Phys. Chem. Chem. Phys. 1:2157–61 [Google Scholar]
  75. Jacqmin D. 1999. J. Comput. Phys. 155:96–127 [Google Scholar]
  76. Folch R, Casademunt J, Hernandez-Machado A, Ramirez-Piscina L. 1999. Phys. Rev. E 60:1724–33 [Google Scholar]
  77. Beckermann C, Diepers HJ, Steinbach I, Karma A, Tong X. 1999. J. Comput. Phys. 154:468–96 [Google Scholar]
  78. Diepers HJ, Beckermann C, Steinbach I. 1999. Acta Mater. 47:3663–78 [Google Scholar]
  79. Pismen LM, Pomeau Y. 2000. Phys. Rev. E 62:2480–92 [Google Scholar]
  80. Nestler B, Wheeler AA, Ratke L, Stocker C. 2000. Physica D 141:133–54 [Google Scholar]
  81. Ganesan V, Brenner H. 2000. Proc. R. Soc. London Ser. A 456:731–803 [Google Scholar]
  82. Boettinger WJ, Coriell SR, Greer AL, Karma A, Kurz W. et al. 2000. Acta Mater. 48:43–70 [Google Scholar]
  83. Lo TS, Karma A, Plapp M. 2001. Phys. Rev. E 63:031504 [Google Scholar]
  84. Tong X, Beckermann C, Karma A, Li Q. 2001. Phys. Rev. E 63:061601 [Google Scholar]
  85. Wheeler AA, Boettinger WJ, McFadden GB. 1992. Phys. Rev. A 45:7424–39 [Google Scholar]
  86. Caginalp G, Xie W. 1993. Phys. Rev. E 48:1897–909 [Google Scholar]
  87. Boettinger WJ, Wheeler AA, Murray BT, McFadden GB. 1994. Mater. Sci. Eng. A 178:217–23 [Google Scholar]
  88. Warren JA, Boettinger WJ. 1995. Acta Metall. Mater. 43:689–703 [Google Scholar]
  89. Bi ZQ, Sekerka RF. 1998. Physica A 261:95–106 [Google Scholar]
  90. Tiaden J, Nestler B, Diepers HJ, Steinbach I. 1998. Physica D 115:73–86 [Google Scholar]
  91. Ahmad NA, Wheeler AA, Boettinger WJ, McFadden GB. 1998. Phys. Rev. E 58:3436–50 [Google Scholar]
  92. Charach C, Fife PC. 1999. J. Cryst. Growth 199:1267–74 [Google Scholar]
  93. Kim SG, Kim WT, Suzuki T. 1999. Phys. Rev. E 60:7186–97 [Google Scholar]
  94. Muller I. 2001. Int. J. Solids Struct. 38:1105–13 [Google Scholar]
  95. Galenko P. 2001. Phys. Lett. A 287:190–97 [Google Scholar]
  96. Kim WT, Kim SG, Lee JS, Suzuki T. 2001. Metall. Mater. Trans. A 32:961–69 [Google Scholar]
  97. Wheeler AA, McFadden GB, Boettinger WJ. 1996. Proc. R. Soc. London Ser. A. 452:495–525 [Google Scholar]
  98. Plapp M, Karma A. 1999. Phys. Rev. E 60:6865–89 [Google Scholar]
  99. Drolet F, Elder KR, Grant M, Kosterlitz JM. 2000. Phys. Rev. E 61:6705–20 [Google Scholar]
  100. Nestler B, Wheeler AA. 2000. Physica D 138:114–33 [Google Scholar]
  101. Lee JS, Kim SG, Kim WT, Suzuki T. 1999. ISIJ Int. 39:730–36 [Google Scholar]
  102. Tiaden J. 1999. J. Cryst. Growth 199:1275–80 [Google Scholar]
  103. Bottger B, Grafe U, Ma D, Fries SG. 2000. Mater. Sci. Technol. 16:1425–28 [Google Scholar]
  104. Ode M, Lee JS, Kim SG, Kim WT, Suzuki T. 2000. ISIJ Int. 40:870–76 [Google Scholar]
  105. Cha PR, Yeon DH, Yoon JK. 2001. Acta Mater. 49:3295–307 [Google Scholar]
  106. Grafe U, Bottger B, Tiaden J, Fries SG. 2000. Scripta Mater. 42:1179–86 [Google Scholar]
  107. Grafe U, Bottger B, Tiaden J, Fries SG. 2000. Model. Simul. Mater. Sci. Eng. 8:871–79 [Google Scholar]
  108. Loginova I, Amberg G, Agren J. 2001. Acta Mater. 49:573–81 [Google Scholar]
  109. McFadden GB, Wheeler AA, Braun RJ, Coriell SR, Sekerka RF. 1993. Phys. Rev. E 48:2016–24 [Google Scholar]
  110. Fried E. 1997. Continuum Mech. Thermodyn. 9:33–60 [Google Scholar]
  111. Fabbri M, Voller VR. 1997. J. Comput. Phys. 130:256–65 [Google Scholar]
  112. Garcke H, Nestler B, Stoth B. 1998. Physica D 115:87–108 [Google Scholar]
  113. Karma A, Rappel WJ. 1998. Phys. Rev. E 57:4323–49 [Google Scholar]
  114. McFadden GB, Wheeler AA, Anderson DM. 2000. Physica D 144:154–68 [Google Scholar]
  115. Anderson DM, McFadden GB, Wheeler AA. 2001. Physica D 151:305–31 [Google Scholar]
  116. Hariharan SI, Young GW. 2001. SIAM J. Appl. Math. 62:244–63 [Google Scholar]
  117. Karma A, Rappel WJ. 1996. Phys. Rev. E 53:R3107–20 [Google Scholar]
  118. Ode M, Lee JS, Suzuki T, Kim SG, Kim WT. 1999. ISIJ Int. 39:149–53 [Google Scholar]
  119. Karma A. 2001. Phys. Rev. Lett. 87:115701 [Google Scholar]
  120. Rogers TM, Elder KR, Desai RC. 1988. 1988. Phys. Rev. B 37:9638–49 [Google Scholar]
  121. Venugopalan V, Chen LQ. 2000. 3D simulation of coarsening of gamma-prime precipitates in a Ni-Al alloy. In Nucleation and Growth Processes in Materials, ed. A Gonis, PEA Turchi, AJ Ardell 327–32 Boston: Mater. Res. Soc [Google Scholar]
  122. Vaithyanathan V, Chen LQ. 2000. Scripta Mater. 42:967–73 [Google Scholar]
  123. Wen YH, Wang Y, Bendersky LA, Chen LQ. 2000. Acta Mater. 48:4125–35 [Google Scholar]
  124. Proville L, Finel A. 2001. Phys. Rev. B 64:054104 [Google Scholar]
  125. Wang YZ, Wang HY, Chen LQ, Khachaturyan AG. 1993. J. Am. Ceram. Soc. 76:3029–33 [Google Scholar]
  126. Semenovskaya S, Zhu YM, Suenaga M, Khachaturyan AG. 1993. Phys. Rev. B 47:12182–89 [Google Scholar]
  127. Fan DN, Chen LQ. 1995. J. Am. Ceram. Soc. 78:1680–86 [Google Scholar]
  128. Le Bouar Y, Loiseau A, Khachaturyan AG. 1998. Acta Mater. 46:2777–88 [Google Scholar]
  129. Le Bouar Y, Khachaturyan AG. 2000. Acta Mater. 48:1705–17 [Google Scholar]
  130. Wen YH, Wang Y, Chen LQ. 1999. Acta Mater. 47:4375–86 [Google Scholar]
  131. Cahn JW, Han SC, McFadden GB. 1999. J. Stat. Phys. 95:1337–60 [Google Scholar]
  132. Wen YH, Wang Y, Chen Q. 2000. Philos. Mag. A 80:1967–82 [Google Scholar]
  133. Wen YH, Chen LQ, Hazzledine PM, Wang Y. 2001. Acta Mater. 49:2341–53 [Google Scholar]
  134. Semenovskaya S, Khachaturyan AG. 1998. J. Appl. Phys. 83:5125–36 [Google Scholar]
  135. Wang Y, Khachaturyan AG. 1997. Acta Mater. 45:759–73 [Google Scholar]
  136. Jin YM, Artemev A, Khachaturyan AG. 2001. Acta Mater. 49:2309–20 [Google Scholar]
  137. Artemev A, Jin Y, Khachaturyan AG. 2001. Acta Mater. 49:1165–77 [Google Scholar]
  138. Li DY, Chen LQ. 1998. Acta Mater. 46:639–49 [Google Scholar]
  139. Li DY, Chen LQ. 1998. Acta Mater. 46:2573–85 [Google Scholar]
  140. Artemev A, Wang Y, Khachaturyan AG. 2000. Acta Mater. 48:2503–18 [Google Scholar]
  141. Chen LQ. 1994. Mod. Phys. Lett. B 7:1857–81 [Google Scholar]
  142. Wen YH, Wang Y, Chen LQ. 2001. Acta Mater. 49:13–20 [Google Scholar]
  143. Fan DA, Chen LQ. 1997. Philos. Mag. Lett. 75:187–96 [Google Scholar]
  144. Fan DN, Geng CW, Chen LQ. 1997. Acta Mater. 45:1115–26 [Google Scholar]
  145. Fan D, Chen LQ. 1997. Acta Mater. 45:611–22 [Google Scholar]
  146. Krill CE, Chen LQ. 2002. Acta Mater. In press [Google Scholar]
  147. Garcke H, Nestler B, Stoth B. 1999. SIAM J. Appl. Math. 60:295–315 [Google Scholar]
  148. Nestler B. 1999. J. Cryst. Growth 204:224–28 [Google Scholar]
  149. Garcke H, Nestler B. 2000. Math. Models Methods Appl. Sci. 10:895–921 [Google Scholar]
  150. Warren JA, Carter WC, Kobayashi R. 1998. Physica A 261:159–66 [Google Scholar]
  151. Kobayashi R, Warren JA, Carter WC. 1998. Physica D 119:415–23 [Google Scholar]
  152. Warren JA, Kobayashi R, Carter WC. 2000. J. Cryst. Growth 211:18–20 [Google Scholar]
  153. Lobkovsky AE, Warren JA. 2001. Phys. Rev. E 63:051605 [Google Scholar]
  154. Lobkovsky AE, Warren JA. 2001. J. Cryst. Growth 225:282–88 [Google Scholar]
  155. Kazaryan A, Wang Y, Dregia SA, Patton BR. 2000. Phys. Rev. B 61:14275–78 [Google Scholar]
  156. Kazaryan A, Wang Y, Dregia SA, Patton BR. 2001. Phys. Rev. B 63:184102 [Google Scholar]
  157. Cahn JW, Fife P, Penrose O. 1997. Acta Mater. 45:4397–413 [Google Scholar]
  158. Fan D, Chen SP, Chen LQ. 1999. J. Mater. Res. 14:1113–23 [Google Scholar]
  159. Fan DN, Chen LQ, Chen SP, Voorhees PW. 1998. Comput. Mater. Sci. 9:329–36 [Google Scholar]
  160. Fan DN, Chen SP, Chen LQ, Voorhees PW. 2001. Acta Mater. In press [Google Scholar]
  161. Chen LQ, Fan DA. 1996. J. Am. Ceram. Soc. 79:1163–68 [Google Scholar]
  162. Danan F, Chen LQ. 1997. J. Am. Ceram. Soc. 80:1773–80 [Google Scholar]
  163. Fan DN, Chen LQ. 1997. Acta Mater. 45:3297–310 [Google Scholar]
  164. Fan DA, Chen LQ. 1997. Scripta Mater. 37:233–38 [Google Scholar]
  165. Fan D, Chen LQ. 1997. Acta Mater. 45:4145–54 [Google Scholar]
  166. Li YL, Hu SY, Liu ZK, Chen LQ. 2001. Acta Mater. In press [Google Scholar]
  167. Suo Z, Lu W. 2000. J. Mech. Phys. Solids. 48:211–32 [Google Scholar]
  168. Karma A, Plapp M. 1998. Phys. Rev. Lett. 81:4444–47 [Google Scholar]
  169. Muller J, Grant M. 1999. Phys. Rev. Lett. 82:1736–39 [Google Scholar]
  170. Kassner K, Misbah C. 1999. Europhys. Lett. 46:217–23 [Google Scholar]
  171. Cottrell AH. 1948. Effect of solute atoms on the behaviour of dislocations. In Report of a Conference on Strength of Solids, ed. NF Mott 30–38 London: Phys. Soc [Google Scholar]
  172. Cahn JW. 1957. Acta Metall. 5:169 [Google Scholar]
  173. Hu SY, Chen LQ. 2001. Comput. Mater. Sci. 49:463–72 [Google Scholar]
  174. Rodney D, Le Bouar Y, Finel A. 2001. Acta Mater. In press [Google Scholar]
  175. Wang YU, Jin UM, Cuitino AM, Khachaturyan AG. 2001. Acta Mater. 49:1847–57 [Google Scholar]
  176. Wang YU, Jin YM, Cuitino AM, Khachaturyan AG. 2001. Philos. Mag. Lett. 81:385–93 [Google Scholar]
  177. Jin YM, Khachaturyan AG. 2001. Philos. Mag. Lett. 81:607–16 [Google Scholar]
  178. Deleted in proof
  179. Mahadevan M, Bradley RM. 1999. Phys. Rev. B 59:11037–46 [Google Scholar]
  180. Tadmor EB, Phillips R, Ortiz M. 1996. Langmuir 12:4529–34 [Google Scholar]
  181. Abraham FF, Broughton JQ, Bernstein N, Kaxiras E. 1998. Europhys. Lett. 44:783–87 [Google Scholar]
  182. Abraham FF, Broughton JQ, Bernstein N, Kaxiras E. 1998. Comput. Phys. 12:538–46 [Google Scholar]
  183. Phillips R. 1998. Curr. Opin. Solid State Mater. Sci. 3:526–32 [Google Scholar]
  184. Rudd RE, Broughton JQ. 1998. Phys. Rev. B 58:R5893–96 [Google Scholar]
  185. Broughton JQ, Abraham FF, Bernstein N, Kaxiras E. 1999. Phys. Rev. B. 60:2391–403 [Google Scholar]
  186. Rudd RE, Broughton JQ. 2000. Phys. Status Solidi B 217:251–91 [Google Scholar]
  187. Vaithynanathan V, Woverton C, Chen LQ. 2001. Phys. Rev. Lett. In press [Google Scholar]
  188. Chen LQ, Wolverton C, Vaithyananthan V, Liu ZK. 2001. MRS Bull. 26:197–202 [Google Scholar]
  189. Hoyt JJ, Sadigh B, Asta M, Foiles SM. 1999. Acta Mater. 47:3181–77 [Google Scholar]
  190. Hoyt JJ, Asta M, Karma A. 2001. Phys. Rev. Lett. 86:5530–33 [Google Scholar]
  191. Zhu JZ, Liu ZK, Vaithyanathan V, Chen LQ. 2001. Scripta Mater. In press [Google Scholar]
/content/journals/10.1146/annurev.matsci.32.112001.132041
Loading
/content/journals/10.1146/annurev.matsci.32.112001.132041
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error