π-Gels are a promising class of functional soft materials formed out of short π-conjugated molecules. By utilizing the chemistry of noncovalent interactions, researchers have created a wide range of π-gels that are composed of supramolecular polymers. During the last two decades, supramolecular gel chemistry has been pursued with the hope of developing new materials for applications in, for example, organic electronics, energy harvesting, sensing, and imaging. The high expectations for π-gels were centered mainly around their electronic properties, such as tunable emission, energy transfer, electron transfer, charge transport, and electrical conductivity; such properties are amenable to modulation through size and shape control of molecular assemblies. Although a large number of exciting publications have appeared, a major technological breakthrough is yet to be realized. In this review, we analyze the recent advancements in the area of functional π-gels and their scope in future applications.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Pitt KA, Purcell JE. 1.  Jellyfish Blooms: Causes, Consequences and Recent Advances Dordrecht, Neth: Springer [Google Scholar]
  2. Fages F. 2.  2005. Low Molecular Mass Gelators: Design, Self-Assembly, Function Berlin/Heidelberg, Ger: Springer-Verlag [Google Scholar]
  3. Weiss R, Terech P. 3.  2006. Molecular Gels: Materials with Self-Assembled Fibrillar Networks Dordrecht:, Neth.: Springer [Google Scholar]
  4. Escuder B, Miravet JF. 4.  2013. Functional Molecular Gels. Cambridge, UK: R. Soc. Chem. [Google Scholar]
  5. Dastidar P.5.  2008. Supramolecular gelling agents: Can they be designed. ? Chem. Soc. Rev. 37:2699–715 [Google Scholar]
  6. Li J-L, Liu X-Y. 6.  2010. Architecture of supramolecular soft functional materials: from understanding to micro-/nanoscale engineering. Adv. Funct. Mater. 20:3196–216 [Google Scholar]
  7. Zhang J, Su C-Y. 7.  2013. Metal-organic gels: from discrete metallogelators to coordination polymers. Coord. Chem. Rev. 257:1373–408 [Google Scholar]
  8. Lan Y, Corradini MG, Weiss RG, Raghavan SR, Rogers MA. 8.  2015. To gel or not to gel—correlating molecular gelation with solvent parameters. Chem. Soc. Rev. 44:6035–58 [Google Scholar]
  9. van Bommel KJC, Friggeri A, Shinkai S. 9.  2003. Organic templates for the generation of inorganic materials. Angew. Chem. Int. Ed. 42:980–99 [Google Scholar]
  10. Kato T, Hirai Y, Nakaso S, Moriyama M. 10.  2007. Liquid-crystalline physical gels. Chem. Soc. Rev. 36:1857–67 [Google Scholar]
  11. Hirst AR, Escuder B, Miravet JF, Smith DK. 11.  2008. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew. Chem. Int. Ed. 47:8002–18 [Google Scholar]
  12. Ajayaghosh A, Praveen VK, Vijayakumar C. 12.  2008. Organogels as scaffolds for excitation energy transfer and light harvesting. Chem. Soc. Rev. 37:109–22 [Google Scholar]
  13. Banerjee S, Das RK, Maitra U. 13.  2009. Supramolecular gels ‘in action’. J. Mater. Chem. 19:6649–87 [Google Scholar]
  14. Praveen VK, Babu SS, Vijayakumar C, Varghese R, Ajayaghosh A. 14.  2008. Helical supramolecular architectures of self-assembled linear π-systems. Bull. Chem. Soc. Jpn. 81:1196–211 [Google Scholar]
  15. Babu SS, Kartha KK, Ajayaghosh A. 15.  2010. Excited state processes in linear π-system–based organogels. J. Phys. Chem. Lett. 1:3413–24 [Google Scholar]
  16. Babu SS, Prasanthkumar S, Ajayaghosh A. 16.  2012. Self-assembled gelators for organic electronics. Angew. Chem. Int. Ed. 51:1766–76 [Google Scholar]
  17. Yang X, Zhang G, Zhang D. 17.  2012. Stimuli responsive gels based on low molecular weight gelators. J. Mater. Chem. 22:38–50 [Google Scholar]
  18. Tam AY-Y, Yam VW-W. 18.  2013. Recent advances in metallogels. Chem. Soc. Rev. 42:1540–67 [Google Scholar]
  19. Kartha KK, Mukhopadhyay RD, Ajayaghosh A. 19.  2013. Supramolecular gels and functional materials research in India. Chimia 67:51–63 [Google Scholar]
  20. Kumar DK, Steed JW. 20.  2014. Supramolecular gel phase crystallization: orthogonal self-assembly under non-equilibrium conditions. Chem. Soc. Rev. 43:2080–88 [Google Scholar]
  21. Babu SS, Praveen VK, Ajayaghosh A. 21.  2014. Functional π-gelators and their applications. Chem. Rev. 114:1973–2129 [Google Scholar]
  22. Praveen VK, Ranjith C, Armaroli N. 22.  2014. White-light-emitting supramolecular gels. Angew. Chem. Int. Ed. 53:365–68 [Google Scholar]
  23. Raeburn J, Adams DJ. 23.  2015. Multicomponent low molecular weight gelators. Chem. Commun. 51:5170–80 [Google Scholar]
  24. Shigemitsu H, Hamachi I. 24.  2015. Supramolecular assemblies responsive to biomolecules toward biological applications. Chem Asian J 10:2026–38 [Google Scholar]
  25. Du X, Zhou J, Shi J, Xu B. 25.  2015. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem. Rev. 115:13165–307 [Google Scholar]
  26. Pope M, Swenberg CE. 26.  1999. Electronic Processes in Organic Crystals and Polymers New York: Oxford Univ. Press, 2nd ed.. [Google Scholar]
  27. Seki S, Saeki A, Sakurai T, Sakamaki D. 27.  2014. Charge carrier mobility in organic molecular materials probed by electromagnetic waves. Phys. Chem. Chem. Phys. 16:11093–113 [Google Scholar]
  28. Maggini L, Bonifazi D. 28.  2012. Hierarchised luminescent organic architectures: design, synthesis, self-assembly, self-organisation and functions. Chem. Soc. Rev. 41:211–41 [Google Scholar]
  29. Müllen K, Scherf U. 29.  2006. Organic Light Emitting Devices: Synthesis, Properties and Applications Weinheim, Ger: Wiley-VCH [Google Scholar]
  30. Cornil J, Brédas JL, Zaumseil J, Sirringhaus H. 30.  2007. Ambipolar transport in organic conjugated materials. Adv. Mater. 19:1791–99 [Google Scholar]
  31. Li G, Zhu R, Yang Y. 31.  2012. Polymer solar cells. Nat. Photonics 6:153–61 [Google Scholar]
  32. Huang Y, Kramer EJ, Heeger AJ, Bazan GC. 32.  2014. Bulk heterojunction solar cells: morphology and performance relationships. Chem. Rev. 114:7006–43 [Google Scholar]
  33. Korevaar PA, de Greef TFA, Meijer EW. 33.  2014. Pathway complexity in π-conjugated materials. Chem. Mater. 26:576–86 [Google Scholar]
  34. de Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW. 34.  2009. Supramolecular polymerization. Chem. Rev. 109:5687–754 [Google Scholar]
  35. Kulkarni C, Balasubramanian S, George SJ. 35.  2013. What molecular features govern the mechanism of supramolecular polymerization?. ChemPhysChem 14:661–73 [Google Scholar]
  36. Aida T, Meijer EW, Stupp SI. 36.  2012. Functional supramolecular polymers. Science 335:813–17 [Google Scholar]
  37. Moulin E, Cid JJ, Giuseppone N. 37.  2013. Advances in supramolecular electronics—from randomly self-assembled nanostructures to addressable self-organized interconnects. Adv. Mater. 25:477–87 [Google Scholar]
  38. Ogi S, Sugiyasu K, Manna S, Samitsu S, Takeuchi M. 38.  2014. Living supramolecular polymerization realized through a biomimetic approach. Nat. Chem. 6:188–95 [Google Scholar]
  39. Kang J, Miyajima D, Mori T, Inoue Y, Itoh Y, Aida T. 39.  2015. Noncovalent assembly. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 347:646–51 [Google Scholar]
  40. Ogi S, Stepanenko V, Sugiyasu K, Takeuchi M, Würthner F. 40.  2015. Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator. J. Am. Chem. Soc. 137:3300–7 [Google Scholar]
  41. Mukhopadhyay RD, Ajayaghosh A. 41.  2015. Living supramolecular polymerization. Science 349:241–42 [Google Scholar]
  42. van der Zwaag D, de Greef TFA, Meijer EW. 42.  2015. Programmable supramolecular polymerizations. Angew. Chem. Int. Ed. 12:8452–54 [Google Scholar]
  43. Jain A, George SJ. 43.  2015. New directions in supramolecular electronics. Mater. Today 18:206–14 [Google Scholar]
  44. Calzaferri G, Lutkouskaya K. 44.  2008. Mimicking the antenna system of green plants. Photochem. Photobiol. Sci. 7:879–910 [Google Scholar]
  45. Laquai F, Park Y-S, Kim J-J, Basché T. 45.  2009. Excitation energy transfer in organic materials: from fundamentals to optoelectronic devices. Macromol. Rapid Commun. 30:1203–31 [Google Scholar]
  46. Gierschner J.46.  2012. Directional exciton transport in supramolecular nanostructured assemblies. Phys. Chem. Chem. Phys. 14:13146–53 [Google Scholar]
  47. Rao KV, Datta KKR, Eswaramoorthy M, George SJ. 47.  2012. Light-harvesting hybrid assemblies. Chem Eur. J. 18:2184–94 [Google Scholar]
  48. Wong K-T, Bassani DM. 48.  2014. Energy transfer in supramolecular materials for new applications in photonics and electronics. NPG Asia Mater 6:e116 [Google Scholar]
  49. Praveen VK, Ranjith C, Bandini E, Ajayaghosh A, Armaroli N. 49.  2014. Oligo(phenylenevinylene) hybrids and self-assemblies: versatile materials for excitation energy transfer. Chem. Soc. Rev. 43:4222–42 [Google Scholar]
  50. Praveen VK, Ajayaghosh A. 50.  2015. Metallosupramolecular materials for energy applications: light-harvesting. Functional Metallosupramolecular Materials RSC Smart Materials No. 15, ed. JG Hardy, FH Schacher 318–44 Cambridge, UK: R. Soc. Chem. [Google Scholar]
  51. Del Guerzo A, Olive AGL, Reichwagen J, Hopf H, Desvergne J-P. 51.  2005. Energy transfer in self-assembled [n]-acene fibers involving ≥100 donors per acceptor. J. Am. Chem. Soc. 127:17984–85 [Google Scholar]
  52. Ajayaghosh A, Praveen VK, Vijayakumar C, George SJ. 52.  2007. Molecular wire encapsulated into π organogels: efficient supramolecular light-harvesting antennae with color-tunable emission. Angew. Chem. Int. Ed. 46:6260–65 [Google Scholar]
  53. Vijayakumar C, Praveen VK, Kartha KK, Ajayaghosh A. 53.  2011. Excitation energy migration in oligo(p-phenylenevinylene) based organogels: structure-property relationship and FRET efficiency. Phys. Chem. Chem. Phys. 13:4942–49 [Google Scholar]
  54. Ardoña HAM, Tovar JD. 54.  2015. Energy transfer within responsive π-conjugated coassembled peptide-based nanostructures in aqueous environments. Chem. Sci. 6:1474–84 [Google Scholar]
  55. Praveen VK, George SJ, Varghese R, Vijayakumar C, Ajayaghosh A. 55.  2006. Self-assembled π-nanotapes as donor scaffolds for selective and thermally gated fluorescence resonance energy transfer (FRET). J. Am. Chem. Soc. 128:7542–50 [Google Scholar]
  56. Ajayaghosh A, Vijayakumar C, Praveen VK, Babu SS, Varghese R. 56.  2006. Self-location of acceptors as “isolated” or “stacked” energy traps in a supramolecular donor self-assembly: a strategy to wavelength tunable FRET emission. J. Am. Chem. Soc. 128:7174–75 [Google Scholar]
  57. Ajayaghosh A, Praveen VK, Srinivasan S, Varghese R. 57.  2007. Quadrupolar π-gels: sol-gel tunable red-green-blue emission in donor-acceptor-type oligo(p-phenylenevinylene)s. Adv. Mater. 19:411–15 [Google Scholar]
  58. Vijayakumar C, Praveen VK, Ajayaghosh A. 58.  2009. RGB emission through controlled donor self-assembly and modulation of excitation energy transfer: a novel strategy to white-light-emitting organogels. Adv. Mater. 21:2059–63 [Google Scholar]
  59. Abbel R, van der Weegen R, Pisula W, Surin M, Leclère P. 59.  et al. 2009. Multicolour self-assembled fluorene co-oligomers: from molecules to the solid state via white-light-emitting organogels. Chem. Eur. J. 15:9737–46 [Google Scholar]
  60. Giansante C, Raffy G, Schäfer C, Rahma H, Kao M-T. 60.  et al. 2011. White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects. J. Am. Chem. Soc. 133:316–25 [Google Scholar]
  61. Giansante C, Schäfer C, Raffy G, Del Guerzo A. 61.  2012. Exploiting direct and cascade energy transfer for color-tunable and white-light emission in three-component self-assembled nanofibers. J. Phys. Chem. C 116:21706–16 [Google Scholar]
  62. Bairi P, Roy B, Chakraborty P, Nandi AK. 62.  2013. Co-assembled white light emitting hydrogel of melamine. ACS Appl. Mater. Interfaces 5:5478–85 [Google Scholar]
  63. Scholes GD, Rumbles G. 63.  2006. Excitons in nanoscale systems. Nat. Mater. 5:683–96 [Google Scholar]
  64. Pope M, Swenberg CE. 64.  1984. Electronic processes in organic solids. Annu. Rev. Phys. Chem. 35:613–55 [Google Scholar]
  65. Huijser A, Suijkerbuijk BMJM, Klein Gebbink RJM, Savenije TJ, Laurens DA. 65.  2008. Efficient exciton transport in layers of self-assembled porphyrin derivatives. J. Am. Chem. Soc. 130:2485–92 [Google Scholar]
  66. Haedler AT, Kreger K, Issac A, Wittmann B, Kivala M. 66.  et al. 2015. Long-range energy transport in single supramolecular nanofibres at room temperature. Nature 523:196–99 [Google Scholar]
  67. Haedler AT, Beyer SR, Hammer N, Hildner R, Kivala M. 67.  et al. 2014. Synthesis and photophysical properties of multichromophoric carbonyl-bridged triarylamines. Chem. Eur. J. 20:11708–18 [Google Scholar]
  68. Pérez-Ruiz R, Díaz Díaz D. 68.  2015. Photophysical and photochemical processes in 3D self-assembled gels as confined microenvironments. Soft Matter 11:5180–87 [Google Scholar]
  69. Singh-Rachford TN, Castellano FN. 69.  2010. Photon upconversion based on sensitized triplet-triplet annihilation. Coord. Chem. Rev. 254:2560–73 [Google Scholar]
  70. Zhao J, Ji S, Guo H. 70.  2011. Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Adv 1:937–50 [Google Scholar]
  71. Zhou J, Liu Q, Feng W, Sun Y, Li F. 71.  2015. Upconversion luminescent materials: advances and applications. Chem. Rev. 115:395–465 [Google Scholar]
  72. Sripathy K, MacQueen RW, Peterson JR, Cheng YY, Dvořák M. 72.  et al. 2015. Highly efficient photochemical upconversion in a quasi-solid organogel. J. Mater. Chem. C 3:616–22 [Google Scholar]
  73. Vadrucci R, Weder C, Simon YC. 73.  2015. Organogels for low-power light upconversion. Mater. Horiz. 2:120–24 [Google Scholar]
  74. Duan P, Yanai N, Nagatomi H, Kimizuka N. 74.  2015. Photon upconversion in supramolecular gel matrixes: spontaneous accumulation of light-harvesting donor-acceptor arrays in nanofibers and acquired air stability. J. Am. Chem. Soc. 137:1887–94 [Google Scholar]
  75. Häring M, Pérez-Ruiz R, von Wangelin AJ, Díaz Díaz D. 75.  2015. Intragel photoreduction of aryl halides by green-to-blue upconversion under aerobic conditions. Chem. Commun. 51:16848–51 [Google Scholar]
  76. Ogawa T, Yanai N, Monguzzi A, Kimizuka N. 76.  2015. Highly efficient photon upconversion in self-assembled light-harvesting molecular systems. Sci. Rep. 5:10882 [Google Scholar]
  77. Balzani V. 77.  2001. Electron Transfer in Chemistry Weinheim, Ger: Wiley-VCH [Google Scholar]
  78. Wasielewski MR.78.  1992. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. 92:435–61 [Google Scholar]
  79. Bolton JR, Hall DO. 79.  1991. The maximum efficiency of photosynthesis. Photochem. Photobiol. 53:545–48 [Google Scholar]
  80. Cheng Y-C, Fleming GR. 80.  2009. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem. 60:241–62 [Google Scholar]
  81. Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R. 81.  2011. Lessons from nature about solar light harvesting. Nat. Chem. 3:763–74 [Google Scholar]
  82. Strümpfer J, Şener M, Schulten K. 82.  2012. How quantum coherence assists photosynthetic light-harvesting. J. Phys. Chem. Lett. 3:536–42 [Google Scholar]
  83. Benniston AC, Harriman A. 83.  2008. Artificial photosynthesis. Mater. Today 11:26–34 [Google Scholar]
  84. Wasielewski MR.84.  2009. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42:1910–21 [Google Scholar]
  85. Bhosale R, Míšek J, Sakai N, Matile S. 85.  2010. Supramolecular n/p-heterojunction photosystems with oriented multicolored antiparallel redox gradients (OMARG-SHJs). Chem. Soc. Rev. 39:138–49 [Google Scholar]
  86. Fukuzumi S, Ohkubo K. 86.  2012. Assemblies of artificial photosynthetic reaction centres. J. Mater. Chem. 22:4575–87 [Google Scholar]
  87. Cheriya RT, Mallia AR, Hariharan M. 87.  2014. Light harvesting vesicular donor-acceptor scaffold limits the rate of charge recombination in the presence of an electron donor. Energy Environ. Sci. 7:1661–69 [Google Scholar]
  88. Cheriya RT, Joy J, Alex AP, Shaji A, Hariharan M. 88.  2012. Energy transfer in near-orthogonally arranged chromophores separated through a single bond. J. Phys. Chem. C 116:12489–98 [Google Scholar]
  89. Xue P, Lu R, Zhao L, Xu D, Zhang X. 89.  et al. 2010. Hybrid self-assembly of a π gelator and fullerene derivative with photoinduced electron transfer for photocurrent generation. Langmuir 26:6669–75 [Google Scholar]
  90. Xue P, Xu Q, Gong P, Qian C, Zhang Z. 90.  et al. 2013. Two-component gel of a D-π-A-π-D carbazole donor and a fullerene acceptor. RSC Adv 3:11214–24 [Google Scholar]
  91. Xue P, Wang P, Yao B, Sun J, Gong P. 91.  et al. 2014. Nanofibers of hydrogen-bonded two-component gel with closely connected p- and n-channels and photoinduced electron transfer. ACS Appl. Mater. Interfaces 6:21426–34 [Google Scholar]
  92. Xue P, Wang P, Yao B, Sun J, Gong P. 92.  et al. 2015. Photocurrent generation of nanofibers constructed using a complex of a gelator and a fullerene derivative. RSC Adv 5:75425–33 [Google Scholar]
  93. Prasanthkumar S, Ghosh S, Nair VC, Saeki A, Seki S, Ajayaghosh A. 93.  2015. Organic donor-acceptor assemblies form coaxial p-n heterojunctions with high photoconductivity. Angew. Chem. Int. Ed. 54:946–50 [Google Scholar]
  94. Safont-Sempere MM, Fernández G, Würthner F. 94.  2011. Self-sorting phenomena in complex supramolecular systems. Chem. Rev. 111:5784–814 [Google Scholar]
  95. López-Andarias J, Rodriguez MJ, Atienza C, López JL, Mikie T. 95.  et al. 2015. Highly ordered n/p-co-assembled materials with remarkable charge mobilities. J. Am. Chem. Soc 137:893–97 [Google Scholar]
  96. Allard S, Forster M, Souharce B, Thiem H, Scherf U. 96.  2008. Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew. Chem. Int. Ed. 47:4070–98 [Google Scholar]
  97. Wang C, Dong H, Hu W, Liu Y, Zhu D. 97.  2012. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 112:2208–67 [Google Scholar]
  98. Usta H, Facchetti A, Marks TJ. 98.  2011. n-Channel semiconductor materials design for organic complementary circuits. Acc. Chem. Res. 44:501–10 [Google Scholar]
  99. Beaujuge PM, Fréchet JMJ. 99.  2011. Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J. Am. Chem. Soc. 133:20009–29 [Google Scholar]
  100. Schenning APHJ, Meijer EW. 100.  2005. Supramolecular electronics; nanowires from self-assembled π-conjugated systems. Chem. Commun.3245–58 [Google Scholar]
  101. Saeki A, Koizumi Y, Aida T, Seki S. 101.  2012. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures. Acc. Chem. Res. 45:1193–202 [Google Scholar]
  102. Prasanthkumar S, Saeki A, Seki S, Ajayaghosh A. 102.  2010. Solution phase epitaxial self-assembly and high charge-carrier mobility nanofibers of semiconducting molecular gelators. J. Am. Chem. Soc. 132:8866–67 [Google Scholar]
  103. Lin X, Hirono M, Seki T, Kurata H, Karatsu T. 103.  et al. 2013. Covalent modular approach for dimension-controlled self-organization of perylene bisimide dyes. Chem. Eur. J. 19:6561–65 [Google Scholar]
  104. Shigemitsu H, Hisaki I, Kometani E, Yasumiya D, Sakamoto Y. 104.  et al. 2013. Crystalline supramolecular nanofibers based on dehydrobenzoannulene derivatives. Chem. Eur. J. 19:15366–77 [Google Scholar]
  105. Hollamby MJ, Karny M, Bomans PHH, Sommerdjik NAJM, Saeki A. 105.  et al. 2014. Directed assembly of optoelectronically active alkyl-π-conjugated molecules by adding n-alkanes or π-conjugated species. Nat. Chem. 6:690–96 [Google Scholar]
  106. Schenning APHJ, George SJ. 106.  2014. Phases full of fullerenes. Nat. Chem. 6:658–59 [Google Scholar]
  107. Iyoda M, Hasegawa M, Enozawa H. 107.  2007. Self-assembly and nanostructure formation of multi-functional organic π-donors. Chem. Lett. 36:1402–7 [Google Scholar]
  108. Amabilino DB, Puigmartí-Luis J. 108.  2010. Gels as a soft matter route to conducting nanostructured organic and composite materials. Soft Matter 6:1605–12 [Google Scholar]
  109. Hasegawa M, Iyoda M. 109.  2010. Conducting supramolecular nanofibers and nanorods. Chem. Soc. Rev. 39:2420–27 [Google Scholar]
  110. Yang X, Zhang D, Zhang G, Zhu D. 110.  2011. Tetrathiafulvalene (TTF)-based gelators: stimuli responsive gels and conducting nanostructures. Sci. China Chem. 54:596–602 [Google Scholar]
  111. Puigmartí-Luis J, Laukhin V, Pérez Del Pino Á, Vidal-Gancedo J, Rovira C. 111.  et al. 2007. Supramolecular conducting nanowires from organogels. Angew. Chem. Int. Ed. 46:238–41 [Google Scholar]
  112. Puigmartí-Luis J, Pérez Del Pino Á, Laukhina E, Esquena J, Laukhin V. 112.  et al. 2008. Shaping supramolecular nanofibers with nanoparticles forming complementary hydrogen bonds. Angew. Chem. Int. Ed. 47:1861–65 [Google Scholar]
  113. Prasanthkumar S, Gopal A, Ajayaghosh A. 113.  2010. Self-assembly of thienylenevinylene molecular wires to semiconducting gels with doped metallic conductivity. J. Am. Chem. Soc. 132:13206–7 [Google Scholar]
  114. Stone DA, Tayi AS, Goldberger JE, Palmer LC, Stupp SI. 114.  2011. Self-assembly and conductivity of hydrogen-bonded oligothiophene nanofiber networks. Chem. Commun. 47:5702–4 [Google Scholar]
  115. Rao KV, George SJ. 115.  2012. Supramolecular alternate co-assembly through a non-covalent amphiphilic design: conducting nanotubes with a mixed D-A structure. Chem. Eur. J. 18:14286–91 [Google Scholar]
  116. Hong J-P, Um M-C, Nam S-R, Hong J-I, Lee S. 116.  2009. Organic single-nanofiber transistors from organogels. Chem. Commun. 2009:310–12 [Google Scholar]
  117. Tsai W, Tevis I, Tayi A, Cui H, Stupp S. 117.  2010. Semiconducting nanowires from hairpin-shaped self-assembling sexithiophenes. J. Phys. Chem. B 114:14778–86 [Google Scholar]
  118. Guan Y-S, Qin Y, Sun Y, Wang C, Xu W, Zhu D. 118.  2015. Single-bundle nanofiber based OFETs fabricated from a cyclic conjugated organogelator with high field-effect mobility and high photoresponsivity. Chem. Commun. 51:12182–84 [Google Scholar]
  119. Sagade AA, Rao KV, Mogera U, George SJ, Datta A, Kulkarni GU. 119.  2013. High-mobility field effect transistors based on supramolecular charge transfer nanofibres. Adv. Mater. 25:559–64 [Google Scholar]
  120. Rao KV, Jayaramulu K, Maji TK, George SJ. 120.  2010. Supramolecular hydrogels and high-aspect-ratio nanofibers through charge-transfer-induced alternate coassembly. Angew. Chem. Int. Ed. 49:4218–22 [Google Scholar]
  121. Mishra A, Bauerle P. 121.  2012. Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew. Chem. Int. Ed. 51:2020–67 [Google Scholar]
  122. Lin Y, Li Y, Zhan X. 122.  2012. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev. 41:4245–72 [Google Scholar]
  123. Kim B-G, Jeong EJ, Park HJ, Bilby D, Guo LJ, Kim J. 123.  2011. Effect of polymer aggregation on the open circuit voltage in organic photovoltaic cells: aggregation-induced conjugated polymer gel and its application for preventing open circuit voltage drop. ACS Appl. Mater. Interfaces 3:674–80 [Google Scholar]
  124. Mishra A, Ma C-Q, Bäuerle P. 124.  2009. Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications. Chem. Rev. 109:1141–276 [Google Scholar]
  125. Kumar RJ, MacDonald JM, Singh TB, Waddington LJ, Holmes AB. 125.  2011. Hierarchical self-assembly of semiconductor functionalized peptide α-helices and optoelectronic properties. J. Am. Chem. Soc. 133:8564–73 [Google Scholar]
  126. Tevis ID, Tsai W-W, Palmer LC, Aytun T, Stupp SI. 126.  2012. Grooved nanowires from self-assembling hairpin molecules for solar cells. ACS Nano 6:2032–40 [Google Scholar]
  127. Kumar RJ, Subbiah J, Holmes AB. 127.  2013. Enhancement of efficiency in organic photovoltaic devices containing self-complementary hydrogen-bonding domains. Beilstein J. Org. Chem. 9:1102–10 [Google Scholar]
  128. Yagai S, Suzuki M, Lin X, Gushiken M, Noguchi T. 128.  et al. 2014. Supramolecular engineering of oligothiophene nanorods without insulators: hierarchical association of rosettes and photovoltaic properties. Chem. Eur. J. 20:16128–37 [Google Scholar]
  129. Eckenhoff WT, Eisenberg R. 129.  2012. Molecular systems for light driven hydrogen production. Dalton Trans 41:13004–21 [Google Scholar]
  130. Weingarten AS, Kazantsev RV, Palmer LC, McClendon M, Koltonow AR. 130.  et al. 2014. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nat. Chem. 6:964–70 [Google Scholar]
  131. Weingarten AS, Kazantsev RV, Palmer LC, Fairfield DJ, Koltonow AR, Stupp SI. 131.  2015. Supramolecular packing controls H2 photocatalysis in chromophore amphiphile hydrogels. J. Am. Chem. Soc. 137:15241–46 [Google Scholar]
  132. McQuade D, Pullen A, Swager T. 132.  2000. Conjugated polymer-based chemical sensors. Chem. Rev. 100:2537–74 [Google Scholar]
  133. Liu Y, Ogawa K, Schanze KS. 133.  2009. Conjugated polyelectrolytes as fluorescent sensors. J. Photochem. Photobiol. C 10:173–90 1 [Google Scholar]
  134. Zang L, Che Y, Moore JS. 134.  2008. One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices. Acc. Chem. Res. 41:1596–608 [Google Scholar]
  135. Kartha KK, Sandeep A, Nair VC, Takeuchi M, Ajayaghosh A. 135.  2014. A carbazole-fluorene molecular hybrid for quantitative detection of TNT using a combined fluorescence and quartz crystal microbalance method. Phys. Chem. Chem. Phys. 16:18896–901 [Google Scholar]
  136. Kartha KK, Sandeep A, Praveen VK, Ajayaghosh A. 136.  2015. Detection of nitroaromatic explosives with fluorescent molecular assemblies and π-gels. Chem. Rec. 15:252–65 [Google Scholar]
  137. Kartha KK, Babu SS, Srinivasan S, Ajayaghosh A. 137.  2012. Attogram sensing of TNT with a self-assembled molecular gelator. J. Am. Chem. Soc. 134:4834–41 [Google Scholar]
  138. Babu SS, Praveen VK, Prasanthkumar S, Ajayaghosh A. 138.  2008. Self-assembly of oligo(para-phenylenevinylene)s through arene-perfluoroarene interactions: π gels with longitudinally controlled fiber growth and supramolecular exciplex-mediated enhanced emission. Chem. Eur. J. 14:9577–84 [Google Scholar]
  139. Ajayaghosh A, Praveen VK. 139.  2007. π-Organogels of self-assembled p-phenylenevinylenes: soft materials with distinct size, shape, and functions. Acc. Chem. Res. 40:644–56 [Google Scholar]
  140. Gong P, Sun J, Xue P, Qian C, Zhang Z. 140.  et al. 2015. Luminescent nanofibers fabricated from triphenylvinyl substituted carbazole derivatives via organogelation for sensing gaseous nitroaromatics. Dyes Pigm 118:27–36 [Google Scholar]
  141. Hong G, Sun J, Qian C, Xue P, Gong P. 141.  et al. 2015. Nanofibers generated from linear carbazole-based organogelators for the detection of explosives. J. Mater. Chem. C 3:2371–79 [Google Scholar]
  142. Toal SJ, Trogler WC. 142.  2006. Polymer sensors for nitroaromatic explosives detection. J. Mater. Chem. 16:2871–83 [Google Scholar]
  143. Shanmugaraju S, Mukherjee PS. 143.  2015. Self-assembled discrete molecules for sensing nitroaromatics. Chem. Eur. J. 21:6656–66 [Google Scholar]
  144. Bhalla V, Arora H, Singh H, Kumar M. 144.  2013. Triphenylene derivatives: chemosensors for sensitive detection of nitroaromatic explosives. Dalton Trans 42:969–97 [Google Scholar]
  145. Bhalla V, Gupta A, Kumar M, Rao DSS, Prasad SK. 145.  2013. Self-assembled pentacenequinone derivative for trace detection of picric acid. ACS Appl. Mater. Interfaces 5:672–79 [Google Scholar]
  146. Dey N, Samanta SK, Bhattacharya S. 146.  2013. Selective and efficient detection of nitro-aromatic explosives in multiple media including water, micelles, organogel and solid support. ACS Appl. Mater. Interfaces 5:8394–400 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error