Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Fleck NA, Deshpande VS, Ashby MF. 1.  2010. Micro-architectured materials: past, present and future. Proc. R. Soc. A 466:2495–516 [Google Scholar]
  2. Schaedler TA, Jacobsen AJ, Carter WB. 2.  2013. Toward lighter, stiffer materials. Science 341:1181–82 [Google Scholar]
  3. Deshpande VS, Ashby MF, Fleck NA. 3.  2001. Foam topology: bending versus stretching dominated architectures. Acta Mater. 49:1035–40 [Google Scholar]
  4. Gibson LJ, Ashby MF. 4.  1997. Cellular Solids: Structure and Properties Cambridge, UK: Cambridge Univ. Press
  5. Evans AG, Hutchinson JW, Ashby MF. 5.  1999. Multifunctionality of cellular metal systems. Prog. Mater. Sci. 43:171–221 [Google Scholar]
  6. Wadley HBG, Fleck NA, Evans AG. 6.  2003. Fabrication and structural performance of periodic cellular metal sandwich structures. Compos. Sci. Technol. 63:2331–43 [Google Scholar]
  7. Deshpande VS, Fleck NA, Ashby MF. 7.  2001. Effective properties of the octet truss lattice material. J. Mech. Phys. Solids 49:1747–69 [Google Scholar]
  8. 8. Hexcel Corp 1999. HexWebhoneycomb attributes and properties. A comprehensive guide to standard Hexcel honeycomb materials, configurations, and mechanical properties. http://www.hexcel.com/Resources/DataSheets/Brochure-Data-Sheets/Honeycomb_Attributes_and_Properties.pdf [Google Scholar]
  9. Wadley HNG.9.  2006. Multifunctional periodic cellular metals. Phil. Trans. R. Soc. A 364:31–68 [Google Scholar]
  10. Lakes R.10.  1993. Materials with structural hierarchy. Nature 361:511–15 [Google Scholar]
  11. 11. Granta Design Ltd 2005. CES selector http://www.grantadesign.com/products/ces/
  12. Schaedler TA, Jacobsen AJ, Torrents A, Sorensen AE, Lian J. 12.  et al. 2011. Ultralight metallic microlattices. Science 334:962–65 [Google Scholar]
  13. Bauer J, Hengsbach S, Tesari I, Schwaiger R, Kraft O. 13.  2014. High-strength cellular ceramic composites with 3D microarchitecture. PNAS 111:2453–58 [Google Scholar]
  14. Eckel ZC, Zhou C, Martin JH, Jacobsen AJ, Carter WB, Schaedler TA. 14.  2016. Additive manufacturing of polymer derived ceramics. Science 351:58–62 [Google Scholar]
  15. George T, Deshpande VS, Wadley HNG. 15.  2013. Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores. Composites A 47:31–40 [Google Scholar]
  16. Cheung KC, Gershenfeld N. 16.  2013. Reversibly assembled cellular composite materials. Science 341:1219–21 [Google Scholar]
  17. Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J. 17.  et al. 2014. Ultralight, ultrastiff mechanical metamaterials. Science 344:1373–77 [Google Scholar]
  18. Valdevit L, Jacobsen AJ, Greer JR, Carter WB. 18.  2011. Protocols for the optimal design of multi-functional cellular structures: from hypersonics to micro-architected materials. J. Am. Ceram. Soc. 94:S15–34 [Google Scholar]
  19. Wicks N, Hutchinson JW. 19.  2001. Optimal truss plates. Int. J. Solids Struct. 38:5165–83 [Google Scholar]
  20. Valdevit L, Hutchinson JW, Evans AG. 20.  2004. Structurally optimized sandwich panels with prismatic cores. Int. J. Solids Struct. 41:5105–24 [Google Scholar]
  21. Valdevit L, Pantano A, Stone HA, Evans AG. 21.  2006. Optimal active cooling performance of metallic sandwich panels with prismatic cores. Int. J. Heat Mass Transf. 49:3819–30 [Google Scholar]
  22. Bendsøe MP, Sigmund O. 22.  2002. Topology Optimization Berlin: Springer
  23. Christensen PW, Klabering A. 23.  2008. An Introduction to Structural Optimization Berlin: Springer
  24. 24. Altair Engineering Inc 2013. Altair OptiStruct http://www.altairhyperworks.com/Product,19,OptiStruct.aspx
  25. 25. Autodesk Inc 2015. Autodesk Within http://www.withinlab.com/software/new_index.php
  26. Dinwiddie RB, Dehoff RR, Lloyd PD, Lowe LE, Ulrich JB. 26.  2013. Thermographic in-situ process monitoring of the electron-beam melting technology used in additive manufacturing. Proc. SPIE 8705:87050K [Google Scholar]
  27. Wohlers TT, Caffrey T. 27.  2013. Wohlers Report Fort Collins, CO: Wohlers Associates Inc.
  28. Jacobsen AJ, Carter WB, Nutt S. 28.  2007. Micro-scale truss structures formed from self-propagating photopolymer waveguides. Adv. Mater. 19:3892–96 [Google Scholar]
  29. Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR. 29.  et al. 2015. Continuous liquid interface production of 3D objects. Science 347:1349–52 [Google Scholar]
  30. Meza LR, Das S, Greer JR. 30.  2014. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345:1322–26 [Google Scholar]
  31. Jang D, Meza LR, Greer F, Greer JR. 31.  2013. Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nat. Mater. 12:893–98 [Google Scholar]
  32. Meza LR, Zelhofer AJ, Clarke N, Mateos AJ, Kochmann DM, Greer JR. 32.  2015. Resilient 3D hierarchical architected metamaterials. PNAS 112:11502–7 [Google Scholar]
  33. Horn TJ, Harrysson OLA. 33.  2012. Overview of current additive manufacturing technologies and selected applications. Sci. Prog. 95:255–82 [Google Scholar]
  34. Cansizoglu O, Harrysson O, Cormier D, West H, Mahale T. 34.  2008. Properties of Ti-6Al-4V non-stochastic lattice structures fabricated via electron beam melting. Mater. Sci. Eng. A 492:468–74 [Google Scholar]
  35. Yang L, Harrysson O, Cormier D, West H, Gong H, Stucker B. 35.  2015. Additive manufacturing of metal cellular structures: design and fabrication. JOM 67:608–15 [Google Scholar]
  36. List FA, Dehoff RR, Lowe LE, Sames WJ. 36.  2014. Properties of Inconel 625 mesh structures grown by electron beam additive manufacturing. Mater. Sci. Eng. A 615:191–97 [Google Scholar]
  37. Deckers J, Vleugels J, Kruth JP. 37.  2014. Additive manufacturing of ceramics: a review. J. Ceram. Sci. Technol. 5:245–60 [Google Scholar]
  38. Zocca A, Colombo P, Gomes CM, Günster J. 38.  2015. Additive manufacturing of ceramics: issues, potentialities and opportunities. J. Am. Ceram. Soc. 98:1983–2001 [Google Scholar]
  39. Travitzky N, Bonet A, Dermeik B, Fey T, Filbert-Demut I. 39.  et al. 2014. Additive manufacturing of ceramic-based materials. Adv. Eng. Mater. 16:729–54 [Google Scholar]
  40. Dong L, Deshpande V, Wadley H. 40.  2015. Mechanical response of Ti-6Al-4V octet-truss lattice structures. Int. J. Solids Struct. 60:107–24 [Google Scholar]
  41. Kooistra GW, Wadley HNG. 41.  2007. Lattice truss structures from expanded metal sheet. Mater. Des. 28:507–14 [Google Scholar]
  42. Ahn BY, Shoji D, Hansen CJ, Hong E, Dunand DC, Lewis JA. 42.  2010. Printed origami structures. Adv. Mater. 22:2251 [Google Scholar]
  43. Zhang Y, Ha S, Sharp K, Guest JK, Weihs TP, Hemker KJ. 43.  2015. Fabrication and mechanical characterization of 3D woven Cu lattice materials. Mater. Des. 85:743–51 [Google Scholar]
  44. Erdeniz D, Levinson AJ, Sharp KW, Rowenhorst DJ, Fonda RW, Dunand DC. 44.  2015. Pack aluminization synthesis of superalloy 3D woven and 3D braided structures. Metall. Mater. Trans. A 46:426–38 [Google Scholar]
  45. Choi W, Powell NB. 45.  2005. Three dimensional seamless garment knitting on V-bed flat knitting machines. J. Textile Apparel Technol. Manag. 4.3:1–33 [Google Scholar]
  46. Maloney KJ, Roper CS, Jacobsen AJ, Carter WB, Valdevit L, Schaedler TA. 46.  2013. Microlattices as architected thin films: analysis of mechanical properties and high strain elastic recovery. APL Mater. 1:022106 [Google Scholar]
  47. Queheillalt DT, Wadley HNG. 47.  2005. Cellular metal lattices with hollow trusses. Acta Mater. 53:303–13 [Google Scholar]
  48. Clough EC, Ensberg J, Eckel ZC, Ro CJ, Schaedler TA. 48.  2016. Mechanical performance of hollow nickel truss cores. Intl. J. Solids Struct. In press. doi:10.1016/j.ijsolstr.2016.04.006
  49. Evans AG, He MY, Deshpande VS, Hutchinson JW, Jacobsen AJ, Carter WB. 49.  2010. Concepts for enhanced energy absorption using hollow micro-lattices. Int. J. Impact Eng. 37:947–59 [Google Scholar]
  50. Schaedler TA, Ro CJ, Sorensen AE, Eckel Z, Yang SS. 50.  et al. 2014. Designing metallic microlattices for energy absorber applications. Adv. Eng. Mater. 16:276–83 [Google Scholar]
  51. Li MZ, Stephani G, Kang KJ. 51.  2011. New cellular metals with enhanced energy absorption: wire-woven bulk Kagome (WBK)-metal hollow sphere (MHS) hybrids. Adv. Eng. Mater. 13:33–37 [Google Scholar]
  52. Stephani G, Andersen O, Göhler H, Kostmann C, Kümmel K. 52.  et al. 2006. Iron based cellular structures: status and prospects. Adv. Eng. Mater. 8:847–52 [Google Scholar]
  53. Goehler H, Jehring U, Meinert J, Hauser R, Quadbeck P. 53.  et al. 2014. Functionalized metallic hollow sphere structures. Adv. Eng. Mater. 16:335–39 [Google Scholar]
  54. Christensen J, Kadic M, Kraft O, Wegener M. 54.  2015. Vibrant times for mechanical metamaterials. MRS Commun. 5:453–62 [Google Scholar]
  55. Sievenpiper DF, Sickmiller ME, Yablonovitch E. 55.  1996. 3D wire mesh photonic crystals. Phys. Rev. Lett. 76:2480–83 [Google Scholar]
  56. Wegener M.56.  2013. Metamaterials beyond optics. Science 342:939–40 [Google Scholar]
  57. Kadic M, Buckmann T, Schittny R, Wegener M. 57.  2013. Metamaterials beyond electromagnetism. Rep. Prog. Phys. 76:126501–35 [Google Scholar]
  58. Bückmann T, Stenger N, Kadic M, Kaschke J, Frölich A. 58.  et al. 2012. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24:2710–14 [Google Scholar]
  59. Yang L, Harrysson O, West H, Cormier D. 59.  2015. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. Int. J. Solids Struct. 69:475–90 [Google Scholar]
  60. Bertoldi K, Reis PM, Willshaw S, Mullin T. 60.  2010. Negative Poisson's ratio behavior induced by an elastic instability. Adv. Mater. 22:361–66 [Google Scholar]
  61. Celli P, Gonella S. 61.  2014. Low-frequency spatial wave manipulation via phononic crystals with relaxed cell symmetry. J. Appl. Phys. 115:103502 [Google Scholar]
  62. Zhang S, Xia C, Fang N. 62.  2011. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106:024301 [Google Scholar]
  63. Schittny R, Kadic M, Guenneau S, Wegener M. 63.  2013. Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110:195901 [Google Scholar]
  64. Whitesides GM.64.  2006. The origins and the future of microfluidics. Nature 442:368–73 [Google Scholar]
  65. Jiang PX, Li M, Lu TJ, Yu L, Zen ZP. 65.  2004. Experimental research on convection heat transfer in sintered porous plate channels. Int. J. Heat Mass Transf. 47:2085–96 [Google Scholar]
  66. Lu TJ, Stone HA, Ashby MF. 66.  1998. Heat transfer in open-cell metal foams. Acta Mater. 46:3619–35 [Google Scholar]
  67. Lu TJ, Valdevit L, Evans AG. 67.  2005. Active cooling by metallic sandwich structures with periodic cores. Prog. Mater. Sci. 50:789–815 [Google Scholar]
  68. Wadley HNG, Queheillalt DT. 68.  2007. Thermal applications of cellular lattice materials. Mater. Sci. Forum 539:242–48 [Google Scholar]
  69. Roper CS.69.  2011. Multiobjective optimization for design of multifunctional sandwich panel heat pipes with micro-architected truss cores. Int. J. Heat Fluid Flow 32:239–48 [Google Scholar]
  70. Tian J, Lu TJ, Hodson HP, Queheillalt DT, Wadley HNG. 70.  2007. Cross flow heat exchange of textile cellular metal core sandwich panels. Int. J. Heat Mass Transf. 50:2521–36 [Google Scholar]
  71. Maloney KJ, Fink KD, Schaedler TA, Kolodziejska JA, Jacobsen AJ, Roper CS. 71.  2012. Multifunctional heat exchangers derived from three-dimensional micro-lattice structures. Int. J. Heat Mass Transf. 55:2486–93 [Google Scholar]
  72. Roper CS, Schubert RC, Maloney KJ, Page D, Ro CJ. 72.  et al. 2015. Scalable 3D bicontinuous fluid networks: polymer heat exchangers toward artificial organs. Adv. Mater. 27:2479–84 [Google Scholar]
  73. Hutmacher DW.73.  2000. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–43 [Google Scholar]
  74. Mota C, Puppi D, Chiellini F, Chiellini E. 74.  2012. Additive manufacturing techniques for the production of tissue engineering. J. Tissue Eng. Reg. Med. 9:174–90 [Google Scholar]
  75. Valentin JE, Badylak JS, McCabe GP, Badylak SF. 75.  2006. Extracellular matrix bioscaffolds for orthopaedic applications. J. Bone Joint Surg. 88:2673–86 [Google Scholar]
  76. Han D, Gouma PI. 76.  2006. Electrospun bioscaffolds that mimic the topology of extracellular matrix. Medicine 2:37–41 [Google Scholar]
  77. Nooeaid P, Roether JA, Weber E, Schubert DW, Boccaccini AR. 77.  2014. Technologies for multilayered scaffolds suitable for interface tissue engineering. Adv. Eng. Mater. 16:319–27 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error