1932

Abstract

In superhard materials research, two topics are of central focus. One is to understand hardness microscopically and to establish hardness models with atomic parameters, which can be used to guide the design or prediction of novel superhard crystals. The other is to synthesize superhard materials with enhanced comprehensive performance (i.e., hardness, fracture toughness, and thermal stability), with the ambition of achieving materials harder than natural diamond. In this review, we present recent developments in both areas. The microscopic hardness models of covalent single crystals are introduced and further generalized to polycrystalline materials. Current research progress in novel superhard materials and nanostructuring approaches for high-performance superhard materials are discussed. We also clarify a long-standing controversy about the criterion for performing a reliable indentation hardness measurement.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070115-031649
2016-07-01
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/matsci/46/1/annurev-matsci-070115-031649.html?itemId=/content/journals/10.1146/annurev-matsci-070115-031649&mimeType=html&fmt=ahah

Literature Cited

  1. Haines J, Leger JM, Bocquillon G. 1.  2001. Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 31:1–23 [Google Scholar]
  2. Veprek S.2.  1999. The search for novel, superhard materials. J. Vac. Sci. Technol. A 17:2401–20 [Google Scholar]
  3. Dubrovinskaia N, Dubrovinsky L, Solozhenko VL. 3.  2007. Comment on “synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure”. Science 318:1550C [Google Scholar]
  4. Xu B, Tian YJ. 4.  2015. Superhard materials: recent research progress and prospects. Sci. China Mater. 58:132–42 [Google Scholar]
  5. Bundy FP, Hall HT, Strong HM, Wentorf RH. 5.  1955. Man-made diamonds. Nature 176:51–55 [Google Scholar]
  6. Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H. 6.  2003. Materials: ultrahard polycrystalline diamond from graphite. Nature 421:599–600 [Google Scholar]
  7. Wentorf RH, DeVries RC, Bundy FP. 7.  1980. Sintered superhard materials. Science 208:873–80 [Google Scholar]
  8. Wentorf RH.8.  1957. Cubic form of boron nitride. J. Chem. Phys. 26:956–56 [Google Scholar]
  9. Dobrzhinetskaya LF, Wirth R, Yang J, Hutcheon ID, Weber PK, Green HW. 9.  2009. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. PNAS 106:19233–38 [Google Scholar]
  10. Harris TK, Brookes EJ, Taylor CJ. 10.  2004. The effect of temperature on the hardness of polycrystalline cubic boron nitride cutting tool materials. Int. J. Refract. Met. Hard Mater. 22:105–10 [Google Scholar]
  11. Liew WYH, Yuan S, Ngoi BKA. 11.  2004. Evaluation of machining performance of STAVAX with PCBN tools. Int. J. Adv. Manuf. Technol. 23:11–19 [Google Scholar]
  12. Brazhkin VV, Lyapin AG, Hemley RJ. 12.  2002. Harder than diamond: dreams and reality. Philos. Mag. A 82:231–53 [Google Scholar]
  13. Chaudhri MM, Lim YY. 13.  2005. Harder than diamond? Just fiction. Nat. Mater. 4:4 [Google Scholar]
  14. Tian YJ, Xu B, Zhao ZS. 14.  2012. Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 33:93–106 [Google Scholar]
  15. Gao FM, He JL, Wu ED, Liu SM, Yu DL. 15.  et al. 2003. Hardness of covalent crystals. Phys. Rev. Lett. 91:015502 [Google Scholar]
  16. Simunek A, Vackar J. 16.  2006. Hardness of covalent and ionic crystals: first-principle calculations. Phys. Rev. Lett. 96:085501 [Google Scholar]
  17. Li KY, Wang XT, Zhang FF, Xue DF. 17.  2008. Electronegativity identification of novel superhard materials. Phys. Rev. Lett. 100:235504 [Google Scholar]
  18. Dubrovinskaia N, Solozhenko VL, Miyajima N, Dmitriev V, Kurakevych OO, Dubrovinsky L. 18.  2007. Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness. Appl. Phys. Lett. 90:101912 [Google Scholar]
  19. Dubrovinskaia N, Dub S, Dubrovinsky L. 19.  2006. Superior wear resistance of aggregated diamond nanorods. Nano Lett. 6:824–26 [Google Scholar]
  20. Solozhenko VL, Kurakevych OO, Le Godec Y. 20.  2012. Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride. Adv. Mater. 24:1540–44 [Google Scholar]
  21. Tian YJ, Xu B, Yu DL, Ma YM, Wang YB. 21.  et al. 2013. Ultrahard nanotwinned cubic boron nitride. Nature 493:385–88 [Google Scholar]
  22. Huang Q, Yu DL, Xu B, Hu WT, Ma YM. 22.  et al. 2014. Nanotwinned diamond with unprecedented hardness and stability. Nature 510:250–53 [Google Scholar]
  23. Yip S.23.  1998. Nanocrystals: the strongest size. Nature 391:532–33 [Google Scholar]
  24. Boland J.24.  2014. Science and nanotechnology of superhard materials. Natl. Sci. Rev. 1:474–75 [Google Scholar]
  25. Leger JM, Haines J. 25.  1997. The search for superhard materials. Endeavour 21:121–24 [Google Scholar]
  26. Gilman JJ.26.  2008. Electronic basis of hardness and phase transformations (covalent crystals). J. Phys. D 41:074020 [Google Scholar]
  27. Gilman JJ.27.  1975. Flow of covalent solids at low-temperatures. J. Appl. Phys. 46:5110–13 [Google Scholar]
  28. Phillips JC.28.  1970. Ionicity of the chemical bond in crystals. Rev. Mod. Phys. 42:317–56 [Google Scholar]
  29. Siethoff H.29.  2000. Homopolar band gap and thermal activation parameters of plasticity of diamond and zinc-blende semiconductors. J. Appl. Phys. 87:3301–5 [Google Scholar]
  30. Sangiovanni DG, Hultman L, Chirita V. 30.  2011. Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration. Acta Mater. 59:2121–34 [Google Scholar]
  31. Ivanovskii AL.31.  2012. Mechanical and electronic properties of diborides of transition 3d–5d metals from first principles: toward search of novel ultra-incompressible and superhard materials. Prog. Mater. Sci. 57:184–228 [Google Scholar]
  32. Guo XJ, Li L, Liu ZY, Yu DL, He JL. 32.  et al. 2008. Hardness of covalent compounds: roles of metallic component and d valence electrons. J. Appl. Phys. 104:023503 [Google Scholar]
  33. Pauling L.33.  1960. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry Ithaca, NY: Cornell Univ. Press
  34. Ceder G.34.  1998. Computational materials science—predicting properties from scratch. Science 280:1099–100 [Google Scholar]
  35. He DW, Zhao YS, Daemen L, Qian J, Shen TD, Zerda TW. 35.  2002. Boron suboxide: as hard as cubic boron nitride. Appl. Phys. Lett. 81:643–45 [Google Scholar]
  36. Solozhenko VL, Andrault D, Fiquet G, Mezouar M, Rubie DC. 36.  2001. Synthesis of superhard cubic BC2N. Appl. Phys. Lett. 78:1385–87 [Google Scholar]
  37. Solozhenko VL, Kurakevych OO, Andrault D, Le Godec Y, Mezouar M. 37.  2009. Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5. Phys. Rev. Lett. 102:015506 [Google Scholar]
  38. Zhao ZS, Cui L, Wang LM, Xu B, Liu ZY. 38.  et al. 2010. Bulk Re2C crystal structure, hardness, and ultra-incompressibility. Cryst. Growth Des. 10:5024–26 [Google Scholar]
  39. Li C, Li JC, Jiang Q. 39.  2010. Revisiting the Phillips ionicity of conductors and the quantitative determination of the hardness of carbides and nitrides of transition metals using the LDA+U technique. Solid State Commun. 150:1818–21 [Google Scholar]
  40. Glass CW, Oganov AR, Hansen N. 40.  2006. USPEX—evolutionary crystal structure prediction. Comput. Phys. Commun. 175:713–20 [Google Scholar]
  41. Woodley SM, Catlow R. 41.  2008. Crystal structure prediction from first principles. Nat. Mater. 7:937–46 [Google Scholar]
  42. Wang YC, J, Zhu L, Ma YM. 42.  2010. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82:094116 [Google Scholar]
  43. Amsler M, Goedecker S. 43.  2010. Crystal structure prediction using the minima hopping method. J. Chem. Phys. 133:224104 [Google Scholar]
  44. Pickard CJ, Needs RJ. 44.  2011. Ab initio random structure searching. J. Phys. Condens. Matter 23:053201 [Google Scholar]
  45. Lonie DC, Zurek E. 45.  2011. XtalOpt: an open-source evolutionary algorithm for crystal structure prediction. Comput. Phys. Commun. 182:372–87 [Google Scholar]
  46. Gilman JJ.46.  1973. Hardness—a strength microprobe. The Science of Hardness Testing and Its Research Applications JH Westbrook, H Conrad 51–74 Metals Park, OH: Am. Soc. Met. [Google Scholar]
  47. Liu AY, Cohen ML. 47.  1989. Prediction of new low compressibility solids. Science 245:841–42 [Google Scholar]
  48. Teter DM.48.  1998. Computational alchemy: the search for new superhard materials. MRS Bull. 23:22–27 [Google Scholar]
  49. Chen XQ, Niu HY, Li DZ, Li YY. 49.  2011. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19:1275–81 [Google Scholar]
  50. Pugh SF.50.  1954. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45:823–43 [Google Scholar]
  51. Halperin WP.51.  1986. Quantum size effects in metal particles. Rev. Mod. Phys. 58:533–606 [Google Scholar]
  52. Tse JS, Klug DD, Gao FM. 52.  2006. Hardness of nanocrystalline diamonds. Phys. Rev. B 73:140102 [Google Scholar]
  53. Khan MAM, Kumar S, Ahamed M. 53.  2015. Structural, electrical and optical properties of nanocrystalline silicon thin films deposited by pulsed laser ablation. Mater. Sci. Semicond. Process. 30:169–73 [Google Scholar]
  54. Chang YK, Hsieh HH, Pong WF, Tsai MH, Chien FZ. 54.  et al. 1999. Quantum confinement effect in diamond nanocrystals studied by X-ray-absorption spectroscopy. Phys. Rev. Lett. 82:5377–80 [Google Scholar]
  55. Gerberich WW, Mook WM, Perrey CR, Carter CB, Baskes MI. 55.  et al. 2003. Superhard silicon nanospheres. J. Mech. Phys. Solids 51:979–92 [Google Scholar]
  56. Guo XJ, Wang LM, Xu B, Liu ZY, Yu DL. 56.  et al. 2009. Unbinding force of chemical bonds and tensile strength in strong crystals. J. Phys. Condens. Matter 21:485405 [Google Scholar]
  57. Mao WL, Mao HK, Eng PJ, Trainor TP, Newville M. 57.  et al. 2003. Bonding changes in compressed superhard graphite. Science 302:425–27 [Google Scholar]
  58. Ribeiro FJ, Tangney P, Louie SG, Cohen ML. 58.  2005. Structural and electronic properties of carbon in hybrid diamond-graphite structures. Phys. Rev. B 72:214109 [Google Scholar]
  59. Li Q, Ma YM, Oganov AR, Wang HB, Wang H. 59.  et al. 2009. Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. 102:175506 [Google Scholar]
  60. Wang YJ, Panzik JE, Kiefer B, Lee KK. 60.  2012. Crystal structure of graphite under room-temperature compression and decompression. Sci. Rep. 2:520 [Google Scholar]
  61. Umemoto K, Wentzcovitch RM, Saito S, Miyake T. 61.  2010. Body-centered tetragonal C4: a viable sp3 carbon allotrope. Phys. Rev. Lett. 104:125504 [Google Scholar]
  62. Zhou XF, Qian GR, Dong X, Zhang LX, Tian YJ, Wang HT. 62.  2010. Ab initio study of the formation of transparent carbon under pressure. Phys. Rev. B 82:134126 [Google Scholar]
  63. Wang JT, Chen CF, Kawazoe Y. 63.  2011. Low-temperature phase transformation from graphite to sp3 orthorhombic carbon. Phys. Rev. Lett. 106:075501 [Google Scholar]
  64. Tian F, Dong X, Zhao ZS, He JL, Wang HT. 64.  2012. Superhard F-carbon predicted by ab initio particle-swarm optimization methodology. J. Phys. Condens. Matter 24:165504 [Google Scholar]
  65. Zhou RL, Zeng XC. 65.  2012. Polymorphic phases of sp3-hybridized carbon under cold compression. J. Am. Chem. Soc. 134:7530–38 [Google Scholar]
  66. Amsler M, Flores-Livas JA, Lehtovaara L, Balima F, Ghasemi SA. 66.  et al. 2012. Crystal structure of cold compressed graphite. Phys. Rev. Lett. 108:065501 [Google Scholar]
  67. Niu HY, Chen XQ, Wang SB, Li DZ, Mao WL, Li YY. 67.  2012. Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes. Phys. Rev. Lett. 108:135501 [Google Scholar]
  68. Li D, Bao K, Tian FB, Zeng ZW, He Z. 68.  et al. 2012. Lowest enthalpy polymorph of cold-compressed graphite phase. Phys. Chem. Chem. Phys. 14:4347–50 [Google Scholar]
  69. He C, Sun L, Zhong J. 69.  2012. Prediction of superhard carbon allotropes from the segment combination method. J. Superhard Mater. 34:386–99 [Google Scholar]
  70. Ruoff RS.70.  1991. Is C60 stiffer than diamond. ? Nature 350:663–64 [Google Scholar]
  71. Ruoff RS, Ruoff AL. 71.  1991. The bulk modulus of C60 molecules and crystals: a molecular mechanics approach. Appl. Phys. Lett. 59:1553–55 [Google Scholar]
  72. Brazhkin V, Lyapin A. 72.  2012. Hard and superhard carbon phases synthesized from fullerites under pressure. J. Superhard Mater. 34:400–23 [Google Scholar]
  73. Blank VD, Buga SG, Dubitsky GA, Serebryanaya NR, Popov MY, Sundqvist B. 73.  1998. High-pressure polymerized phases of C60. Carbon 36:319–43 [Google Scholar]
  74. Yamanaka S, Kini NS, Kubo A, Jida S, Kuramoto H. 74.  2008. Topochemical 3D polymerization of C60 under high pressure at elevated temperatures. J. Am. Chem. Soc. 130:4303–9 [Google Scholar]
  75. Yamanaka S, Kubo A, Inumaru K, Komaguchi K, Kini N. 75.  et al. 2006. Electron conductive three-dimensional polymer of cuboidal C60. Phys. Rev. Lett. 96:076602 [Google Scholar]
  76. Zhao ZS, Zhou XF, Hu M, Yu DL, He JL. 76.  et al. 2012. High-pressure behaviors of carbon nanotubes. J. Superhard Mater. 34:371–85 [Google Scholar]
  77. Dong X, Hu M, He JL, Tian YJ, Wang HT. 77.  2015. A new phase from compression of carbon nanotubes with anisotropic Dirac fermions. Sci. Rep. 5:10713 [Google Scholar]
  78. Hu M, Zhao ZS, Tian F, Oganov AR, Wang QQ. 78.  et al. 2013. Compressed carbon nanotubes: a family of new multifunctional carbon allotropes. Sci. Rep. 3:1331 [Google Scholar]
  79. Zhao ZS, Xu B, Wang LM, Zhou XF, He JL. 79.  et al. 2011. Three dimensional carbon-nanotube polymers. ACS Nano 5:7226–34 [Google Scholar]
  80. Wang ZW, Zhao YS, Tait K, Liao XZ, Schiferl D. 80.  et al. 2004. A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes. PNAS 101:13699–702 [Google Scholar]
  81. Zhao ZS, Xu B, Zhou XF, Wang LM, Wen B. 81.  et al. 2011. Novel superhard carbon: C-centered orthorhombic C8. Phys. Rev. Lett. 107:215502 [Google Scholar]
  82. Teter DM, Hemley RJ. 82.  1996. Low-compressibility carbon nitrides. Science 271:53–55 [Google Scholar]
  83. He JL, Guo LC, Guo XJ, Liu RP, Tian YJ. 83.  et al. 2006. Predicting hardness of dense C3N4 polymorphs. Appl. Phys. Lett. 88:101906 [Google Scholar]
  84. Horvath-Bordon E, Riedel R, Zerr A, McMillan PF, Auffermann G. 84.  et al. 2006. High-pressure chemistry of nitride-based materials. Chem. Soc. Rev. 35:987–1014 [Google Scholar]
  85. Fang L, Ohfuji H, Shinmei T, Irifune T. 85.  2011. Experimental study on the stability of graphitic C3N4 under high pressure and high temperature. Diam. Relat. Mater. 20:819–25 [Google Scholar]
  86. Stavrou E, Lobanov S, Dong H, Oganov AR, Prakapenka VB. 86.  et al. 2014. Synthesis of ultra-incompressible sp3-hybridized carbon nitride. arXiv 1412.3755 [cond-mat.mtrl-sci]
  87. Sjöström H, Stafström S, Boman M, Sundgren J-E. 87.  1995. Superhard and elastic carbon nitride thin films having fullerenelike microstructure. Phys. Rev. Lett. 75:1336–39 [Google Scholar]
  88. Robertson J.88.  2002. Diamond-like amorphous carbon. Mater. Sci. Eng. R 37:129–281 [Google Scholar]
  89. Lin Y, Zhang L, Mao HK, Chow P, Xiao YM. 89.  et al. 2011. Amorphous diamond: a high-pressure superhard carbon allotrope. Phys. Rev. Lett. 107:175504 [Google Scholar]
  90. Kurakevych OO, Solozhenko VL. 90.  2013. Crystal structure of dense pseudo-cubic boron allotrope, pc-B52, by powder X-ray diffraction. J. Superhard Mater. 35:60–63 [Google Scholar]
  91. Ekimov EA, Zibrov IP. 91.  2011. High-pressure high-temperature synthesis and structure of α-tetragonal boron. Sci. Technol. Adv. Mater. 12:055009 [Google Scholar]
  92. Oganov AR, Chen JH, Gatti C, Ma YZ, Ma YM. 92.  et al. 2009. Ionic high-pressure form of elemental boron. Nature 457:863–67 [Google Scholar]
  93. Zarechnaya EY, Dubrovinsky L, Dubrovinskaia N, Filinchuk Y, Chernyshov D. 93.  et al. 2009. Superhard semiconducting optically transparent high pressure phase of boron. Phys. Rev. Lett. 102:185501 [Google Scholar]
  94. Guo XJ, He JL, Liu ZY, Tian YJ, Sun J, Wang HT. 94.  2006. Bond ionicities and hardness of B13C2-like structured ByX crystals (X = C, N, O, P, As). Phys. Rev. B 73:104115 [Google Scholar]
  95. Solozhenko VL, Kurakevych OO. 95.  2009. Chemical interaction in the B–BN system at high pressures and temperatures.: synthesis of novel boron subnitrides. J. Solid State Chem. 182:1359–64 [Google Scholar]
  96. He JL, Wu ED, Wang HT, Liu RP, Tian YJ. 96.  2005. Ionicities of boron-boron bonds in B12 icosahedra. Phys. Rev. Lett. 94:015504 [Google Scholar]
  97. Zinin P, Ming L, Ishii H, Jia R, Acosta T, Hellebrand E. 97.  2012. Phase transition in BCx system under high-pressure and high-temperature: synthesis of cubic dense BC3 nanostructured phase. J. Appl. Phys. 111:114905 [Google Scholar]
  98. Zhao Y, He D, Daemen L, Shen T, Schwarz R. 98.  et al. 2002. Superhard B–C–N materials synthesized in nanostructured bulks. J. Mater. Res. 17:3139–45 [Google Scholar]
  99. Solozhenko VL, Dubrovinskaia NA, Dubrovinsky LS. 99.  2004. Synthesis of bulk superhard semiconducting B-C material. Appl. Phys. Lett. 85:1508–10 [Google Scholar]
  100. Zhang M, Liu HY, Li Q, Gao B, Wang YC. 100.  et al. 2015. Superhard BC3 in cubic diamond structure. Phys. Rev. Lett. 114:015502 [Google Scholar]
  101. Zhou XF, Sun J, Fan YX, Chen J, Wang HT. 101.  et al. 2007. Most likely phase of superhard BC2N by ab initio calculations. Phys. Rev. B 76:100101 [Google Scholar]
  102. Solozhenko VL.102.  2002. Synthesis of novel superhard phases in the BCN system. High Press. Res. 22:519–24 [Google Scholar]
  103. Hemley RJ, Mao HK, Yan C, Liang Q. 103.  2015. Ultratough single crystal boron-doped diamond US Patent No. 9,023,306
  104. Chung HY, Weinberger MB, Levine JB, Kavner A, Yang JM. 104.  et al. 2007. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 316:436–39 [Google Scholar]
  105. Crowhurst JC, Goncharov AF, Sadigh B, Evans CL, Morrall PG. 105.  et al. 2006. Synthesis and characterization of the nitrides of platinum and iridium. Science 311:1275–78 [Google Scholar]
  106. Cumberland RW, Weinberger MB, Gilman JJ, Clark SM, Tolbert SH, Kaner RB. 106.  2005. Osmium diboride, an ultra-incompressible, hard material. J. Am. Chem. Soc. 127:7264–65 [Google Scholar]
  107. Gou HY, Dubrovinskaia N, Bykova E, Tsirlin AA, Kasinathan D. 107.  et al. 2013. Discovery of a superhard iron tetraboride superconductor. Phys. Rev. Lett. 111:157002 [Google Scholar]
  108. Gu QF, Krauss G, Steurer W. 108.  2008. Transition metal borides: superhard versus ultra-incompressible. Adv. Mater. 20:3620–26 [Google Scholar]
  109. Levine JB, Tolbert SH, Kaner RB. 109.  2009. Advancements in the search for superhard ultra-incompressible metal borides. Adv. Funct. Mater. 19:3519–33 [Google Scholar]
  110. Ono S, Kikegawa T, Ohishi Y. 110.  2005. A high-pressure and high-temperature synthesis of platinum carbide. Solid State Commun. 133:55–59 [Google Scholar]
  111. Qin JQ, He DW, Wang JH, Fang LM, Lei L. 111.  et al. 2008. Is rhenium diboride a superhard material. ? Adv. Mater. 20:4780–83 [Google Scholar]
  112. Young AF, Sanloup C, Gregoryanz E, Scandolo S, Hemley RJ, Mao HK. 112.  2006. Synthesis of novel transition metal nitrides IrN2 and OsN2. Phys. Rev. Lett. 96:155501 [Google Scholar]
  113. Wang QQ, He JL, Hu WT, Zhao ZS, Zhang C. 113.  et al. 2015. Is orthorhombic iron tetraboride superhard. ? J. Materiomics 1:45–51 [Google Scholar]
  114. Kotmool K, Kaewmaraya T, Chakraborty S, Anversa J, Bovornratanaraks T. 114.  et al. 2014. Revealing an unusual transparent phase of superhard iron tetraboride under high pressure. PNAS 111:17050–53 [Google Scholar]
  115. Zhao ZS, Wang M, Cui L, He JL, Yu DL, Tian YJ. 115.  2010. Semiconducting superhard ruthenium monocarbide. J. Phys. Chem. C 114:9961–64 [Google Scholar]
  116. Wang QQ, Zhang Q, Hu M, Ma MD, Xu B, He JL. 116.  2014. A semiconductive superhard FeB4 phase from first-principles calculations. Phys. Chem. Chem. Phys. 16:22008–13 [Google Scholar]
  117. Friedrich A, Winkler B, Juarez-Arellano EA, Bayarjargal L. 117.  2011. Synthesis of binary transition metal nitrides, carbides and borides from the elements in the laser-heated diamond anvil cell and their structure-property relations. Materials 4:1648–92 [Google Scholar]
  118. Zhang XX, Wang YC, J, Zhu CY, Li Q. 118.  et al. 2013. First-principles structural design of superhard materials. J. Chem. Phys. 138:114101 [Google Scholar]
  119. Hall EO.119.  1951. The deformation and ageing of mild steel. III. Discussion of results. Proc. Phys. Soc. B 64:747–53 [Google Scholar]
  120. Petch NJ.120.  1953. The cleavage strength of polycrystals. J. Iron Steel Ins. 174:25–28 [Google Scholar]
  121. Schiøtz J, Jacobsen KW. 121.  2003. A maximum in the strength of nanocrystalline copper. Science 301:1357–59 [Google Scholar]
  122. Bringa EM, Caro A, Wang Y, Victoria M, McNaney JM. 122.  et al. 2005. Ultrahigh strength in nanocrystalline materials under shock loading. Science 309:1838–41 [Google Scholar]
  123. Danesh P, Pantchev B, Wiezorek J, Schmidt B, Grambole D. 123.  2011. Effect of hydrogen on hardness of amorphous silicon. Appl. Phys. A 102:131–35 [Google Scholar]
  124. Carsley JE, Ning J, Milligan WW, Hackney SA, Aifantis EC. 124.  1995. A simple, mixtures-based model for the grain size dependence of strength in nanophase metals. Nanostruct. Mater. 5:441–48 [Google Scholar]
  125. Bundy FP, Bassett WA, Weathers MS, Hemley RJ, Mao HU, Goncharov AF. 125.  1996. The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34:141–53 [Google Scholar]
  126. Solozhenko VL, Turkevich VZ, Holzapfel WB. 126.  1999. Refined phase diagram of boron nitride. J. Phys. Chem. B 103:2903–5 [Google Scholar]
  127. Wang CX, Chen J, Yang GW, Xu NS. 127.  2005. Thermodynamic stability and ultrasmall-size effect of nanodiamonds. Angew. Chem. Int. Ed. 44:7414–18 [Google Scholar]
  128. Wang CX, Yang YH, Liu QX, Yang GW. 128.  2004. Nucleation thermodynamics of cubic boron nitride upon high-pressure and high-temperature supercritical fluid system in nanoscale. J. Phys. Chem. B 108:728–31 [Google Scholar]
  129. Liu QX, Wang CX, Yang GW. 129.  2005. Nucleation thermodynamics of cubic boron nitride in pulsed-laser ablation in liquid. Phys. Rev. B 71:155422 [Google Scholar]
  130. Mirkarimi PB, McCarty KF, Medlin DL. 130.  1997. Review of advances in cubic boron nitride film synthesis. Mater. Sci. Eng. R 21:47–100 [Google Scholar]
  131. Sun J, Hu SL, Du XW, Lei YW, Jiang L. 131.  2006. Ultrafine diamond synthesized by long-pulse-width laser. Appl. Phys. Lett. 89:183115 [Google Scholar]
  132. Lee ST, Peng HY, Zhou XT, Wang N, Lee CS. 132.  et al. 2000. A nucleation site and mechanism leading to epitaxial growth of diamond films. Science 287:104–6 [Google Scholar]
  133. Hu SL, Yang JL, Liu W, Dong YG, Cao SR, Liu J. 133.  2011. Prediction of formation of cubic boron nitride by construction of temperature–pressure phase diagram at the nanoscale. J. Solid State Chem. 184:1598–602 [Google Scholar]
  134. Yang CC, Li S. 134.  2008. Size-dependent temperature-pressure phase diagram of carbon. J. Phys. Chem. C 112:1423–26 [Google Scholar]
  135. Dubrovinskaia N, Dubrovinsky L, Crichton W, Langenhorst F, Richter A. 135.  2005. Aggregated diamond nanorods, the densest and least compressible form of carbon. Appl. Phys. Lett. 87:083106 [Google Scholar]
  136. Liu GD, Kou ZL, Yan XZ, Lei L, Peng F. 136.  et al. 2015. Submicron cubic boron nitride as hard as diamond. Appl. Phys. Lett. 106:121901 [Google Scholar]
  137. Tanigaki K, Ogi H, Sumiya H, Kusakabe K, Nakamura N. 137.  et al. 2013. Observation of higher stiffness in nanopolycrystal diamond than monocrystal diamond. Nat. Commun. 4:2343 [Google Scholar]
  138. Sumiya H, Harano K. 138.  2012. Distinctive mechanical properties of nano-polycrystalline diamond synthesized by direct conversion sintering under HPHT. Diam. Relat. Mater. 24:44–48 [Google Scholar]
  139. Sumiya H, Harano K, Irifune T. 139.  2008. Ultrahard diamond indenter prepared from nanopolycrystalline diamond. Rev. Sci. Instrum. 79:056102 [Google Scholar]
  140. Dubrovinsky L, Dubrovinskaia N, Prakapenka VB, Abakumov AM. 140.  2012. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 3:1163 [Google Scholar]
  141. Sumiya H, Irifune T. 141.  2007. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature. J. Mater. Res. 22:2345–51 [Google Scholar]
  142. Lu L, Chen X, Huang X, Lu K. 142.  2009. Revealing the maximum strength in nanotwinned copper. Science 323:607–10 [Google Scholar]
  143. Lu L, Shen YF, Chen XH, Qian LH, Lu K. 143.  2004. Ultrahigh strength and high electrical conductivity in copper. Science 304:422–26 [Google Scholar]
  144. Sumiya H, Uesaka S, Satoh S. 144.  2000. Mechanical properties of high purity polycrystalline cBN synthesized by direct conversion sintering method. J. Mater. Sci. 35:1181–86 [Google Scholar]
  145. Lu K, Lu L, Suresh S. 145.  2009. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324:349–52 [Google Scholar]
  146. Shan ZW, Lu L, Minor AM, Stach EA, Mao SX. 146.  2008. The effect of twin plane spacing on the deformation of copper containing a high density of growth twins. JOM 60:71–74 [Google Scholar]
  147. Qin EW, Lu L, Tao NR, Tan J, Lu K. 147.  2009. Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles. Acta Mater. 57:6215–25 [Google Scholar]
  148. Lu K.148.  2010. Materials science: the future of metals. Science 328:319–20 [Google Scholar]
  149. Brazhkin V, Dubrovinskaia N, Nicol M, Novikov N, Riedel R. 149.  et al. 2004. From our readers: What does ‘harder than diamond’ mean?. Nat. Mater. 3:576–77 [Google Scholar]
  150. Xu B, Tian YJ. 150.  2015. Ultrahardness: measurement and enhancement. J. Phys. Chem. C 119:5633–38 [Google Scholar]
  151. Jensen CP, Jorgensen JF, Garnaes J, Picotto GB, Gori G. 151.  1998. Vickers hardness indentations measured with atomic force microscopy. J. Test. Eval. 26:532–38 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070115-031649
Loading
/content/journals/10.1146/annurev-matsci-070115-031649
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error