1932

Abstract

The thermal boundary conductance (TBC) of materials pairs in atomically intimate contact is reviewed as a practical guide for materials scientists. First, analytical and computational models of TBC are reviewed. Five measurement methods are then compared in terms of their sensitivity to TBC: the 3 method, frequency- and time-domain thermoreflectance, the cut-bar method, and a composite effective thermal conductivity method. The heart of the review surveys 30 years of TBC measurements around room temperature, highlighting the materials science factors experimentally proven to influence TBC. These factors include the bulk dispersion relations, acoustic contrast, and interfacial chemistry and bonding. The measured TBCs are compared across a wide range of materials systems by using the maximum transmission limit, which with an attenuated transmission coefficient proves to be a good guideline for most clean, strongly bonded interfaces. Finally, opportunities for future research are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070115-031719
2016-07-01
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/matsci/46/1/annurev-matsci-070115-031719.html?itemId=/content/journals/10.1146/annurev-matsci-070115-031719&mimeType=html&fmt=ahah

Literature Cited

  1. Wilson RB, Cahill DG. 1.  2012. Experimental validation of the interfacial form of the Wiedemann-Franz law. Phys. Rev. Lett. 108:255901 [Google Scholar]
  2. Lyeo H-K, Cahill DG. 2.  2006. Thermal conductance of interfaces between highly dissimilar materials. Phys. Rev. B 73:14144301 [Google Scholar]
  3. Tas G, Stoner RJ, Maris HJ, Rubloff GW, Oehrlein GS, Halbout JM. 3.  1992. Noninvasive picosecond ultrasonic detection of ultrathin interfacial layers: CFx at the Al/Si interface. Appl. Phys. Lett. 61:61787–89 [Google Scholar]
  4. Rafailov EU, Cataluna MA, Sibbett W. 4.  2007. Mode-locked quantum-dot lasers. Nat. Photonics 1:7395–401 [Google Scholar]
  5. Challener WA, Peng C, Itagi AV, Karns D, Peng W. 5.  et al. 2009. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat. Photonics 3:April220–24 [Google Scholar]
  6. Kemp A, Valentine G, Hopkins J-M, Hastie JE, Smith SA. 6.  et al. 2005. Thermal management in vertical-external-cavity surface-emitting lasers: analysis of a heatspreader approach. IEEE J. Quantum Electron. 41:2148–55 [Google Scholar]
  7. Gačević Z, Rossbach G, Butté R, Réveret F, Glauser M. 7.  et al. 2013. Q-factor of (In,Ga)N containing III-nitride microcavity grown by multiple deposition techniques. J. Appl. Phys. 114:23233102 [Google Scholar]
  8. Jin Y, Shao C, Kieffer J, Pipe KP, Shtein M. 8.  2012. Origins of thermal boundary conductance of interfaces involving organic semiconductors. J. Appl. Phys. 112:093503 [Google Scholar]
  9. Pettes MT, Shi L. 9.  2009. Thermal and structural characterizations of individual single-, double-, and multi-walled carbon nanotubes. Adv. Funct. Mater. 19:3918–25 [Google Scholar]
  10. Schmidt AJ, Collins KC, Minnich AJ, Chen G. 10.  2010. Thermal conductance and phonon transmissivity of metal-graphite interfaces. J. Appl. Phys. 107:104907 [Google Scholar]
  11. Hopkins PE, Baraket M, Barnat EV, Beechem TE, Kearney SP. 11.  et al. 2012. Manipulating thermal conductance at metal-graphene contacts via chemical functionalization. Nano Lett. 12:2590–95 [Google Scholar]
  12. Heath JR.12.  2009. Molecular electronics. Annu. Rev. Mater. Res. 39:1–23 [Google Scholar]
  13. Liu CW, Östling M, Hannon JB. 13.  2014. New materials for post-Si computing. MRS Bull. 39:8658–62 [Google Scholar]
  14. Cho J, Bozorg-Grayeli E, Kodama T, Francis D, Ejeckam F. 14.  et al. 2013. Improved thermal interfaces of GaN-diamond composite substrates for HEMT applications. IEEE Trans. Compon. Packag. Manuf. Technol. 3:179–85 [Google Scholar]
  15. Zweben C.15.  2007. Advances in high-performance thermal management materials—a review. J. Adv. Mater. 39:13–10 [Google Scholar]
  16. Weber L, Tavangar R. 16.  2007. On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X=Cr, B) diamond composites. Scr. Mater. 57:988–91 [Google Scholar]
  17. Abyzov AM, Kidalov SV, Shakhov FM. 17.  2012. High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application. Appl. Therm. Eng. 48:72–80 [Google Scholar]
  18. Kida M, Weber L, Monachon C, Mortensen A. 18.  2011. Thermal conductivity and interfacial conductance of AlN particle reinforced metal matrix composites. J. Appl. Phys. 109:064907 [Google Scholar]
  19. Gengler JJ, Shenogin SVS, Bultman JE, Roy AK, Voevodin AA, Muratore C. 19.  2012. Limited thermal conductance of metal-carbon interfaces. J. Appl. Phys. 112:094904 [Google Scholar]
  20. Tavangar R, Molina J-M, Weber L. 20.  2007. Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast. Scr. Mater. 56:5357–60 [Google Scholar]
  21. Kaur S, Raravikar N, Helms BA, Prasher RS, Ogletree DF. 21.  2014. Enhanced thermal transport at covalently functionalized carbon nanotude array interfaces. Nat. Commun. 5:3082 [Google Scholar]
  22. Reifenberg J, Kencke DL, Goodson KE. 22.  2008. The impact of thermal boundary resistance in phase-change memory devices. IEEE Electron Device Lett. 29:101112–14 [Google Scholar]
  23. Ji H, Sellan DP, Pettes MT, Kong X, Ji J. 23.  et al. 2013. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 7:1185–92 [Google Scholar]
  24. Costescu RM, Cahill DG, Fabreguette FH, Sechrist ZA, George SM. 24.  et al. 2004. Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science 303:5810989 [Google Scholar]
  25. Prasher RS.25.  2005. Thermal boundary resistance of nanocomposites. Int. J. Heat Mass Transf. 48:23–244942–52 [Google Scholar]
  26. Swartz ET, Pohl RO. 26.  1989. Thermal boundary resistance. Rev. Mod. Phys. 61:3605–68 [Google Scholar]
  27. Cahill DG, Wayne FK, Goodson KE, Mahan GD, Majumdar AK. 27.  et al. 2003. Nanoscale thermal transport. Appl. Phys. Rev. 93:2793–818 [Google Scholar]
  28. Cahill DG, Braun PV, Chen G, Clarke DR, Fan S. 28.  et al. 2014. Nanoscale thermal transport. II.. 2003–2012 Appl. Phys. Rev. 1:011305 [Google Scholar]
  29. Hopkins PE.29.  2013. Thermal transport across solid interfaces with nanoscale imperfections: effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance. ISRN Mech. Eng. 2013:682586 [Google Scholar]
  30. Chen G.30.  2005. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Oxford, UK: Oxford Univ. Press [Google Scholar]
  31. Chen Z, Wei Z, Chen Y, Dames C. 31.  2013. Anisotropic Debye model for the thermal boundary conductance. Phys. Rev. B 87:125426 [Google Scholar]
  32. Minnich AJ, Johnson JA, Schmidt AJ, Esfarjani K, Dresselhaus MS. 32.  et al. 2011. Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107:9095901 [Google Scholar]
  33. Costescu RM, Wall MD, Cahill DG. 33.  2003. Thermal conductance of epitaxial interfaces. Phys. Rev. B 67:054302 [Google Scholar]
  34. Monachon C, Weber L. 34.  2013. Influence of diamond surface termination on thermal boundary conductance between Al and diamond. J. Appl. Phys. 113:183504 [Google Scholar]
  35. Hopkins PE, Salaway RN, Stevens RJ, Norris PM. 35.  2007. Temperature-dependent thermal boundary conductance at Al/Al2O3 and Pt/Al2O3 interfaces. Int. J. Thermophys. 28:947–57 [Google Scholar]
  36. Little WA.36.  1959. The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37:334–49 [Google Scholar]
  37. Graff KF.37.  1975. Wave Motion in Elastic Solids New York: Dover [Google Scholar]
  38. Prasher RS, Phelan PE. 38.  2001. A scattering-mediated acoustic mismatch model for the prediction of thermal boundary resistance. J. Heat Transf. 123:105–12 [Google Scholar]
  39. Prasher RS.39.  2009. Accoustic mismatch model for thermal contact resistance of van der Waals contacts. Appl. Phys. Lett. 94:041905 [Google Scholar]
  40. Stoner RJ, Maris HJ. 40.  1993. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Phys. Rev. B 48:2216373–87 [Google Scholar]
  41. Stevens RJ, Smith AN, Norris PM. 41.  2005. Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique. J. Heat Transf. 127:315–22 [Google Scholar]
  42. Hsieh W-P, Lyons AS, Pop E, Keblinski P, Cahill DG. 42.  2011. Pressure tuning of the thermal conductance of weak interfaces. Phys. Rev. B 84:184107 [Google Scholar]
  43. Beechem TE, Graham S, Hopkins PE, Norris PM. 43.  2007. Role of interface disorder on thermal boundary conductance using virtual crystal approach. Appl. Phys. Lett. 90:054104 [Google Scholar]
  44. Hopkins PE, Duda JC, Petz CW, Floro JA. 44.  2011. Controlling thermal conductance through quantum dot roughening at interfaces. Phys. Rev. B 84:035438 [Google Scholar]
  45. Hopkins PE, Duda JC, Norris PM. 45.  2011. Anharmonic phonon interactions at interfaces and contributions to thermal boundary conductance. J. Heat Transf. 133:062401 [Google Scholar]
  46. Snyder NS.46.  1970. Heat transport through helium. II. Kapitza conductance. Cryogenics 1089–95 [Google Scholar]
  47. Monachon C, Schusteritsch G, Kaxiras E, Weber L. 47.  2014. Qualitative link between work of adhesion and thermal conductance of metal/diamond interfaces. J. Appl. Phys. 115:12123–509 [Google Scholar]
  48. Dames C, Chen G. 48.  2004. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J. Appl. Phys. 95:2682 [Google Scholar]
  49. Wilson RB, Apgar BA, Hsieh W-P, Martin LW, Cahill DG. 49.  2015. Thermal conductance of strongly bonded metal-oxide interfaces. Phys. Rev. B 91:115414 [Google Scholar]
  50. Reddy P, Castelino K, Majumdar AK. 50.  2005. Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion. Appl. Phys. Lett. 87:211908 [Google Scholar]
  51. Duda JC, Beechem TE, Smoyer JL, Norris PM, Hopkins PE. 51.  2010. Role of dispersion on phononic thermal boundary conductance. J. Appl. Phys. 108:7073515 [Google Scholar]
  52. Kittel C.52.  2005. Introduction to Solid State Physics New York: John Wiley and Sons., 8th ed.. [Google Scholar]
  53. Gundrum BC, Cahill DG, Averback RS. 53.  2005. Thermal conductance of metal-metal interfaces. Phys. Rev. B 72:245426 [Google Scholar]
  54. Majumdar AK, Reddy P. 54.  2004. Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces. Appl. Phys. Lett. 84:234768–70 [Google Scholar]
  55. Wilson RB, Feser JP, Hohensee GT, Cahill DG. 55.  2013. Two-channel model for nonequilibrium thermal transport in pump-probe experiments. Phys. Rev. B 88:14144305 [Google Scholar]
  56. Mahan GD.56.  2009. Kapitza thermal resistance between a metal and a nonmetal. Phys. Rev. B 79:075408 [Google Scholar]
  57. Chernatynskiy A, Phillpot SR. 57.  2013. Phonon-mediated thermal transport: confronting theory and microscopic simulation with experiment. Curr. Opin. Solid State Mater. Sci. 17:11–9 [Google Scholar]
  58. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R. 58.  et al. 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21:39395502 [Google Scholar]
  59. Kresse G, Furthmüller J. 59.  1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54:1611169–86 [Google Scholar]
  60. Guo H, Qi Y, Li X. 60.  2010. Adhesion at diamond/metal interfaces: a density functional theory study. J. Appl. Phys. 107:033722 [Google Scholar]
  61. Siegel D, Hector L, Adams J. 61.  2002. Adhesion, atomic structure, and bonding at the Al(111)/α-Al203(0001) interface: a first principles study. Phys. Rev. B 65:8085415 [Google Scholar]
  62. Schelling PK, Phillpot SR, Keblinski P. 62.  2002. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 65:144306 [Google Scholar]
  63. Landry ES, McGaughey AJH. 63.  2009. Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations. Phys. Rev. B 80:16165304 [Google Scholar]
  64. Chantrenne P, Barrat J-L. 64.  2004. Finite size effect in determination of thermal conductivities: comparing molecular dynamics results with simple models. J. Heat Transf. 126:4577–85 [Google Scholar]
  65. Rajabpour A, Volz S. 65.  2010. Thermal boundary resistance from mode energy relaxation times: case study of argon-like crystals by molecular dynamics. J. Appl. Phys. 108:9094324 [Google Scholar]
  66. Young DA, Maris HJ. 66.  1989. Lattice-dynamical calculation of the Kapitza resistance between fcc lattices. Phys. Rev. B 40:63685–93 [Google Scholar]
  67. Schelling PK, Phillpot SR, Keblinski P. 67.  2004. Kapitza conductance and phonon scattering at grain boundaries by simulation. J. Appl. Phys. 95:6082–91 [Google Scholar]
  68. Zhou XW, Jones RE, Kimmer CJ, Duda JC, Hopkins PE. 68.  2013. Relationship of thermal boundary conductance to structure from an analytical model plus molecular dynamics simulations. Phys. Rev. B 87:094303 [Google Scholar]
  69. Sadav S, Che Y, Huang Z, Chen L, Kumar S, Fisher TS. 69.  2014. The atomistic Green's function method for interfacial phonon transport. Annu. Rev. Heat Transf.89–145 [Google Scholar]
  70. Saltonstall CB, Polanco CA, Duda JC, Ghosh AW, Norris PM, Hopkins PE. 70.  2013. Effect of interface adhesion and impurity mass on phonon transport at atomic junctions. J. Appl. Phys. 113:013516 [Google Scholar]
  71. Zhang L, Keblinski P, Wang J-S, Li B. 71.  2011. Interfacial thermal transport in atomic junctions. Phys. Rev. B 83:6064303 [Google Scholar]
  72. Mingo N.72.  2006. Anharmonic phonon flow through molecular-sized junctions. Phys. Rev. B 74:12125402 [Google Scholar]
  73. Tian Z, Esfarjani K, Chen G. 73.  2012. Enhancing phonon transmission across a Si/Ge interface by atomic roughness: first-principle study with the Green's function method. Phys. Rev. B 86:235304 [Google Scholar]
  74. Schmidt C, Umlauf E. 74.  1976. Thermal boundary resistance at interfaces between sapphire and indium. J. Low Temp. Phys. 22:5597–611 [Google Scholar]
  75. Dames C.75.  2013. Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods. Annu. Rev. Heat Transf. 16:7–49 [Google Scholar]
  76. Cahill DG.76.  1990. Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61:12802–8 [Google Scholar]
  77. Cahill DG, Bullen A, Lee S-M. 77.  2000. Interface thermal conductance and the thermal conductivity of multilayer thin films. High Temp. High Press 32135–42 [Google Scholar]
  78. Lee SS-M, Cahill DG. 78.  1997. Influence of interface thermal conductance on the apparent thermal conductivity of thin films. Microscale Thermophys. Eng. 1:137–41 [Google Scholar]
  79. Cahill DG.79.  1997. Heat transport in dielectric thin films and at solid–solid interfaces. Microscale Thermophys. Eng. 1:285–109 [Google Scholar]
  80. Borca-Tasciuc T, Liu W, Liu J, Zeng T, Song DW. 80.  et al. 2000. Thermal conductivity of symmetrically strained Si/Ge superlattices. Superlattices Microstruct. 28:3199–206 [Google Scholar]
  81. Chen Z, Jang W, Bao W, Lau CN, Dames C. 81.  2009. Thermal contact resistance between graphene and silicon dioxide. Appl. Phys. Lett. 95:16161910 [Google Scholar]
  82. Schmidt AJ.82.  2013. Pump-probe thermoreflectance. Annu. Rev. Heat Transf. 16:159–81 [Google Scholar]
  83. Collins KC, Maznev AA, Cuffe J, Nelson KA, Chen G. 83.  2014. Examining thermal transport through a frequency-domain representation of time-domain thermoreflectance data. Rev. Sci. Instrum. 85:12124903 [Google Scholar]
  84. Malen JA, Baheti K, Tong T, Zhao Y, Hudgings JA, Majumdar AK. 84.  2011. Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance. J. Heat Transf. 133:081601 [Google Scholar]
  85. Regner KT, Majumdar S, Malen JA. 85.  2013. Instrumentation of broadband frequency domain thermoreflectance for measuring thermal conductivity accumulation functions. Rev. Sci. Instrum. 84:6064901 [Google Scholar]
  86. Yang J, Maragliano C, Schmidt AJ. 86.  2013. Thermal property microscopy with frequency domain thermoreflectance. Rev. Sci. Instrum. 84:1–9 [Google Scholar]
  87. Cahill DG.87.  2004. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75:125119–22 [Google Scholar]
  88. Schmidt AJ, Chen X, Chen G. 88.  2008. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 79:114902 [Google Scholar]
  89. Siemens ME, Li Q, Yang R, Nelson KKA, Anderson EH. 89.  et al. 2010. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. Lett. 9:Suppl.26–30 [Google Scholar]
  90. Highland M, Gundrum BC, Koh YK, Averback RS, Cahill DG. 90.  et al. 2007. Ballistic-phonon heat conduction at the nanoscale as revealed by time-resolved X-ray diffraction and time-domain thermoreflectance. Phys. Rev. B 76:075337 [Google Scholar]
  91. Hanisch-Blicharski A, Krenzer B, Kalus A, Frigge T, Horn-von Hoegen M. 91.  et al. 2012. Heat transport through interfaces with and without dislocation arrays. J. Mater. Res. 27:211–6 [Google Scholar]
  92. Maxwell JC.92.  1891. A Treatise on Electricity and Magnetism 1 Oxford, UK: Clarendon [Google Scholar]
  93. Einstein A.93.  1906. Eine neue Bestimmung der Moleküldimensionen. Ann. Phys. 19:289–306 [Google Scholar]
  94. Hashin Z.94.  1968. Assessment of self consistent scheme approximation—conductivity of particulate composites. J. Compos. Mater. 2:3284–300 [Google Scholar]
  95. Hale DK.95.  1976. The physical properties of composite materials. J. Mater. Sci. 11:2105–41 [Google Scholar]
  96. Hashin Z.96.  1983. Analysis of composite-materials—a survey. J. Appl. Mech. ASME 50:3481–505 [Google Scholar]
  97. Torquato S.97.  2002. Random Heterogeneous Media 16 New York: Springer701 [Google Scholar]
  98. Milton GW.98.  2002. The Theory of Composites Cambridge, UK: Cambridge Univ. Press.719 [Google Scholar]
  99. Miloh T, Benveniste Y. 99.  1988. A generalized self-consistent method for the effective conductivity of composites with ellispoidal inclusions and cracked bodies. J. Appl. Phys. 63:3789–96 [Google Scholar]
  100. Benveniste Y.100.  1987. Effective thermal conductivity of composites with a thermal contact resistance between the constituents: nondilute case. J. Appl. Phys. 61:82840–43 [Google Scholar]
  101. Hasselman PH, Johnson LF. 101.  1987. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21:508–15 [Google Scholar]
  102. Yang H, Bai G, Thompson L, Eastman J. 102.  2002. Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia. Acta Mater. 50:92309–17 [Google Scholar]
  103. Regner KT, Freedman JP, Malen JA. 103.  2015. Advances in studying phonon mean-free-path-dependent contributions to thermal conductivity. Nanoscale Microscale Thermophys. Eng. 19:3183–205 [Google Scholar]
  104. Nan CW, Li XP, Birringer R. 104.  2000. Inverse problem for composites with imperfect interface: determination of interfacial thermal resistance, thermal conductivity of constituents, and microstructural parameters. J. Am. Ceram. Soc. 83:4848–54 [Google Scholar]
  105. Hasselman DPH, Donaldson KY, Thomas JR. 105.  1993. Effective thermal-conductivity of uniaxial composite with cylindrically orthotropic carbon-fibers and interfacial thermal barrier. J. Compos. Mater. 27:6637–44 [Google Scholar]
  106. Geiger AL, Hasselman PH, Donaldson KY. 106.  1993. Effect of reinforcement particle size on the thermal conductivity of a particulate silicon carbide–reinforced aluminum-matrix composite. J. Mater. Sci. Lett. 12:420–23 [Google Scholar]
  107. Davis L, Artz B. 107.  1995. Thermal conductivity of metal-matrix composites. J. Appl. Phys. 77:104954–60 [Google Scholar]
  108. Edtmaier C, Bauer E, Weber L, Tako ZS, Segl J, Friedbacher G. 108.  2015. Temperature dependence of the thermal boundary conductance in Ag–3Si/diamond composites. Diam. Relat. Mater. 57:37–42 [Google Scholar]
  109. Edtmaier C, Bauer E, Tako ZS, Segl J. 109.  2015. Thermal conductivity behaviour of Al/diamond and Ag/diamond composites in the temperature range 4 K < t < 293 K. Mater. Sci. Forum 825–826:197–204 [Google Scholar]
  110. Molina JM, Prieto R, Narciso J, Louis E. 110.  2009. The effect of porosity on the thermal conductivity of Al–12 wt.% Si/SiC composites. Scr. Mater. 60:582–85 [Google Scholar]
  111. Weber L, Sinicco G, Molina JM. 111.  2010. Influence of processing route on electrical and thermal conductivity of Al/SiC composites with bimodal particle distribution. J. Mater. Sci. 45:82203–9 [Google Scholar]
  112. Every AG, Tzou Y, Hasselman PH, Raj R. 112.  1992. The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metall. Mater. 40:1123–29 [Google Scholar]
  113. Wang J, Yi XS. 113.  2004. Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AlN/PI composites. Compos. Sci. Technol. 64:1623–28 [Google Scholar]
  114. Benveniste Y, Miloh T. 114.  1999. Neutral inhomogeneities in conduction phenomena. J. Mech. Phys. Solids 47:91873–92 [Google Scholar]
  115. Geiger AL, Hasselmann DPH, Welch P. 115.  1997. Electrical and thermal conductivity of discontinuously reinforced aluminum composites at sub-ambient temperature. Acta Mater. 45:93911–14 [Google Scholar]
  116. Hasselmann DPH, Johnson LF. 116.  1987. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21:508–15 [Google Scholar]
  117. Weber L, Dorn J, Mortensen A. 117.  2003. On the electrical conductivity of metal matrix composites containing high volume fractions of non-conducting inclusions. Acta Mater. 51:3199–212 [Google Scholar]
  118. Boehm HJ, Nogales S. 118.  2008. Mori-Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions. Compos. Sci. Technol. 68:51181–87 [Google Scholar]
  119. Yamamoto Y, Imai T, Tanabe K, Tsuno T, Kumazawa Y, Fujimori N. 119.  1997. The measurement of thermal properties of diamond. Diam. Relat. Mater. 6:1057–61 [Google Scholar]
  120. Novikov NV, Podoba AP, Perevertailo VM, Shmegera S V, Witek A. 120.  2000. Effect of isotope content on the cubic boron nitride lattice thermal conductivity. Diam. Relat. Mater. 9:629–31 [Google Scholar]
  121. Abyzov AM, Kidalov SV, Shakhov FM. 121.  2012. Filler-matrix thermal boundary resistance of diamond-copper composite with high thermal conductivity. Phys. Solid State 54:1210–15 [Google Scholar]
  122. Kang Q, He X, Ren S, Zhang L, Wu M. 122.  et al. 2013. Preparation of copper-diamond composites with chromium carbide coatings on diamond particles for heat sink applications. Appl. Therm. Eng. 60:423–29 [Google Scholar]
  123. Monje IE, Louis E, Molina J-M. 123.  2013. Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control. Composites A 48:9–14 [Google Scholar]
  124. Hasselmann DPH, Donaldson KY, Liu J, Gauckler LJ, Ownby PD. 124.  1994. Thermal conductivity of a particulate-diamond-reinforced cordierite matrix composite. J. Am. Ceram. Soc. 77:71757–60 [Google Scholar]
  125. Hasselmann DPH, Donaldson KY, Geiger AL. 125.  1992. Effect of reinforcement particle-size on the thermal conductivity of a particulate silicon carbide–reinforced aluminum matrix composite. J. Am. Ceram. Soc. 75:3137–40 [Google Scholar]
  126. Monachon C, Hojeij M, Weber L. 126.  2011. Influence of sample processing parameters on thermal boundary conductance value in an Al/AlN system. Appl. Phys. Lett. 98:9091905 [Google Scholar]
  127. Monachon C, Weber L. 127.  2013. Effect of diamond surface orientation on the thermal boundary conductance between diamond and aluminum. Diam. Relat. Mater. 39:8–13 [Google Scholar]
  128. Collins KC, Chen S, Chen G. 128.  2010. Effects of surface chemistry on thermal conductance at aluminum-diamond interfaces. Appl. Phys. Lett. 97:083102 [Google Scholar]
  129. Moffat RJ.129.  1988. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1:13–17 [Google Scholar]
  130. Hohensee GT, Wilson RB, Cahill DG. 130.  2015. Thermal conductance of metal-diamond interfaces at high pressure. Nat. Commun. 6:6578 [Google Scholar]
  131. Monachon C.131.  2013. Thermal boundary conductance between metals and dielectrics. PhD Thesis, EPFL [Google Scholar]
  132. Monachon C, Weber L. 132.  2012. Thermal boundary conductance of transition metals on diamond. Emerg. Mater. Res. 1:289–98 [Google Scholar]
  133. Monachon C, Weber L. 133.  2014. Thermal boundary conductance between refractory metal carbides and diamond. Acta Mater. 73:337–46 [Google Scholar]
  134. Gengler JJ, Sukesh R, Jones JG, Gord JR. 134.  2012. Two-color thermoreflectance of various metal transducers with an optical parametric oscillator. Meas. Sci. Technol. 23:055205 [Google Scholar]
  135. Norris PM, Smoyer JL, Duda JC, Hopkins PE. 135.  2012. Prediction and measurement of thermal transport across interfaces betwen isotropic solids and graphitic materials. J. Heat Transf. 134:02910 [Google Scholar]
  136. Oh D-W, Kim S, Rogers JA, Cahill DG, Sinha S. 136.  2011. Interfacial thermal conductance of transfer-printed metal films. Adv. Mater. 23:5028–33 [Google Scholar]
  137. Koh YK, Cao Y, Cahill DG, Jena D. 137.  2009. Heat-transport mechanisms in superlattices. Adv. Funct. Mater. 19:4610–15 [Google Scholar]
  138. Clemens BM, Eesley GL, Paddock CA. 138.  1988. Time-resolved thermal transport in compositionally modulated metal films. Phys. Rev. B 37:31085–96 [Google Scholar]
  139. Schubert T, Ciupiński Ł, Zieliński W, Michalski A, Weißgärber T. 139.  et al. 2008. Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications. Scr. Mater. 58:4263–66 [Google Scholar]
  140. Losego MD, Grady ME, Sottos NR, Cahill DG, Braun PV. 140.  2012. Effects of chemical bonding on heat transport across interfaces. Nat. Mater. Lett. 11:502–5 [Google Scholar]
  141. Monachon C, Weber L. 141.  2014. Influence of a nanometric Al203 interlayer on the thermal conductance of an Al/(Si, diamond) interface. Adv. Eng. Mater. 15:99991–8 [Google Scholar]
  142. Zhou XW, Jones RE, Duda JC, Hopkins PE. 142.  2013. Molecular dynamics studies of material property effects on thermal boundary conductance. Phys. Chem. Chem. Phys. 15:2611078–87 [Google Scholar]
  143. Hopkins PE, Phinney LM, Serrano JR, Beechem TE. 143.  2010. Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces. Phys. Rev. B 82:085307 [Google Scholar]
  144. Ohring M.144.  2002. Materials Science of Thin Films San Diego, CA: Academic [Google Scholar]
  145. Scott PM, Nicholas M, Dewar B. 145.  1975. The wetting and bonding of diamonds by copper-base binary alloys. J. Mater. Sci. 10:1833–40 [Google Scholar]
  146. Duda JC, Yang C-YP, Foley BM, Cheaito R, Medlin DL. 146.  et al. 2013. Influence of interfacial properties on thermal transport at gold:silicon contacts. Appl. Phys. Lett. 102:081902 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070115-031719
Loading
/content/journals/10.1146/annurev-matsci-070115-031719
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error