Ceramic stereolithography and related additive manufacturing methods involving photopolymerization of ceramic powder suspensions are reviewed in terms of the capabilities of current devices. The practical fundamentals of the cure depth, cure width, and cure profile are related to the optical properties of the monomer, ceramic, and photo-active components. Postpolymerization steps, including harvesting and cleaning the objects, binder burnout, and sintering, are discussed and compared with conventional methods. The prospects for practical manufacturing are discussed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Jacobs PF.1.  1992. Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography Dearborn, MI: Soc. Manuf. Eng.
  2. Lee HD, Pober RL, Calvert PD, Bowen HK. 2.  1986. Photopolymerizable binders for ceramics. J. Mater. Sci. Lett. 5:81–83 [Google Scholar]
  3. Lovell LG, Lu H, Elliot JE, Stansbury JW, Bowman CN. 3.  2001. Effect of curing rate on the mechanical properties of dental resins. Dent. Res. 17:504–11 [Google Scholar]
  4. Taylor BE, Bidwell L, Lawrence A. 4.  2001. New photoimageable LTCC technology for making a wide range of ceramic architectures and circuits. SPIE Proc. 4428:89–92 [Google Scholar]
  5. Griffith ML, Halloran JW. 5.  1996. Freeform fabrication of ceramics by stereolithography. J. Am. Ceram. Soc. 79:2601–8 [Google Scholar]
  6. Zimbeck WR, Jang JH, Schultze W, Rice RW. 6.  2000. Automated fabrication of ceramic electronic packages by stereo-photolithography. Solid Freeform and Additive Fabrication, 2000 625 SC Danforth, DB Dimos, F Prinz 173–78 Warrendale, PA: Mater. Res. Soc. [Google Scholar]
  7. Hinczewski C, Corbel S, Chartier T. 7.  1998. Stereolithography for the fabrication of three dimensional ceramic parts. Rapid Prototyp. J. 4:104–11 [Google Scholar]
  8. Corcione CE, Greco A, Montagna F, Lucciulli A, Maffezzoli A. 8.  2005. Silica moulds built by stereolithography. J. Mater. Sci. 40:4899–904 [Google Scholar]
  9. Ventura SC, Narang SC, Sharma S, Stotts J, Liu CL. 9.  et al. 1996. A new SFF process for functional ceramic components. Solid Freeform Fabrication Symposium Proceedings DL Bourell, JJ Beaman, H Marcus, J Barlow 327–34 Austin: Univ. Tex.
  10. Yuan D, Kambly K, Shao P, Rudrarju A, Cilio P. 10.  et al. 2009. Experimental investigations on photocurable ceramic materials systems for large area maskless photopolymerization (LAMP). Solid Freeform Fabrication Symposium Proceedings D Bourell, RH Crawford, CC Seepersad, JJ Beaman, H Marcus Austin: Univ. Tex.
  11. Schwentenwein M, Homa J. 11.  2015. Additive manufacturing of dense alumina ceramics. Int. J. Appl. Ceram. Technol. 12:1–7 [Google Scholar]
  12. Song X, Chen Y, Lee TW, Wu SH, Chen LX. 12.  2015. Ceramic fabrication using mask-image-projection-based stereolithography integrated with tape-casting. J. Manuf. Process. 20:456–64 [Google Scholar]
  13. Bian WG, Li DC, Lian Q, Zhang WJ, Zhu LH. 13.  et al. 2011. Design and fabrication of novel porous implant with pre-set channels based on ceramic stereolithography for vascular implantation. Biofabrication 3:034103 [Google Scholar]
  14. Gmeiner R, Deisinger U, Schonherr J, Lechner B, Detsch R. 14.  et al. 2015. Additive manufacturing of bioactive glasses and silicate bioceramics. J. Ceram. Sci. Technol. 6:75–86 [Google Scholar]
  15. Doreau F, Chaput C, Chartier T. 15.  2000. Stereolithography for manufacturing ceramic parts. Adv. Eng. Mater. 2:493–94 [Google Scholar]
  16. Feltzmann R, Gruber S, Mitteramskogler G, Tesavibul P, Boccaccini AR. 16.  et al. 2012. Lithography-based additive manufacturing of cellular ceramic structures. Adv. Eng. Mater. 14:1052–58 [Google Scholar]
  17. Brady GA, Chu TM, Halloran JW. 17.  1996. Curing behavior of ceramic resin for stereolithography. Solid Free Form Fabrication Proceedings JJ Beaman, JW Barlow, DL Bourell, RH Crawford 403–10 Austin: Univ. Tex [Google Scholar]
  18. Halloran JW, Tomeckova V, Gentry S, Das S, Cilio P. 18.  et al. 2011. Photopolymerization of powder suspensions for shaping ceramics. J. Eur. Ceram. Soc. 31:2613–19 [Google Scholar]
  19. Bae C-J, Halloran JW. 19.  2010. Integrally cored ceramic mold fabricated by ceramic stereolithography. Int. J. Appl. Ceram. Technol. 8:1255–62 [Google Scholar]
  20. Sun C, Zhang X. 20.  2001. Experimental and numerical investigations on microstereolithography of ceramics. J. Appl. Phys. 92:84796–97 [Google Scholar]
  21. Sun C, Zhang X. 21.  2002. The influences of the materials properties on ceramic micro-stereolithography. Sens. Actuators A 101:354–70 [Google Scholar]
  22. Bertsch A, Jiguet S, Renauld P. 22.  2004. Microfabrication of ceramic components by microstereolithography. J. Micromech. Microeng. 14:197–203 [Google Scholar]
  23. Provin C, Monneret S, Gall HL, Corbel S. 23.  2003. Three-dimensional ceramic microcomponents made using microstereolithography. Adv. Mater. 15:994–97 [Google Scholar]
  24. Adake CV, Gandi P, Bhargava P. 24.  2015. Fabrication of ceramic component using constrained surface microstereolithography. Proc. Mater. Sci. 5:355–61 [Google Scholar]
  25. Kiriahar S, Niki T. 25.  2015. Three-dimensional stereolithography of alumina photonic crystals for terahertz wave localization. Int. J. Appl. Ceram. Technol. 12:32–37 [Google Scholar]
  26. Travitzky M, Bonet A, Dermeik B, Fey T, Filbert-Demut I. 26.  et al. 2014. Additive manufacturing of ceramic-based materials. Adv. Eng. Mater. 16:729–54 [Google Scholar]
  27. Deckers J, Vleugels J, Kruth J-P. 27.  2014. Additive manufacturing of ceramics: a review. J. Ceram. Sci. Technol. 5:245–60 [Google Scholar]
  28. Zocca A, Columbo P, Gomes CM, Günster J. 28.  2015. Additive manufacturing of ceramics: issues, potentialities, and opportunities. J. Am. Ceram. Soc. 98:1983–2001 [Google Scholar]
  29. Bose S, Vahabzedeh S, Ke DX, Bandyopadhyay A. 29.  2015. Additive manufacturing of ceramics. Additive Manufacturing A Bandyopadhyay, S Bose 143–84 Boca Raton, FL: CRC [Google Scholar]
  30. Brakora KF, Sarabandi K. 30.  2009. Integration of single-mode photonic crystal clad waveguides with monolithically constructed ceramic subsystems. IEEE Antennas Propag. Lett. 8:433–36 [Google Scholar]
  31. de Hazen Y, Heinecke J, Weber A, Graule T. 31.  2009. High solids loading ceramic colloidal dispersion in UV curable media via comb-polyelectrolyte surfactants. J. Colloid Interface Sci. 337:66–74 [Google Scholar]
  32. Tallon C, Franks GV. 32.  2011. Recent trends in shape forming from colloidal processing: a review. J. Ceram. Soc. Jpn. 119:147–60 [Google Scholar]
  33. Chu T-MG, Halloran JW. 33.  2000. High-temperature flow behavior of ceramic suspensions. J. Am. Ceram. Soc. 83:2189–95 [Google Scholar]
  34. Lombardo SJ.34.  2015. Minimum time heating cycles for diffusion-controlled binder removal from ceramic green bodies. J. Am. Ceram. Soc. 98:57–65 [Google Scholar]
  35. Song JH, Evans JRG, Edirisinghe MJ. 35.  2000. Modeling the effect of gas transport on the formation of defects during thermolysis of powder moldings. J. Mater. Res. 15:449–57 [Google Scholar]
  36. Wu T, Das S. 36.  2012. Theoretical modeling and experimental characterization of stress development in parts manufactured through large area maskless photopolymerization. Solid Freeform Fabrication Symposium Proceedings D Bourell, RH Crawford, CC Seepersad, JJ Beaman, H Marcus 748–60 Austin: Univ. Tex
  37. Tomeckova V, Halloran JW. 37.  2011. Flow behavior of polymerizable ceramic suspensions as a function of ceramic volume fraction and temperature. J. Eur. Ceram. Soc. 31:2535–42 [Google Scholar]
  38. Brady GA, Halloran JW. 38.  1998. Solid freeform fabrication of ceramics by stereolithography. Nav. Res. Rev. 50:39–43 [Google Scholar]
  39. Lee JH, Prud'homme RK, Aksay IA. 39.  2001. Cure depth in photopolymerization: experiments and theory. J. Mater. Res. 16:2536–3544 [Google Scholar]
  40. Tomeckova V, Halloran JW. 40.  2010. Predictive models for photopolymerization of ceramic suspensions. J. Eur. Ceram. Soc. 30:2833–40 [Google Scholar]
  41. Garg R, Prud'homme RK, Aksay IA. 41.  1998. Optical transmission in highly concentrated dispersions. J. Opt. Soc. Am. A 15:932–35 [Google Scholar]
  42. Wu KC, Seefeldt KF, Solomon MJ, Halloran JW. 42.  2005. Prediction of ceramic stereolithography resin sensitivity from theory and measurement of diffusive photon transport. J. Appl. Phys. 98:024902 [Google Scholar]
  43. Singh P, Smith LS, Bezdecny M, Cheverton M, Brewer JA, Venkataramani V. 43.  2011. Additive manufacturing of PZT-5H piezoceramic for ultrasound transducers. IEEE Int. Ultrasonics Symp. Proc.1111–14 doi:10.1109/ULTRSYM.2011.0273
  44. Woodward DI, Purssell CP, Bilson DR, Hutchins DA, Leigh SJ. 44.  2015. Additively-manufactured piezoelectric devices. Phys. Status Solid. A 212:2107–13 [Google Scholar]
  45. Chartier T, Badev A, Abouliatim Y, Lebaudy P, Lecamp L. 45.  2012. Stereolithography process: influence of the rheology of silica suspensions and of the medium on polymerization kinetics—cured depth and width. J. Eur. Ceram. Soc. 32:1625–34 [Google Scholar]
  46. Gentry SP.46.  2012. Improving the resolution of manufacturing methods using photopolymerizable ceramic suspensions PhD Diss., Univ. Mich.
  47. Hinczewski C, Corbel S, Chartier T. 47.  1998. Stereolithography for the fabrication of three dimensional ceramic parts. Rapid Prototyp. J. 4:104–11 [Google Scholar]
  48. Rudraraju A.48.  2013. Digital data processing and computational design for large area maskless photopolymerization PhD. Diss., Georgia Inst. Technol.
  49. Gentry SP, Halloran JW. 49.  2013. Depth and width of cured lines in photopolymizable ceramic suspensions. J. Eur. Ceram. Soc. 33:1981–88 [Google Scholar]
  50. Tomeckova V, Teyssandier F, Norton SJ, Love BJ, Halloran JW. 50.  2012. Photopolymerization of acrylate suspensions. J. Photochem. Photobiol. A 247:74–81 [Google Scholar]
  51. Wu KC, Halloran JW. 51.  2005. Photopolymerization monitoring of ceramic stereolithography resins by FTIR methods. J. Mater. Sci. 40:71–76 [Google Scholar]
  52. Chu T-MG, Halloran JW. 52.  2000. Curing of highly loaded ceramic suspension in acrylates. J. Am. Ceram. Soc. 83:2375–80 [Google Scholar]
  53. Bae C-J, Halloran JW. 53.  2011. Influence of residual monomer on cracking of ceramics fabricated by stereolithography. Int. J. Appl. Ceram. Technol. 8:1289–95 [Google Scholar]
  54. Pfaffinger M, Mitteramskogler G, Gmeiner R, Stampf J. 54.  2015. Thermal debinding of ceramic-filled photopolymer. Mater. Sci. Forum825–82675–81
  55. Renap K, Kruth JP. 55.  1995. Recoating issues in stereolithography. Rapid Prototyp. J. 1:4–16 [Google Scholar]
  56. Mitteramskogler G, Gmeiner R, Feltzmnn R, Gruber S, Hofsteller C. 56.  et al. 2014. Light curing strategies for lithography-based additive manufacturing of customized ceramics. Addit. Manuf. 1–4:110–18 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error