Infrared thermography uses the temperature-imaging capability of modern thermal cameras to characterize materials and detect flaws. An energy source—whether a pulse of light from a laser or flash lamp, an induction coil, or some other source—induces heat flow in a material, and the resulting temperature patterns are imaged with the thermal camera. In flash thermography, the most widely used form of quantitative thermography, a pulse of light is used as the energy source, and then the surface cooldown is imaged with the thermal camera. Calculations based on an elementary theory of 1D heat conduction can determine thickness (or, equivalently, thermal diffusivity), and nonuniformity in the cooldown will identify defects. This article reviews the methods, approaches, and models of thermography. It focuses on illustrating and identifying the materials, thicknesses, and flaw conditions under which thermography is an effective material characterization technique.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Bagavathiappan S, Lahiri BB, Saravanan T, Philip J, Jayakumar T. 1.  2013. Infrared thermography for condition monitoring. A review. Infrared Phys. Technol. 60:35–55 [Google Scholar]
  2. Balaras CA, Argiriou AA. 2.  2002. Infrared thermography for building diagnostics. Energy Build. 34:2171–83 [Google Scholar]
  3. Viale M, Martin O, Muratori F, Bertezzolo U, Perez J. 3.  et al. 2007. Application of on-line infrared thermography in steel making industry. Proc. SPIE 6541:65410H [Google Scholar]
  4. Konstantopoulos S, Tonejc M, Maier A, Schledjewski R. 4.  2015. Exploiting temperature measurements for cure monitoring of FRP composites. Applications with thermocouples and infrared thermography. J. Reinf. Plast. Compos. 34:121015–26 [Google Scholar]
  5. Shepard SM.5.  2001. Advances in pulsed thermography. Proc. SPIE 4360:Thermosense XXIII511–15 http://dx.doi.org/10.1117/12.421032 [Google Scholar]
  6. Netzelmann U, Walle G. 6.  2008. Induction thermography as a tool for reliable detection of surface defects in forged components. Presented at World Conf. Nondestruct. Test., 17th, Oct. 25–28, Shanghai, China
  7. Reifsnider KL, Hennecke EG, Stinchcomb WW. 7.  1980. The mechanics of vibrothermography. Mechanics of Nondestructive Testing WW Stinchcomb 249–76 New York: Plenum [Google Scholar]
  8. Li T, Almond DP, Rees DAS. 8.  2011. Crack imaging by scanning pulsed laser spot thermography. NDT&E Int. 44:2216–25 [Google Scholar]
  9. Cole KD, Beck JV, Haji-Sheikh A, Litkouhi B. 9.  1992. Heat Conduction Using Green's Functions London: Taylor & Francis [Google Scholar]
  10. Ringermacher HI, Howard DR. 10.  2001. Synthetic thermal time-of-flight (STTOF) depth imaging. AIP Conf. Proc. 557:487–91 http://dx.doi.org/10.1063/1.1373798 [Google Scholar]
  11. Shepard SM, Hou Y, Ahmed T, Lhota JR. 11.  2006. Reference free analysis of flash thermography data. Proc. SPIE 6205:Thermosense XXVIII620513 [Google Scholar]
  12. Shepard SM, Lhota JR, Rubadeux BA, Wang D, Ahmed T. 12.  2003. Reconstruction and enhancement of active thermographic image sequences. Opt. Eng. 42:51337–42 [Google Scholar]
  13. Meola C, Toscano C. 13.  2014. Flash thermography to evaluate porosity in carbon fiber reinforced polymer (CFRPs). Materials 7:31483–501 [Google Scholar]
  14. Ringermacher HI, Cassenti BN. 14.  2013. Dethermalization theory: thermal/dielectric analogy for heat flow through porosity in composites. J. Nondestruct. Eval. 32:4418–22 [Google Scholar]
  15. Ringermacher HI, Howard DR, Filkins RJ. 15.  2004. Flash-quenching for high resolution thermal depth imaging. AIP Conf. Proc. 700:477–81 [Google Scholar]
  16. Maldague XPV.16.  2001. Theory and Practice of Infrared Technology for Nondestructive Testing New York: Wiley [Google Scholar]
  17. Maillet D, Houlbert AS, Didierjean S, Lamine AS, Degiovanni A. 17.  1993. Nondestructive thermal evaluation of delaminations in a laminate. I. Identification by measurement of thermal contrast. Compos. Sci. Technol. 47:137–53 [Google Scholar]
  18. Maillet D, Andre S. 18.  2000. Thermal Quadrupoles: Solving the Heat Equation Through Integral Transforms New York: Wiley [Google Scholar]
  19. Vavilov VP.19.  2014. Modeling thermal NDT problems. Int. J. Heat Mass Transf. 72:75–86 [Google Scholar]
  20. Krapez JC.20.  2000. Thermal effusivity profile characterization from pulse photothermal data. J. Appl. Phys. 87:4514–24 [Google Scholar]
  21. Shepard SM.21.  2014. Quantitative themographic characterization of composites. Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems 8 M Rossi, M Sasso, N Connesson, R Singh, A DeWald 59–66 Bethel, CT: Soc. Exp. Mech. [Google Scholar]
  22. Shepard SM, Beemer MF. 22.  2015. Advances in thermographic signal reconstruction. Proc. SPIE 9485:Thermosense XXXVII94850R [Google Scholar]
  23. 23. ASTM Subcomm. E3705 2009. Standard practice for thermal diffusivity by the flash method Stand. E2585-09, ASTM Int [Google Scholar]
  24. Schlichting J, Brauser S, Pepke LA, Maierhofer C, Rethmeier M, Kreutzbruck M. 24.  2012. Thermographic testing of spot welds. NDT&E Int. 48:23–29 [Google Scholar]
  25. Badghaish AA, Fleming DC. 25.  2008. Non-destructive inspection of composites using step heating thermography. J. Compos. Mater. 42:131337–57 [Google Scholar]
  26. Busse G, Wu D, Karpen W. 26.  1992. Thermal wave imaging with phase sensitive modulated thermography. J. Appl. Phys. 71:83962–65 [Google Scholar]
  27. Breitenstein O, Warta W, Langenkamp M. 27.  2010. Lock-in Thermography: Basics and Use for Evaluating Electronic Devices and Materials 10 New York: Springer [Google Scholar]
  28. Maldague X, Marinetti S. 28.  1996. Pulse phase infrared thermography. J. Appl. Phys. 79:52694–98 [Google Scholar]
  29. Bai W, Wong BS. 29.  2001. Evaluation of defects in composite plates under convective environments using lock-in thermography. Meas. Sci. Technol. 12:2142–50 [Google Scholar]
  30. Pickering S, Almond D. 30.  2008. Matched excitation energy comparison of the pulse and lock-in thermography NDE techniques. NDT&E Int. 41:7501–9 [Google Scholar]
  31. Balageas DL.31.  2012. Defense and illustration of time-resolved pulsed thermography for NDE. QIRT J. 9:13–32 [Google Scholar]
  32. Wu D, Wu CY, Busse G. 32.  1996. Investigation of resolution in lock-in thermography: theory and experiment. Proc. QIRT 96:269–74 [Google Scholar]
  33. Vrana J, Goldammer M, Baumann J, Rothenfusser M, Arnold W. 33.  2008. Mechanisms and models for crack detection with induction thermography. AIP Conf. Proc. 975:475–82 [Google Scholar]
  34. Weekes B, Almond DP, Cawley P, Barden T. 34.  2012. Eddy-current induced thermography probability of detection study of small fatigue cracks in steel, titanium and nickel-based superalloy. NDT&E Int. 49:47–56 [Google Scholar]
  35. Oswald B, Shepard SM. 35.  2013. Comparison of pulse phase and thermographic signal reconstruction processing methods. Proc. SPIE 8705(Thermosense XXXV):87050S [Google Scholar]
  36. He Y, Pan M, Luo F. 36.  2012. Defect characterisation based on heat diffusion using induction thermography testing. Rev. Sci. Instrum. 83:10104702 [Google Scholar]
  37. Maldague X.37.  2002. Introduction to NDT by active infrared thermography. Mater. Eval. 60:91060–73 [Google Scholar]
  38. Shepard SM, Lhota JR, Ahmed T. 38.  2009. Measurement limits in flash thermography. Proc. SPIE 7299:Thermosense XXXI72990T [Google Scholar]
  39. Reusser RS, Holland SD. 39.  2010. Fundamental limits of active thermography: thick specimens Presented at QNDE, 29th, San Diego, CA [Google Scholar]
  40. Shepard SM, Hou J, Lhota JR, Golden JM. 40.  2007. Automated processing of thermographic derivatives for quality assurance. Opt. Eng. 46:5051008 [Google Scholar]
  41. Ibarra-Castanedo C, Galmiche F, Darabi A, Pilla M, Klein M. 41.  et al. 2003. Thermographic nondestructive evaluation: overview of recent progress. Proc. SPIE 5073:Thermosense XXV450–59 [Google Scholar]
  42. Marinetti S, Plotnikov YA, Winfree WP, Braggiotti A. 42.  1999. Pulse phase thermography for defect detection and visualization. Proc. SPIE 3586:30–38 [Google Scholar]
  43. Washer GA, Fenwick RG, Bolleni N, Harper J. 43.  2009. Effects of solar loading and other environmental conditions on thermographic imaging of subsurface defects in concrete. AIP Conf. Proc. 1096:1489–96 [Google Scholar]
  44. Ptaszek G, Cawley P, Almond D, Pickering S. 44.  2012. Artificial disbonds for calibration of transient thermography inspection of thermal barrier coating systems. NDT&E Int. 45:171–78 [Google Scholar]
  45. Winfree WP, Zalameda JN. 45.  2003. Thermographic determination of delamination depth in composites. Proc. SPIE 5073:Thermosense XXV363–73 [Google Scholar]
  46. Shepard SM, Lhota JR, Ahmed T. 46.  2007. Flash thermography contrast model based on IR camera noise characteristics. Nondest. Test. Eval. 22:113–26 [Google Scholar]
  47. Almond DP, Pickering SG. 47.  2012. An analytical study of the pulsed thermography defect detection limit. J. Appl. Phys. 111:9093510 [Google Scholar]
  48. Douglas J.48.  1962. Alternating direction methods for three space variables. Numer. Math. 4:141–63 [Google Scholar]
  49. Saintey MB, Almond DP. 49.  1995. Defect sizing by transient thermography. II. A numerical treatment. J. Phys. D 28:122539–46 [Google Scholar]
  50. Bendada A, Erchiqui F, Lamontagne M. 50.  2005. Pulsed thermography in the evaluation of an aircraft composite using 3D thermal quadrupoles and mathematical perturbations. Inverse Probl. 21:3857–77 [Google Scholar]
  51. Winfree WP, Cramer KE, Zalameda JN, Howell PA. 51.  2015. Numerical simulations of thermographic responses in composites Presented at QNDE 2015, July 29, Minneapolis, MN [Google Scholar]
  52. Lau SK, Almond DP, Milne JM. 52.  1991. A quantitative analysis of pulsed video thermography. NDT&E Int. 24:4195–202 [Google Scholar]
  53. Thomas RL, Favro LD, Crowther DJ, Kuo PK. 53.  1992. Inversion of thermal wave infrared images. Proc. QIRT92 [Google Scholar]
  54. Almond DP, Lau SK. 54.  1993. Edge effects and a method of defect sizing for transient thermography. Appl. Phys. Lett. 62:253369–71 [Google Scholar]
  55. Almond DP, Lau SK. 55.  1994. Defect sizing by transient thermography. I. An analytical treatment. J. Phys. D 27:51063 [Google Scholar]
  56. Ringermacher HI.56.  2013. Method of evaluating thermal diffusivity near lossy boundaries as an alternative to the Parker method. J. Appl. Phys. 113:15154903 [Google Scholar]
  57. Saintey MB, Almond DP. 57.  1996. Mathematical modelling of transient thermography and defect sizing. Review of Progress in Quantitative Nondestructive Evaluation 15: DO Thompson, DE Chimenti, pp. 503–9. http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=3108&context=qnde [Google Scholar]
  58. Rajic N.58.  2002. Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos. Struct. 58:4521–28 [Google Scholar]
  59. Winfree WP, Cramer KE, Zalameda JN, Howell PA, Burke ER. 59.  2015. Principal component analysis of thermographic data. Proc. SPIE 9485:Thermosense XXXVII94850S [Google Scholar]
  60. Richter R, Maierhofer C, Kreutzbruck M. 60.  2013. Numerical method of active thermography for the reconstruction of back wall geometry. NDT&E Int. 54:189–97 [Google Scholar]
  61. Lopez F, Ibarra-Castanedo C, de Paulo Nicolau V, Maldague X. 61.  2014. Optimization of pulsed thermography inspection by partial least-squares regression. NDT&E Int. 66:128–38 [Google Scholar]
  62. Chen J, Feng Z. 62.  2015. IR-based spot weld NDT in automotive applications. Proc. SPIE 9485:Thermosense XXXVII948513 [Google Scholar]
  63. Jonietz F, Ziegler M, Myrach P, Suwala H, Rethmeier M. 63.  2015. Examination of spot welded joints with active thermography Presented at QNDE 2015, July 27, Minneapolis, MN [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error