1932

Abstract

This article reviews published data on the mechanical properties of additively manufactured metallic materials. The additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (e.g., EBM, SLM, DMLS) and directed energy deposition (e.g., LENS, EBF3). Although only a limited number of metallic alloy systems are currently available for additive manufacturing (e.g., Ti-6Al-4V, TiAl, stainless steel, Inconel 625/718, and Al-Si-10Mg), the bulk of the published mechanical properties information has been generated on Ti-6Al-4V. However, summary tables for published mechanical properties and/or key figures are included for each of the alloys listed above, grouped by the additive technique used to generate the data. Published values for mechanical properties obtained from hardness, tension/compression, fracture toughness, fatigue crack growth, and high cycle fatigue are included for as-built, heat-treated, and/or HIP conditions, when available. The effects of test orientation/build direction on properties, when available, are also provided, along with discussion of the potential source(s) (e.g., texture, microstructure changes, defects) of anisotropy in properties. Recommendations for additional work are also provided.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070115-032024
2016-07-01
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/matsci/46/1/annurev-matsci-070115-032024.html?itemId=/content/journals/10.1146/annurev-matsci-070115-032024&mimeType=html&fmt=ahah

Literature Cited

  1. Kruth J-P, Leu MC, Nakagawa T. 1.  1998. Progress in additive manufacturing and rapid prototyping. CIRP Ann. Manuf. Technol. 47:1525–40 [Google Scholar]
  2. Frazier WE.2.  2014. Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23:61917–28 [Google Scholar]
  3. Dutta B, Froes FHS. 3.  2014. Additive manufacturing of titanium alloys. Adv. Mater. Res. 1019:Oct.19–25 [Google Scholar]
  4. Facchini L, Magalini E, Robotti P, Molinari A. 4.  2009. Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyp. J. 15:3171–78 [Google Scholar]
  5. Parthasarathy J, Starly B, Raman S, Christensen A. 5.  2010. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. Mater. 3:3249–59 [Google Scholar]
  6. Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J. 6.  et al. 2012. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28:11–14 [Google Scholar]
  7. Collins PC, Haden CV, Ghamarian I, Hayes BJ, Ales T. 7.  et al. 2014. Progress toward an integration of process-structure-property-performance models for ‘three-dimensional (3-D) printing’ of titanium alloys. JOM 66:71299–309 [Google Scholar]
  8. Yu J, Rombouts M, Maes G, Motmans F. 8.  2012. Material properties of Ti6Al4V parts produced by laser metal deposition. Phys. Procedia 39:416–24 [Google Scholar]
  9. Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T. 9.  et al. 2013. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int. J. Fatigue 48:300–7 [Google Scholar]
  10. Seifi M, Salem A, Beuth J, Harrysson O, Lewandowski JJ. 10.  2016. Overview of materials qualification need for metal additive manufacturing. JOM 68:3747–64 [Google Scholar]
  11. Collins PC, Brice DA, Samimi P, Ghamarian I, Fraser HL. 11.  2016. Microstructural control of additively manufactured materials. Annu. Rev. Mater. Res. 4663–91 [Google Scholar]
  12. Ackelid U, Svensson M. 12.  2009. Additive manufacturing of dense metal parts by electron beam melting. Proceedings of Materials Science and Technology Conference (MS&T)2711–19 Novelty, OH: ASM Int. [Google Scholar]
  13. Chang Y, McLouth T, Pozuelo M, Chang C, Wooten J. 13.  2015. The micro-mechanical behavior of electron beam melted Ti-6Al-4V alloy. TMS Proceedings211–18 Warrendale, PA/Hoboken, NJ: TMS/Wiley [Google Scholar]
  14. Christensen A, Kircher R, Lippincott A. 14.  2007. Qualification of electron beam melted (EBM) Ti6Al4V-ELI for orthopaedic applications. Proceedings from the Materials & Processes for Medical Devices Conference48–53 Novelty, OH: ASM Int. [Google Scholar]
  15. Devika D, Dass SS, Kumar Chaudhary S. 15.  2015. Characterization and corrosion behaviour study on biocompatible Ti-6Al-4V component fabricated by electron beam melting. J. Biomimetics Biomater. Biomed. Eng. 22:63–75 [Google Scholar]
  16. Facchini L, Magalini E, Robotti P, Molinari A. 16.  2009. Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyp. J. 15:3171–78 [Google Scholar]
  17. Gong H, Rafi K, Gu H, Starr T, Stucker B. 17.  2014. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Addit. Manuf. 1–4:87–98 [Google Scholar]
  18. Gong X, Anderson T, Chou K. 18.  2012. Review on powder-based electron beam additive manufacturing technology. Proceedings of the ASME International Symposium on Flexible Automation507–15 New York: ASME [Google Scholar]
  19. Gong X, Lydon J, Cooper K, Chou K. 19.  2013. Microstructural characterization and modeling of beam speed effects on Ti-6Al-4V by electron beam additive manufacturing. Solid Freeform Fabrication Proceedings459–69 Austin: Univ. Tex [Google Scholar]
  20. Gong X, Lydon J, Cooper K, Chou K. 20.  2014. Beam speed effects on Ti-6Al-4V microstructures in electron beam additive manufacturing. J. Mater. Res. 29:171–9 [Google Scholar]
  21. Guo C, Ge W, Lin F. 21.  2015. Effects of scanning parameters on material deposition during electron beam selective melting of Ti-6Al-4V powder. J. Mater. Process. Technol. 217:148–57 [Google Scholar]
  22. Hrabe N, Quinn T. 22.  2013. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM). Part 1. Distance from build plate and part size. Mater. Sci. Eng. A 573:264–70 [Google Scholar]
  23. Ikeo N, Ishimoto T, Serizawa A, Nakano T. 23.  2014. Control of mechanical properties of three-dimensional Ti-6Al-4V products fabricated by electron beam melting with unidirectional elongated pores. Metall. Mater. Trans. A 45:104293–301 [Google Scholar]
  24. Jamshidinia M, Kovacevic R. 24.  2015. The influence of heat accumulation on the surface roughness in powder-bed additive manufacturing. Surf. Topogr. Metrol. Prop. 3:1014003 [Google Scholar]
  25. Juechter V, Scharowsky T, Singer RF, Körner C. 25.  2014. Processing window and evaporation phenomena for Ti-6Al-4V produced by selective electron beam melting. Acta Mater. 76:252–58 [Google Scholar]
  26. Kalinyuk AN, Trigub NP, Semiatin SL. 26.  2003. Microstructure, texture, and mechanical properties of electron-beam melted Ti-6Al-4V. Mater. Sci. Eng. A 346:178–88 [Google Scholar]
  27. Karlsson J, Norell M, Ackelid U, Engqvist H, Lausmaa J. 27.  2015. Surface oxidation behavior of Ti-6Al-4V manufactured by Electron Beam Melting (EBM®). J. Manuf. Process. 17:120–26 [Google Scholar]
  28. Koike M, Greer P, Owen K, Lilly G, Murr LE. 28.  et al. 2011. Evaluation of titanium alloys fabricated using rapid prototyping technologies—electron beam melting and laser beam melting. Materials 4:121776–92 [Google Scholar]
  29. Koike M, Martinez K, Guo L, Chahine G, Kovacevic R, Okabe T. 29.  2011. Evaluation of titanium alloy fabricated using electron beam melting system for dental applications. J. Mater. Process. Technol. 211:81400–8 [Google Scholar]
  30. Kok Y, Tan X, Tor S, Chua CK. 30.  2015. Fabrication and microstructural characterisation of additive manufactured Ti-6Al-4V parts by electron beam melting. Virtual Phys. Prototyp. 10:113–21 [Google Scholar]
  31. Lu SL, Tang HP, Ning YP, Liu N, StJohn DH, Qian M. 31.  2015. Microstructure and mechanical properties of long Ti-6Al-4V rods additively manufactured by selective electron beam melting out of a deep powder bed and the effect of subsequent hot isostatic pressing. Metall. Mater. Trans. A 46:93824–34 [Google Scholar]
  32. Markl M, Ammer R, Rüde U, Körner C. 32.  2015. Numerical investigations on hatching process strategies for powder-bed-based additive manufacturing using an electron beam. Int. J. Adv. Manuf. Technol. 78:1–4239–47 [Google Scholar]
  33. Mohammadhosseini A, Fraser D, Masood SH, Jahedi M. 33.  2013. Microstructure and mechanical properties of Ti-6Al-4V manufactured by electron beam melting process. Mater. Res. Innov. 17:Suppl. 2106–12 [Google Scholar]
  34. Murr LE.34.  2014. Metallurgy of additive manufacturing: examples from electron beam melting. Addit. Manuf. 5:40–53 [Google Scholar]
  35. Murr LE, Gaytan SM, Lopez MI, Martinez E, Medina F, Wicker RB. 35.  2009. Metallographic characterization of additive-layer manufactured products by electron beam melting of Ti-6Al-4V powder. Pract. Metallogr. 46:9442–53 [Google Scholar]
  36. Hrabe N, Kircher R, Quinn T. 36.  2012. Effects of processing on microstructure and mechanical properties of Ti-6Al-4V fabricated using electron beam melting (EBM): orientation and location. Solid Freeform Fabrication Proceedings1045–58 Austin: Univ. Tex. [Google Scholar]
  37. Ponader S, Vairaktaris E, Heinl P, Wilmowsky CV, Rottmair A. 37.  et al. 2008. Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts. J. Biomed. Mater. Res. A 84:41111–19 [Google Scholar]
  38. Puebla K.38.  2012. Effect of melt scan rate on microstructure and macrostructure for electron beam melting of Ti-6Al-4V. Mater. Sci. Appl. 3:5259–64 [Google Scholar]
  39. Rafi HK, Karthik NV, Gong H, Starr TL, Stucker BE. 39.  2013. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J. Mater. Eng. Perform. 22:123872–83 [Google Scholar]
  40. Rafi K, Karthik N, Starr TL, Stucker BE. 40.  2012. Mechanical property evaluation of Ti-6Al-4V parts made using electron beam melting. Solid Freeform Fabrication Proceedings526–35 Austin: Univ. Tex. [Google Scholar]
  41. Safdar A, He HZ, Wei L-Y, Snis A, De Paz LEC. 41.  2012. Effect of process parameters settings and thickness on surface roughness of EBM produced Ti-6Al-4V. Rapid Prototyp. J. 18:5401–8 [Google Scholar]
  42. Safdar A, Wei L-Y, Snis A, Lai Z. 42.  2012. Evaluation of microstructural development in electron beam melted Ti-6Al-4V. Mater. Charact. 65:8–15 [Google Scholar]
  43. Scharowsky T, Juechter V, Singer RF, Körner C. 43.  2015. Influence of the scanning strategy on the microstructure and mechanical properties in selective electron beam melting of Ti-6Al-4V. Adv. Eng. Mater. 17:111573–78 [Google Scholar]
  44. Svensson M.44.  2013. Influence of interstitials on material properties of Ti-6Al-4V fabricated with Electron Beam Melting (EBM®). Proceedings from the Materials and Processes for Medical Devices Conference119–24 Novelty, OH: ASM Int. [Google Scholar]
  45. Svensson M, Ackelid U, Ab A. 45.  2010. Titanium alloys manufactured with electron beam melting mechanical and chemical properties. Proceedings of Materials & Processes for Medical Devices Conference189–94 Novelty, OH: ASM Int. [Google Scholar]
  46. Wang X, Gong X, Chou K. 46.  2015. Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing. Procedia Manuf 1:287–95 [Google Scholar]
  47. Zhao H, Antonysamy AA, Meyer J, Ciuea O, Williams ST, Prangnell PB. 47.  2015. Automated multi-scale microstructure heterogeneity analysis of selective electron beam melted Ti-6Al-4V components. TMS Proceedings429–36 Warrendale, PA/Hoboken, NJ: TMS/Wiley [Google Scholar]
  48. Seifi M, Dahar M, Aman R, Harrysson O, Beuth J, Lewandowski JJ. 48.  2015. Evaluation of orientation dependence of fracture toughness and fatigue crack propagation behavior of as-deposited ARCAM EBM Ti-6Al-4V. JOM 67:3597–607 [Google Scholar]
  49. Behrendt U, Shellabear M. 49.  1995. The EOS rapid prototyping concept. Comput. Ind. 28:157–61 [Google Scholar]
  50. Challis VJ, Xu X, Zhang LC, Roberts AP, Grotowski JF, Sercombe TB. 50.  2014. High specific strength and stiffness structures produced using selective laser melting. Mater. Des. 63:783–88 [Google Scholar]
  51. Facchini L, Magalini E, Robotti P, Molinari A, Höges S, Wissenbach K. 51.  2010. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyp. J. 16:6450–59 [Google Scholar]
  52. Fu CH, Guo YB. 52.  2014. Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V. J. Manuf. Sci. Eng. 136:6061004 [Google Scholar]
  53. Gong H, Gu H, Dilip JJS, Pal D, Stucker B. 53.  et al. 2014. Melt pool characterization for selective laser melting of Ti-6Al-4V pre-alloyed powder. Solid Freeform Fabrication Proceedings Austin: Univ. Tex. [Google Scholar]
  54. Grimm T, Wiora G, Witt G. 54.  2015. Characterization of typical surface effects in additive manufacturing with confocal microscopy. Surf. Topogr. Metrol. Prop. 3:1014001 [Google Scholar]
  55. Hanzl P, Zetek M, Bakša T, Kroupa T. 55.  2015. The influence of processing parameters on the mechanical properties of SLM parts. Procedia Eng. 100:1405–13 [Google Scholar]
  56. Khaing MW, Fuh JYH, Lu L. 56.  2001. Direct metal laser sintering for rapid tooling: processing and characterisation of EOS parts. J. Mater. Process. Technol. 113:1–3269–72 [Google Scholar]
  57. Kobryn PA, Semiatin SL. 57.  2001. The laser additive manufacture of Ti-6Al-4V. JOM 53:940–42 [Google Scholar]
  58. Kobryn PA, Semiatin SL. 58.  2001. Mechanical properties of laser-deposited Ti-6Al-4V. Solid Freeform Fabrication Proceedings179–86 Austin: Univ. Tex. [Google Scholar]
  59. Kobryn P, Semiatin S. 59.  2003. Microstructure and texture evolution during solidification processing of Ti-6Al-4V. J. Mater. Process. Technol. 135:2–3330–39 [Google Scholar]
  60. Schnitzer M, Lisý M, Hudák R, Živ J. 60.  2015. Experimental measuring of the roughness of test samples made using DMLS technology from the titanium alloy Ti-6Al-4V. IEEE International Symposium on Applied Machine Intelligence and Informatics, 13th31–36 [Google Scholar]
  61. Simchi A.61.  2006. Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater. Sci. Eng. A 428:1–2148–58 [Google Scholar]
  62. Simchi A, Petzoldt F, Pohl H. 62.  2003. On the development of direct metal laser sintering for rapid tooling. J. Mater. Process. Technol. 141:3319–28 [Google Scholar]
  63. Simonelli M, Tse YY, Tuck C. 63.  2012. Further understanding of Ti-6Al-4V selective laser melting using texture analysis. Solid Freeform Fabrication Proceedings480–91 Austin: Univ. Tex. [Google Scholar]
  64. Simonelli M, Tse YY, Tuck C. 64.  2014. The formation of α + β microstructure in as-fabricated selective laser melting of Ti-6Al-4V. J. Mater. Res. 29:172028–35 [Google Scholar]
  65. Thijs L, Verhaeghe F, Craeghs T, Van Humbeeck J, Kruth J-P. 65.  2010. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater. 58:93303–12 [Google Scholar]
  66. Thombansen U, Abels P. 66.  2015. Process observation in selective laser melting (SLM). Proc. SPIE 9356:93560R [Google Scholar]
  67. Wauthle R, Vrancken B, Beynaerts B, Jorissen K, Schrooten J. 67.  et al. 2015. Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit. Manuf. 5:77–84 [Google Scholar]
  68. Wu X, Sharman R, Mei J, Voice W. 68.  2004. Microstructure and properties of a laser fabricated burn-resistant Ti alloy. Mater. Des. 25:2103–9 [Google Scholar]
  69. Wu X, Liang J, Mei J, Mitchell C, Goodwin PS, Voice W. 69.  2004. Microstructures of laser-deposited Ti-6Al-4V. Mater. Des. 25:2137–44 [Google Scholar]
  70. Xu W, Brandt M, Sun S, Elambasseril J, Liu Q. 70.  et al. 2015. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition. Acta Mater. 85:74–84 [Google Scholar]
  71. 71.  2001. EOS takes fine approach to laser sintering. Met. Powder Rep. 56:318 [Google Scholar]
  72. Qiu C, Ravi GA, Dance C, Ranson A, Dilworth S, Attallah MM. 72.  2015. Fabrication of large Ti-6Al-4V structures by direct laser deposition. J. Alloys Compd. 629:351–61 [Google Scholar]
  73. Hofmann DC, Roberts S, Otis R, Kolodziejska J, Dillon RP. 73.  et al. 2014. Developing gradient metal alloys through radial deposition additive manufacturing. Sci. Rep. 4:5357 [Google Scholar]
  74. Wang F, Williams S, Colegrove P, Antonysamy AA. 74.  2012. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V. Metall. Mater. Trans. A 44:2968–77 [Google Scholar]
  75. Brandl E, Baufeld B, Leyens C, Gault R. 75.  2010. Additive manufactured Ti-6A1-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications. Phys. Procedia 5:595–606 [Google Scholar]
  76. Qian L, Mei J, Liang J, Wu X. 76.  2005. Influence of position and laser power on thermal history and microstructure of direct laser fabricated Ti-6Al-4V samples. Mater. Sci. Technol. 21:5597–605 [Google Scholar]
  77. Kobryn PA, Moore EH, Semiatin SL. 77.  2000. Effect of laser power and traverse speed on microstructure, porosity, and build height in laser-deposited Ti-6Al-4V. Scr. Mater. 43:4299–305 [Google Scholar]
  78. Brandl E, Leyens C, Palm F. 78.  2011. Mechanical properties of additive manufactured Ti-6Al-4V using wire and powder based processes. IOP Conf. Ser. Mater. Sci. Eng. 26:012004 [Google Scholar]
  79. Kottman M, Zhang S, McGuffin-Cawley J, Denney P, Narayanan BK. 79.  2015. Laser hot wire process: a novel process for near-net shape fabrication for high-throughput applications. JOM 67:3622–28 [Google Scholar]
  80. Carroll BE, Palmer TA, Beese AM. 80.  2015. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing. Acta Mater. 87:309–20 [Google Scholar]
  81. Prabhu AW, Chaudhary A, Zhang W, Babu SS. 81.  2015. Effect of microstructure and defects on fatigue behaviour of directed energy deposited Ti-6Al-4V. Sci. Technol. Weld. Join. 20:8659–69 [Google Scholar]
  82. Kelly SM, Kampe SL. 82.  2004. Microstructural evolution in laser-deposited multilayer Ti6Al-4V build. Part I. Microstructural characterization. Metall. Mater. Trans. A 35:June1861–67 [Google Scholar]
  83. Kelly SM, Kampe SL. 83.  2004. Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part II. Thermal modeling. Metall. Mater. Trans. A 35:61869–79 [Google Scholar]
  84. Buican GR, Oancea G, Lancea C, Pop MA. 84.  2015. Some considerations regarding micro hardness of parts manufactured from 316-L Steel using SLM technology. Appl. Mech. Mater. 760:515–20 [Google Scholar]
  85. Zhao X, Wei Q, Song B, Liu Y, Luo X. 85.  et al. 2015. Fabrication and characterization of AISI 420 stainless steel using selective laser melting. Mater. Manuf. Process. 30:111283–89 [Google Scholar]
  86. Jelis E, Clemente M, Kerwien S, Ravindra NM, Hespos MR. 86.  2015. Metallurgical and mechanical evaluation of 4340 steel produced by direct metal laser sintering. JOM 67:3582–89 [Google Scholar]
  87. King WE, Barth HD, Castillo VM, Gallegos GF, Gibbs JW. 87.  et al. 2014. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 214:122915–25 [Google Scholar]
  88. Jägle EA, Choi P. 88.  2014. Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J. Mater. Res. 29:172072–79 [Google Scholar]
  89. Kempen K, Vrancken B, Buls S, Thijs L, Van Humbeeck J, Kruth J-P. 89.  2014. Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating. J. Manuf. Sci. Eng. 136:6061026 [Google Scholar]
  90. Lebrun T, Tanigaki K, Horikawa K, Kobayashi H. 90.  2014. Strain rate sensitivity and mechanical anisotropy of selective laser melted 17-4 PH stainless steel. Mech. Eng. J. 1:5SMM0049 [Google Scholar]
  91. Abele E, Stoffregen HA, Kniepkamp M, Lang S, Hampe M. 91.  2014. Selective laser melting for manufacturing of thin-walled porous elements. J. Mater. Process. Technol. 215:114–22 [Google Scholar]
  92. Riemer A, Leuders S, Thöne M, Richard HA, Tröster T, Niendorf T. 92.  2014. On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Eng. Fract. Mech. 120:15–25 [Google Scholar]
  93. Tolosa I, Garciandía F, Zubiri F, Zapirain F, Esnaola A. 93.  2010. Study of mechanical properties of AISI 316 stainless steel processed by ‘selective laser melting’, following different manufacturing strategies. Int. J. Adv. Manuf. Technol. 51:5–8639–47 [Google Scholar]
  94. Wanjara P, Brochu M, Jahazi M. 94.  2007. Electron beam freeforming of stainless steel using solid wire feed. Mater. Des. 28:82278–86 [Google Scholar]
  95. Sun G, Zhou R, Lu J, Mazumder J. 95.  2015. Evaluation of defect density, microstructure, residual stress, elastic modulus, hardness and strength of laser-deposited AISI 4340 steel. Acta Mater. 84:172–89 [Google Scholar]
  96. Colegrove PA, Coules HE, Fairman J, Martina F, Kashoob T. 96.  et al. 2013. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling. J. Mater. Process. Technol. 213:101782–91 [Google Scholar]
  97. You X, Tan Y, Li J, Li P, Dong C. 97.  et al. 2015. Effects of solution heat treatment on the microstructure and hardness of Inconel 740 superalloy prepared by electron beam smelting. J. Alloys Compd. 638:239–48 [Google Scholar]
  98. List FA, Dehoff RR, Lowe LE, Sames WJ. 98.  2014. Properties of Inconel 625 mesh structures grown by electron beam additive manufacturing. Mater. Sci. Eng. A 615:191–97 [Google Scholar]
  99. Tayon WA, Shenoy RN, Redding MR, Bird RK, Hafley RA. 99.  2014. Correlation between microstructure and mechanical properties in an Inconel 718 deposit produced via electron beam freeform fabrication. J. Manuf. Sci. Eng. 136:6061005 [Google Scholar]
  100. Martinez E, Murr LE, Hernandez J, Pan X, Amato K. 100.  et al. 2013. Microstructures of niobium components fabricated by electron beam melting. Metallogr. Microstruct. Anal. 2:3183–89 [Google Scholar]
  101. Murr LE, Martinez E, Pan XM, Gaytan SM, Castro JA. 101.  et al. 2013. Microstructures of Rene 142 nickel-based superalloy fabricated by electron beam melting. Acta Mater. 61:114289–96 [Google Scholar]
  102. Murr LE, Martinez E, Gaytan SM, Ramirez DA, Machado BI. 102.  et al. 2011. Microstructural architecture, microstructures, and mechanical properties for a nickel-base superalloy fabricated by electron beam melting. Metall. Mater. Trans. A 42:113491–508 [Google Scholar]
  103. Li S, Wei Q, Shi Y, Zhu Z, Zhang D. 103.  2015. Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting. J. Mater. Sci. Technol. 31:9946–52 [Google Scholar]
  104. Strößner J, Terock M, Glatzel U. 104.  2015. Mechanical and microstructural investigation of nickel-based superalloy IN718 manufactured by selective laser melting (SLM). Adv. Eng. Mater. 17:81099–105 [Google Scholar]
  105. Scott-Emuakpor O, Schwartz J, George T, Holycross C, Cross C, Slater J. 105.  2015. Bending fatigue life characterisation of direct metal laser sintering nickel alloy 718. Fatigue Fract. Eng. Mater. Struct. 38:91105–17 [Google Scholar]
  106. Harrison NJ, Todd I, Mumtaz K. 106.  2015. Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: a fundamental alloy design approach. Acta Mater. 94:59–68 [Google Scholar]
  107. Kunze K, Etter T, Grässlin J, Shklover V. 107.  2015. Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM). Mater. Sci. Eng. A 620:213–22 [Google Scholar]
  108. Carter LN, Martin C, Withers PJ, Attallah MM. 108.  2014. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J. Alloys Compd. 615:338–47 [Google Scholar]
  109. Kanagarajah P, Brenne F, Niendorf T, Maier HJ. 109.  2013. Inconel 939 processed by selective laser melting: effect of microstructure and temperature on the mechanical properties under static and cyclic loading. Mater. Sci. Eng. A 588:188–95 [Google Scholar]
  110. Benn RC, Salva RP, Engineering P. 110.  2010. Additively manufactured Inconel alloy 718. TMS Superalloy 718 and Derivatives Proceedings, 7th455–69 Warrendale, PA/Hoboken, NJ: TMS/Wiley [Google Scholar]
  111. Zhang Y-N, Cao X, Wanjara P, Medraj M. 111.  2014. Tensile properties of laser additive manufactured Inconel 718 using filler wire. J. Mater. Res. 29:172006–20 [Google Scholar]
  112. Dehoff RR, Sarosi PM, Collins PC, Fraser HL, Mills MJ. 112.  2003. Microstructural evaluation of LENS™ deposited Nb-Ti-Si-Cr alloys. MRS Proc. 753:BB2.6 [Google Scholar]
  113. Gu D, Wang H, Dai D, Yuan P, Meiners W, Poprawe R. 113.  2015. Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting. Scr. Mater. 96:25–28 [Google Scholar]
  114. Weingarten C, Buchbinder D, Pirch N, Meiners W, Wissenbach K, Poprawe R. 114.  2015. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. J. Mater. Process. Technol. 221:112–20 [Google Scholar]
  115. Siddique S, Imran M, Wycisk E, Emmelmann C, Walther F. 115.  2015. Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting. J. Mater. Process. Technol. 221:205–13 [Google Scholar]
  116. Yan C, Hao L, Hussein A, Young P, Huang J, Zhu W. 116.  2015. Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering. Mater. Sci. Eng. A 628:238–46 [Google Scholar]
  117. Olakanmi EO, Cochrane RF, Dalgarno KW. 117.  2015. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog. Mater. Sci. 74:401–77 [Google Scholar]
  118. Kempen K, Thijs L, Van Humbeeck J, Kruth J-P. 118.  2015. Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterisation. Mater. Sci. Technol. 31:8917–23 [Google Scholar]
  119. Krishnan M, Atzeni E, Canali R, Calignano F, Manfredi D. 119.  et al. 2014. On the effect of process parameters on properties of AlSi10Mg parts produced by DMLS. Rapid Prototyp. J. 20:6449–58 [Google Scholar]
  120. Rometsch PA, Zhong H, Nairn KM, Jarvis T, Wu X. 120.  2014. Characterization of a laser-fabricated hypereutectic Al-Sc alloy bar. Scr. Mater. 87:13–16 [Google Scholar]
  121. Li Y, Gu D. 121.  2014. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater. Des. 63:856–67 [Google Scholar]
  122. Mertens R, Clijsters S, Kempen K, Kruth J-P. 122.  2014. Optimization of scan strategies in selective laser melting of aluminum parts with downfacing areas. J. Manuf. Sci. Eng. 136:6061012 [Google Scholar]
  123. Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C. 123.  2014. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf.1–477–86 [Google Scholar]
  124. Rosenthal I, Stern A, Frage N. 124.  2014. Microstructure and mechanical properties of AlSi10Mg parts produced by the laser beam additive manufacturing (AM) technology. Metallogr. Microstruct. Anal. 3:6448–53 [Google Scholar]
  125. Taminger K, Hafley R. 125.  2003. Electron beam freeform fabrication: a rapid metal deposition process. Proc. Annu. Automot. Compos. Conf., 3rd9–10 [Google Scholar]
  126. Li X, Reynolds AP, Cong B, Ding J, Williams S. 126.  2015. Production and properties of a wire-arc additive manufacturing part made with friction extruded wire. TMS Proceedings445–52 Warrendale, PA/Hoboken, NJ: TMS/Wiley [Google Scholar]
  127. Gu J, Cong B, Ding J, Williams SW, Zhai Y. 127.  2014. Wire+arc additive manufacturing of aluminum. Solid Freeform Fabrication Proceedings451–58 Austin: Univ. Tex. [Google Scholar]
  128. Fujieda T, Shiratori H, Kuwabara K, Kato T, Yamanaka K. 128.  et al. 2015. First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials. Mater. Lett. 159:1512–15 [Google Scholar]
  129. Brif Y, Thomas M, Todd I. 129.  2015. The use of high-entropy alloys in additive manufacturing. Scr. Mater. 99:93–96 [Google Scholar]
  130. 130. ISO/ASTM 2013. Standard terminology for additive manufacturing-coordinate systems and test methodologies ASTM/ISO Stand. 52921 [Google Scholar]
  131. 131. ASTM 2015. Guide for orientation and location dependence mechanical properties for metal additive manufacturing ASTM Work Item WK49229 [Google Scholar]
  132. Moylan S, Land J, Possolo A. 132.  2015. Additive manufacturing round robin protocols: a pilot study. Solid Freeform Fabrication Proceedings1504–12 Austin: Univ. Tex. [Google Scholar]
  133. Moylan S, Slotwinski J. 133.  2014. Assessment of guidelines for conducting round robin studies in additive manufacturing. Proceedings of ASPE Spring Topical Meeting—Dimensional Accuracy and Surface Finish in Additive Manufacturing 5782–85 Berkeley, CA: NIST [Google Scholar]
  134. Gockel J, Beuth J, Taminger K. 134.  2014. Integrated control of solidification microstructure and melt pool dimensions in electron beam wire feed additive manufacturing of Ti-6Al-4V. Addit. Manuf. 1–4:119–26 [Google Scholar]
  135. Beuth J, Fox J, Gockel J, Montgomery C, Yang R. 135.  et al. 2013. Process mapping for qualification across multiple direct metal additive manufacturing processes. Solid Freeform Fabrication Proceedings655–65 Austin: Univ. Tex. [Google Scholar]
  136. Gockel J, Beuth J. 136.  2013. Understanding Ti-6Al-4V microstructure control in additive manufacturing via process maps. Solid Freeform Fabrication Proceedings666–74 Austin: Univ. Tex. [Google Scholar]
  137. Nassar AR, Keist JS, Reutzel EW, Spurgeon TJ. 137.  2015. Intra-layer closed-loop control of build plan during directed energy additive manufacturing of Ti-6Al-4V. Addit. Manuf. 6:39–52 [Google Scholar]
  138. Soylemez E, Beuth JL, Taminger K. 138.  2010. Controlling melt pool dimensions over a wide range of material deposition rates in electron beam additive manufacturing. Solid Freeform Fabrication Proceedings571–82 Austin: Univ. Tex. [Google Scholar]
  139. Montgomery C, Beuth J, Sheridan L, Klingbeil N. 139.  2015. Process mapping of Inconel 625 in laser powder bed additive manufacturing. Solid Freeform Fabrication Proceedings1195–204 Austin: Univ. Tex. [Google Scholar]
  140. Seifi M, Christiansen D, Beuth JL, Harrysson O, Lewandowski JJ. 140.  2016. Process mapping, fracture and fatigue behavior of Ti-6Al-4V produced by EBM additive manufacturing. Proceedings of World Conference on Titanium, 13th1373–77 Warrendale, PA/Hoboken, NJ: TMS/Wiley [Google Scholar]
  141. Greitemeier D, Dalle Donne C, Syassen F, Eufinger J, Melz T. 141.  2016. Effect of surface roughness on fatigue performance of additive manufactured Ti-6Al-4V. Mater. Sci. Technol. In press [Google Scholar]
  142. Edwards P, O'Conner A, Ramulu M. 142.  2013. Electron beam additive manufacturing of titanium components: properties and performance. J. Manuf. Sci. Eng. 135:6061016 [Google Scholar]
  143. Tan X, Kok Y, Tan YJ, Descoins M, Mangelinck D. 143.  et al. 2015. Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting. Acta Mater. 97:1–16 [Google Scholar]
  144. Rodriguez OL, Allison PG, Whittington WR, Francis DK, Rivera OG. 144.  et al. 2015. Dynamic tensile behavior of electron beam additive manufactured Ti-6Al-4V. Mater. Sci. Eng. A 641:323–27 [Google Scholar]
  145. Hrabe N, Quinn T. 145.  2013. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM). Part 2. Energy input, orientation, and location. Mater. Sci. Eng. A 573:271–77 [Google Scholar]
  146. Murr LE, Esquivel EV, Quinones SA, Gaytan SM, Lopez MI. 146.  et al. 2009. Microstructures and mechanical properties of electron beam–rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V. Mater. Charact. 60:296–105 [Google Scholar]
  147. McLouth T, Chang Y, Wooten J, Yang J. 147.  2015. The effects of electron beam melting on the microstructure and mechanical properties of Ti-6Al-4V and γ-TiAl. Microsc. Microanal. 21:5881177–78 [Google Scholar]
  148. Gong H, Rafi K, Gu H, Janaki Ram GD, Starr T, Stucker B. 148.  2015. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting. Mater. Des. 86:545–54 [Google Scholar]
  149. Morgan L, Lindhe U, Harrysson O. 149.  2003. Rapid manufacturing with electron beam melting (EBM)—a manufacturing revolution?. Solid Freeform Fabrication Proceedings433–38 Austin: Univ. Tex. [Google Scholar]
  150. Rekedal KD, Liu D. 150.  2015. Fatigue life of selective laser melted and hot isostatically pressed Ti-6Al-4V absent of surface machining. Presented at AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 56th
  151. Cain V, Thijs L, Van Humbeeck J, Van Hooreweder B, Knutsen R. 151.  2015. Crack propagation and fracture toughness of Ti-6Al-4V alloy produced by selective laser melting. Addit. Manuf. 5:168–76 [Google Scholar]
  152. Kasperovich G, Hausmann J. 152.  2015. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J. Mater. Process. Technol. 220:202–14 [Google Scholar]
  153. Edwards P, Ramulu M. 153.  2014. Fatigue performance evaluation of selective laser melted Ti-6Al-4V. Mater. Sci. Eng. A 598:327–37 [Google Scholar]
  154. Leuders S, Lieneke T, Lammers S, Tröster T, Niendorf T. 154.  2014. On the fatigue properties of metals manufactured by selective laser melting—the role of ductility. J. Mater. Res. 29:171911–19 [Google Scholar]
  155. Simonelli M, Tse YY, Tuck C. 155.  2014. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V. Mater. Sci. Eng. A 616:101–11 [Google Scholar]
  156. Vrancken B, Thijs L, Kruth J-P, Van Humbeeck J. 156.  2012. Heat treatment of Ti-6Al-4V produced by Selective Laser Melting: microstructure and mechanical properties. J. Alloys Compd. 541:177–85 [Google Scholar]
  157. Murr LE, Quinones SA, Gaytan SM, Lopez MI, Rodela A. 157.  et al. 2009. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2:120–32 [Google Scholar]
  158. Vilaro T, Colin C, Bartout JD. 158.  2011. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting. Metall. Mater. Trans. A 42:103190–99 [Google Scholar]
  159. Vandenbroucke B, Kruth JP. 159.  2007. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp. J. 13:4196–203 [Google Scholar]
  160. Mertens A, Reginster S, Paydas H, Contrepois Q, Dormal T. 160.  et al. 2014. Mechanical properties of alloy Ti-6Al-4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures. Powder Metall. 57:3184–89 [Google Scholar]
  161. Hollander DA, von Walter M, Wirtz T, Sellei R, Schmidt-Rohlfing B. 161.  et al. 2006. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Biomaterials 27:7955–63 [Google Scholar]
  162. Qiu C, Adkins NJE, Attallah MM. 162.  2013. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V. Mater. Sci. Eng. A 578:230–39 [Google Scholar]
  163. Yu J, Rombouts M, Maes G, Motmans F. 163.  2012. Material properties of Ti-6Al-4V parts produced by laser metal deposition. Phys. Procedia 39:416–24 [Google Scholar]
  164. Zhang S, Lin X, Chen J, Huang W. 164.  2009. Heat-treated microstructure and mechanical properties of laser solid forming Ti-6Al-4V alloy. Rare Met. 28:6537–44 [Google Scholar]
  165. Alcisto J, Enriquez A, Garcia H, Hinkson S, Steelman T. 165.  et al. 2011. Tensile properties and microstructures of laser-formed Ti-6Al-4V. J. Mater. Eng. Perform. 20:2203–12 [Google Scholar]
  166. Dinda GP, Song L, Mazumder J. 166.  2008. Fabrication of Ti-6Al-4V scaffolds by direct metal deposition. Metall. Mater. Trans. A 39:122914–22 [Google Scholar]
  167. Zhai Y, Galarraga H, Lados DA. 167.  2015. Microstructure evolution, tensile properties, fatigue damage mechanisms in Ti-6Al-4V alloys fabricated by two additive manufacturing techniques. Procedia Eng. 114:658–66 [Google Scholar]
  168. Arcella FG, Froes FH. 168.  2000. Producing titanium aerospace components from powder using laser forming. JOM 52:528–30 [Google Scholar]
  169. Lewis GK, Schlienger E. 169.  2000. Practical considerations and capabilities for laser assisted direct metal deposition. Mater. Des. 21:4417–23 [Google Scholar]
  170. Griffith ML, Ensz MT, Puskar JD, Robino CV, Brooks JA. 170.  et al. 2000. Understanding the microstructure and properties of components fabricated by Laser Engineered Net Shaping (LENS). MRS Proc. 625:9 doi: 10.1557/PROC-625-9 [Google Scholar]
  171. Löber L, Schimansky FP, Kühn U, Pyczak F, Eckert J. 171.  2014. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy. J. Mater. Process. Technol. 214:91852–60 [Google Scholar]
  172. Löber L, Biamino S, Ackelid U, Sabbadini S, Epicoco P. 172.  et al. 2011. Comparison of selective laser and electron beam melted titanium aluminides. Solid Freeform Fabrication Proceedings547–56 Austin: Univ. Tex. [Google Scholar]
  173. Spierings AB, Starr TL, Ag I. 173.  2013. Fatigue performance of additive manufactured metallic parts. Rapid Prototyp. J. 19:288–94 [Google Scholar]
  174. Sercombe TB, Li X. 174.  2016. Selective laser melting of aluminium and aluminium metal matrix composites: review. Mater. Technol. In press [Google Scholar]
  175. Wang XJ, Zhang LC, Fang MH, Sercombe TB. 175.  2014. The effect of atmosphere on the structure and properties of a selective laser melted Al-12Si alloy. Mater. Sci. Eng. A 597:370–75 [Google Scholar]
  176. Li XP, Wang XJ, Saunders M, Suvorova A, Zhang LC. 176.  et al. 2015. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater. 95:74–82 [Google Scholar]
  177. Read N, Wang W, Essa K, Attallah MM. 177.  2015. Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater. Des. 65:417–24 [Google Scholar]
  178. Manfredi D, Calignano F, Krishnan M, Canali R, Ambrosio EP, Atzeni E. 178.  2013. From powders to dense metal parts: characterization of a commercial AlSiMg alloy processed through direct metal laser sintering. Materials 6:3856–69 [Google Scholar]
  179. Kempen K, Thijs L, Van Humbeeck J, Kruth J-P. 179.  2012. Mechanical properties of AlSi10Mg produced by selective laser melting. Phys. Procedia 39:439–46 [Google Scholar]
  180. Song C, Yang Y, Wang Y, Wang D, Yu J. 180.  2014. Research on rapid manufacturing of CoCrMo alloy femoral component based on selective laser melting. Int. J. Adv. Manuf. Technol. 75:1–4445–53 [Google Scholar]
  181. Kircher R, Christensen A, Wurth K. 181.  2009. Electron Beam Melted (EBM) Co-Cr-Mo alloy for orthopaedic implant applications. Solid Freeform Fabrication Proceedings428–36 Austin: Univ. Tex. [Google Scholar]
  182. Tarasova TV, Nazarov AP, Prokof'ev MV. 182.  2015. Effect of the regimes of selective laser melting on the structure and physicomechanical properties of cobalt-base superalloys. Phys. Met. Metallogr. 116:6601–5 [Google Scholar]
  183. Terrazas CA, Mireles J, Gaytan SM, Morton PA, Hinojos A. 183.  et al. 2016. Fabrication and characterization of high-purity niobium using electron beam melting additive manufacturing technology. Int. J. Adv. Manuf. Technol. In press [Google Scholar]
  184. Wei K, Gao M, Wang Z, Zeng X. 184.  2014. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy. Mater. Sci. Eng. A 611:212–22 [Google Scholar]
  185. Ma Y, Cuiuri D, Hoye N, Li H, Pan Z. 185.  2015. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding. Mater. Sci. Eng. A 631:230–40 [Google Scholar]
  186. Baufeld B.186.  2012. Mechanical properties of INCONEL 718 parts manufactured by shaped metal deposition (SMD). J. Mater. Eng. Perform. 21:71416–21 [Google Scholar]
  187. Blackwell PL.187.  2005. The mechanical and microstructural characteristics of laser-deposited IN718. J. Mater. Process. Technol. 170:1–2240–46 [Google Scholar]
  188. Zhao X, Chen J, Lin X, Huang W. 188.  2008. Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Mater. Sci. Eng. A 478:1–2119–24 [Google Scholar]
  189. Bird RK, Hibberd J. 189.  2009. Tensile properties and microstructure of Inconel 718 fabricated with electron beam freeform fabrication (EBF3) Tech. Rep., NASA [Google Scholar]
  190. Qi H, Azer M, Ritter A. 190.  2009. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured INCONEL 718. Metall. Mater. Trans. A 40:102410–22 [Google Scholar]
  191. Cao X, Rivaux B, Jahazi M, Cuddy J, Birur A. 191.  2009. Effect of pre- and post-weld heat treatment on metallurgical and tensile properties of Inconel 718 alloy butt joints welded using 4kW Nd:YAG laser. J. Mater. Sci. 44:174557–71 [Google Scholar]
  192. Edwards P, Ramulu M. 192.  2015. Effect of build direction on the fracture toughness and fatigue crack growth in selective laser melted Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 38:101228–36 [Google Scholar]
  193. Van Hooreweder B, Moens D, Boonen R, Kruth J-P, Sas P. 193.  2012. Analysis of fracture toughness and crack propagation of Ti-6Al-4V produced by selective laser melting. Adv. Eng. Mater. 14:1–292–97 [Google Scholar]
  194. Becker TH, Beck M, Scheffer C. 194.  2015. Microstructure and mechanical properties of direct metal laser sintered Ti-6Al-4V. S. Afr. J. Ind. J. 26:1–10 [Google Scholar]
  195. Svensson M.195.  2009. Ti6Al4V manufactured with electron beam melting (EBM): mechanical and chemical properties. Proceedings from the Materials & Processes for Medical Devices Conference189–94 Novelty, OH: ASM Int. [Google Scholar]
  196. Boyer R, Welsch G, Collings EW. 196.  1994. Materials Properties Handbook: Titanium Alloys Novelty, OH: ASM Int. [Google Scholar]
  197. Seifi M, Salem A, Satko D, Shaffer J, Lewandowski JJ. 197.  2016. Fracture resistance and fatigue behavior of Ti-6Al-4V additively manufactured by electron beam melting (EBM): role of microstructure heterogeneity, defect distribution and post-processing. Int. J. Fatigue In press [Google Scholar]
  198. Seifi M, Ghamarian I, Samimi P, Collins PC, Lewandowski JJ. 198.  2016. Microstructure and mechanical properties of Ti-48Al-2Cr-2Nb manufactured via electron beam melting. Proceedings of World Conference on Titanium, 13th1317–22 Warrendale, PA/Hoboken, NJ: TMS/Wiley [Google Scholar]
  199. Seifi M, Salem A, Satko D, Ackelid U, Lewandowski JJ. 199.  2016. Effects of microstructural heterogeneity and post-processing on mechanical properties of Ti-48Al-2Cr-2Nb additively manufactured by electron beam melting (EBM). Intermetallics Under review [Google Scholar]
  200. Dahar MS, Seifi SM, Bewlay BP, Lewandowski JJ. 200.  2015. Effects of test orientation on fracture and fatigue crack growth behavior of third generation as-cast Ti-48Al-2Nb-2Cr. Intermetallics 57:73–82 [Google Scholar]
  201. Li P, Warner DH, Fatemi A, Phan N. 201.  2015. Critical assessment of the fatigue performance of additively manufactured Ti-6Al-4V and perspective for future research. Int. J. Fatigue 85:130–43 [Google Scholar]
  202. Fodran E, Walker K. 202.  2015. Surface finish enhancement for the electron beam direct digital manufacturing of Ti-6Al-4V alloy structural components Tech. Rep., Armament Research, Development and Engineering Center, Weapons Software Engineering Center, Benét Lab. [Google Scholar]
  203. Seifi M, Lewandowski JJ. 203.  2016. Microstructure and mechanical properties of additively manufactured alloys. Prog. Mater. Sci. In preparation [Google Scholar]
  204. Filippini M, Beretta S, Içöz C, Patriarca L. 204.  2015. Effect of the microstructure on the fatigue strength of a TiAl intermetallic alloy produced by additive manufacturing. Mater. Res. Soc. Symp. Proc. 1:3–8 [Google Scholar]
  205. McLouth T, Chang Y, Wooten J, Yang J. 205.  2015. The effects of electron beam melting on the microstructure and mechanical properties of Ti-6Al-4V and γ-TiAl. Microsc. Microanal. 21:5881177–78 [Google Scholar]
  206. Seikh A, Mohammad A, Sherif E-S, Al-Ahmari A. 206.  2015. Corrosion behavior in 3.5% NaCl solutions of γ-TiAl processed by electron beam melting process. Metals 5:42289–302 [Google Scholar]
  207. Tang HP, Yang GY, Jia WP, He WW, Lu SL, Qian M. 207.  2015. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting. Mater. Sci. Eng. A 636:103–7 [Google Scholar]
  208. Biamino S, Klöden B, Weißgärber T, Kieback B, Ackelid U. 208.  2014. Titanium aluminides for automotive applications processed by electron beam melting. Proceedings of Metal Powder Industries Federation (MPIF)96–103 Princeton, NJ: MPIF [Google Scholar]
  209. Filippini M, Beretta S, Patriarca L, Sabbadini S. 209.  2014. Effect of the microstructure on the deformation and fatigue damage in a gamma TiAl produced by additive manufacturing. TMS Proceedings189–93 Warrendale, PA/Hoboken, NJ: TMS/Wiley [Google Scholar]
  210. Ge W, Guo C, Lin F. 210.  2014. Effect of process parameters on microstructure of TiAl alloy produced by electron beam selective melting. Procedia Eng. 81:1192–97 [Google Scholar]
  211. Ge W, Lin F, Guo C. 211.  2014. The effect of scan pattern on microstructure evolution and mechanical properties in electron beam melting Ti47Al2Cr2Nb. Solid Freeform Fabrication Proceedings501–13 Austin: Univ. Tex. [Google Scholar]
  212. Schwerdtfeger J, Körner C. 212.  2014. Selective electron beam melting of Ti-48Al-2Nb-2Cr: microstructure and aluminium loss. Intermetallics 49:29–35 [Google Scholar]
  213. Filippini M, Beretta S, Patriarca L, Pasquero G, Sabbadini S. 213.  2012. Fatigue sensitivity to small defects of a gamma–titanium–aluminide alloy. J. ASTM Int. 9:5104293 [Google Scholar]
  214. Terner M, Biamino S, Ugues D, Sabbadini S, Fino P. 214.  et al. 2013. Phase transitions assessment on γ-TiAl by thermo mechanical analysis. Intermetallics 37:7–10 [Google Scholar]
  215. Hernandez J, Murr LE, Gaytan SM, Martinez E, Medina F, Wicker RB. 215.  2012. Microstructures for two-phase gamma titanium aluminide fabricated by electron beam melting. Metallogr. Microstruct. Anal. 1:114–27 [Google Scholar]
  216. Biamino S, Penna A, Ackelid U, Sabbadini S, Tassa O. 216.  et al. 2011. Electron beam melting of Ti–48Al–2Cr–2Nb alloy: microstructure and mechanical properties investigation. Intermetallics 19:6776–81 [Google Scholar]
  217. Filippini M, Beretta S, Patriarca L, Pasquero G, Sabbadini S. 217.  2011. Defect tolerance of a gamma titanium aluminide alloy. Procedia Eng. 10:3677–82 [Google Scholar]
  218. Franzen SF, Karlsson J, Dehoff R, Ackelid U, Rios O. 218.  et al. 2011. Microstructural properties of gamma titanium aluminide manufactured by electron beam melting. TMS Proceedings455–62 Warrendale, PA/Hoboken, NJ: TMS/Wiley [Google Scholar]
  219. Murr LE, Gaytan SM, Ceylan A, Martinez E, Martinez JL. 219.  et al. 2010. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Mater. 58:51887–94 [Google Scholar]
  220. Patriarca L.220.  2010. Fatigue crack growth of a gamma titanium aluminide alloy. Youth Symposium on Experimental Solid Mechanics, 9th36–39 [Google Scholar]
  221. Sabbadini S, Tassa O, Gennaro P, Ackelid U. 221.  2010. Additive manufacturing of gamma titanium aluminide parts by electron beam melting. TMS Proceedings267–74 Warrendale, PA/Hoboken, NJ: TMS/Wiley [Google Scholar]
  222. Cormier D, Harrysson O, Mahale T, West H. 222.  2007. Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders. Res. Lett. Mater. Sci. 2007:1–4 [Google Scholar]
  223. Li W, Liu J, Wen W, Wei Q, Yan C, Shi Y. 223.  2016. Crystal orientation, crystallographic texture and phase evolution in the Ti–45Al–2Cr–5Nb alloy processed by selective laser melting. Mater. Charact. 113:125–33 [Google Scholar]
  224. Gussone J, Hagedorn Y-C, Gherekhloo H, Kasperovich G, Merzouk T, Hausmann J. 224.  2015. Microstructure of γ-titanium aluminide processed by selected laser melting at elevated temperatures. Intermetallics 66:133–40 [Google Scholar]
  225. Yadollahi A, Shamsaei N, Thompson SM, Seely DW. 225.  2015. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater. Sci. Eng. A 644:171–83 [Google Scholar]
  226. Sterling A, Torries B, Shamsaei N, Thompson SM, Seely DW. 226.  2016. Fatigue behavior and failure mechanisms of direct laser deposited Ti-6Al-4V. Mater. Sci. Eng. A 655:100–12 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070115-032024
Loading
/content/journals/10.1146/annurev-matsci-070115-032024
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error