1932

Abstract

Synthetic active systems capable of autonomous motion or driving fluid flow are of great current interest owing to their potential applications in nanomachinery, cargo capture and delivery, reversible assemblies, and chemical/biochemical sensing. Designing self-powered micro/nanomotors and understanding their propulsion mechanisms and ensemble behavior are now areas of great interest in low-Reynolds-number mechanics. In this article, we classify prototypes of existing small-scale motors on the basis of the materials used in synthesis and fabrication, with the aim of understanding the importance of material selection in designing functional motors for futuristic applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070115-032047
2016-07-01
2024-10-16
Loading full text...

Full text loading...

/deliver/fulltext/matsci/46/1/annurev-matsci-070115-032047.html?itemId=/content/journals/10.1146/annurev-matsci-070115-032047&mimeType=html&fmt=ahah

Literature Cited

  1. Wang W, Duan W, Ahmed S, Mallouk TE, Sen A. 1.  2013. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8:531–54 [Google Scholar]
  2. Ebbens SJ, Howse JR. 2.  2010. In pursuit of propulsion at the nanoscale. Soft Matter 6:726–38 [Google Scholar]
  3. Wang J, Manesh KM. 3.  2010. Motion control at the nanoscale. Small 6:338–45 [Google Scholar]
  4. Colberg PH, Reigh SY, Robertson B, Kapral R. 4.  2014. Chemistry in motion: tiny synthetic motors. Acc. Chem. Res. 47:3504–11 [Google Scholar]
  5. Yadav V, Duan W, Butler PJ, Sen A. 5.  2015. Anatomy of nanoscale propulsion. Annu. Rev. Biophys. 44:77–100 [Google Scholar]
  6. Sánchez S, Soler L, Katuri J. 6.  2015. Chemically powered micro- and nanomotors. Angew. Chem. Int. Ed. 54:1414–44 [Google Scholar]
  7. Wang H, Pumera M. 7.  2015. Fabrication of micro/nanoscale motors. Chem. Rev. 115:8704–35 [Google Scholar]
  8. Elgeti J, Winkler RG, Gompper G. 8.  2015. Physics of microswimmers—single particle motion and collective behavior: a review. Rep. Prog. Phys. 78:056601 [Google Scholar]
  9. Ramaswamy S.9.  2010. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1:323–45 [Google Scholar]
  10. Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A. 10.  2013. Intelligent, self-powered, drug delivery systems. Nanoscale 5:1273–83 [Google Scholar]
  11. Duan W, Wang W, Das S, Yadav V, Mallouk TE, Sen A. 11.  2015. Synthetic nano- and micromachines in analytical chemistry: sensing, migration, capture, delivery and separation. Annu. Rev. Anal. Chem. 8:311–33 [Google Scholar]
  12. Wang W, Duan W, Ahmed S, Sen A, Mallouk TE. 12.  2015. From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors. Acc. Chem. Res. 48:1938–46 [Google Scholar]
  13. Campuzano S, Kagan D, Orozco J, Wang J. 13.  2011. Motion-driven sensing and biosensing using electrochemically propelled nanomotors. Analyst 136:4621–30 [Google Scholar]
  14. Guix M, Mayorga-Martinez CC, Merkoçi A. 14.  2014. Nano/micromotors in (bio) chemical science applications. Chem. Rev. 114:6285–322 [Google Scholar]
  15. Gáspár S.15.  2014. Enzymatically induced motion at nano- and micro-scales. Nanoscale 6:7757–63 [Google Scholar]
  16. Sengupta S, Ibele ME, Sen A. 16.  2012. Fantastic voyage: designing self-powered nanorobots. Angew. Chem. Int. Ed. 51:8434–45 [Google Scholar]
  17. Duan W, Liu R, Sen A. 17.  2013. Transition between collective behaviors of micromotors in response to different stimuli. J. Am. Chem. Soc. 135:1280–83 [Google Scholar]
  18. Palacci J, Sacanna S, Steinberg AP, Pine DJ, Chaikin PM. 18.  2013. Living crystals of light-activated colloidal surfers. Science 339:936–40 [Google Scholar]
  19. Gao W, Pei A, Feng X, Hennessy C, Wang J. 19.  2013. Organized self-assembly of Janus micromotors with hydrophobic hemispheres. J. Am. Chem. Soc. 135:998–1001 [Google Scholar]
  20. Chock PB, Rhee SG, Stadtman ER. 20.  1980. Interconvertible enzyme cascades in cellular regulation. Annu. Rev. Biochem. 49:813–43 [Google Scholar]
  21. Conrad JC.21.  2012. Quantifying collective behavior in mammalian cells. PNAS 109:7591–92 [Google Scholar]
  22. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J. 22.  et al. 2013. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85:1143–89 [Google Scholar]
  23. Purcell EM.23.  1977. Life at low Reynolds number. Am. J. Phys. 45:3–11 [Google Scholar]
  24. Hess H.24.  2006. Self-assembly driven by molecular motors. Soft Matter 2:669–77 [Google Scholar]
  25. Paxton WF, Sundararajan S, Mallouk TE, Sen A. 25.  2006. Chemical locomotion. Angew. Chem. Int. Ed. 45:5420–29 [Google Scholar]
  26. Goel A, Vogel V. 26.  2008. Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat. Nanotechnol. 3:465–475 [Google Scholar]
  27. Hess H, Vogel V. 27.  2001. Molecular shuttles based on motor proteins: active transport in synthetic environments. Rev. Mol. Biotechnol. 82:67–85 [Google Scholar]
  28. Limberis L, Stewart RJ. 28.  2000. Toward kinesin-powered microdevices. Nanotechnology 11:47–51 [Google Scholar]
  29. Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD. 29.  2000. Powering an inorganic nanodevice with a biomolecular motor. Science 290:1555–58 [Google Scholar]
  30. Böhm KJ, Stracke R, Mühlig P, Unger E. 30.  2001. Motor protein–driven unidirectional transport of micrometer-sized cargoes across isopolar microtubule arrays. Nanotechnology 12:238–44 [Google Scholar]
  31. Browne WR, Feringa BL. 31.  2006. Making molecular machines work. Nat. Nanotechnol. 1:25–35 [Google Scholar]
  32. Balzani V, Clemente-León M, Credi A, Ferrer B, Venturi M. 32.  et al. 2006. Autonomous artificial nanomotor powered by sunlight. PNAS 103:1178–83 [Google Scholar]
  33. Erbas-Cakmak S, Leigh DA, McTernan CT, Naussbaumer AL. 33.  2015. Artificial molecular machines. Chem. Rev. 115:10081–206 [Google Scholar]
  34. Paxton WF, Kistler KC, Olmeda CC, Sen A, St. Angelo SK. 34.  et al. 2004. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126:13424–31 [Google Scholar]
  35. Gibbs J, Zhao Y. 35.  2011. Catalytic nanomotors: fabrication, mechanism, and applications. Front. Mater. Sci. 5:25–39 [Google Scholar]
  36. Wang J.36.  2013. Template electrodeposition of catalytic nanomotors. Faraday Discuss. 164:9–18 [Google Scholar]
  37. Wang W, Castro LA, Hoyos M, Mallouk TE. 37.  2012. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6:6122–32 [Google Scholar]
  38. Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F. 38.  et al. 2013. Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7:9232–40 [Google Scholar]
  39. Wang W, Li S, Mair L, Ahmed S, Huang TJ, Mallouk TE. 39.  2014. Acoustic propulsion of nanorod motors inside living cells. Angew. Chem. Int. Ed. 53:3201–4 [Google Scholar]
  40. Esteban–Fernández de Ávila B, Martín A, Soto F, Lopez-Ramirez MA. 40.  et al. 2015. Single cell real-time miRNAs sensing based on nanomotors. ACS Nano 9:6756–64 [Google Scholar]
  41. Xu T, Soto F, Gao W, Dong R, Garcia-Gradilla V. 41.  et al. 2015. Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields. J. Am. Chem. Soc. 137:2163–66 [Google Scholar]
  42. Wang W, Duan W, Zhang Z, Sun M, Sen A, Mallouk TE. 42.  2015. A tale of two forces: simultaneous chemical and acoustic propulsion of bimetallic micromotors. Chem. Commun. 51:1020–23 [Google Scholar]
  43. Ghosh A, Fischer P. 43.  2009. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9:2243–45 [Google Scholar]
  44. Zeeshan MA, Grisch R, Pellicer E, Sivaraman KM, Peyer KE. 44.  et al. 2014. Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition. Small 10:1284–88 [Google Scholar]
  45. Pak OS, Gao W, Wang J, Lauga E. 45.  2011. High-speed propulsion of flexible magnetic nanowire motors: theory and experiments. Soft Matter 7:8169–81 [Google Scholar]
  46. Peyer KE, Siringil EC, Zhang L, Suter M, Nelson BJ. 46.  2013. Bacteria-inspired magnetic polymer composite microrobots. Biometric and Biohybrid Systems 8064 NF Lepora, A Mura, HG Krapp, PFMJ Veschure, TJ Prescott 216–27 Berlin: Springer [Google Scholar]
  47. Zhang L, Abbott JJ, Dong L, Peyer KE, Kratochvil BE. 47.  et al. 2009. Characterizing the swimming properties of artificial bacterial flagella. Nano Lett. 9:3663–67 [Google Scholar]
  48. Kline TR, Paxton WF, Mallouk TE, Sen A. 48.  2004. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Ed. 44:744–46 [Google Scholar]
  49. Gao W, Kagan D, Pak ON, Clawson C, Campuzano S. 49.  et al. 2012. Cargo-towing fuel-free magnetic nanoswimmer for targeted drug delivery. Small 8:460–67 [Google Scholar]
  50. Paxton WF, Baker PT, Kline TR, Wang Y, Mallouk TE, Sen A. 50.  2006. Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128:14881–88 [Google Scholar]
  51. Moran JL, Wheat PM, Posner JD. 51.  2010. Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis. Phys. Rev. Lett. 81:065302(R) [Google Scholar]
  52. Hong Y, Blackman NMK, Kopp ND, Sen A, Velegol D. 52.  2007. Chemotaxis of nonbiological colloidal rods. Phys. Rev. Lett. 99:178103 [Google Scholar]
  53. Wang W, Chiang T, Velegol D, Mallouk TE. 53.  2013. Understanding the efficiency of autonomous nano- and microscale motors. J. Am. Chem. Soc. 135:10557–65 [Google Scholar]
  54. Moran JL, Posner JD. 54.  2011. Electrokinetic locomotion by reaction induced charge auto-electrophoresis. J. Fluid Mech. 680:31–66 [Google Scholar]
  55. Liu R, Sen A. 55.  2011. Autonomous nanomotor based on copper–platinum segmented nanobattery. J. Am. Chem. Soc. 133:20064–67 [Google Scholar]
  56. Solovev AA, Mei Y, Bermúdez Ureña E, Huang G, Schmidt OG. 56.  2009. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5:1688–92 [Google Scholar]
  57. Gao W, Sattayasamitsathit S, Orozco J, Wang J. 57.  2011. Highly efficient catalytic microengines: template electro-synthesis of polyaniline-platinum microtubes. J. Am. Chem. Soc. 133:11862–64 [Google Scholar]
  58. Zhao G, Pumera M. 58.  2013. Concentric bimetallic microjets by electrodeposition. RSC Adv. 3:3963–66 [Google Scholar]
  59. Gao W, Uygun A, Wang J. 59.  2011. Hydrogen-bubble propelled zinc-based microrockets in strongly acidic media. J. Am. Chem. Soc. 134:897–900 [Google Scholar]
  60. Sanchez S, Solovev AA, Mei Y, Schmidt OG. 60.  2010. Dynamics of biocatalytic microengines mediated by variable friction control. J. Am. Chem. Soc. 132:13144–45 [Google Scholar]
  61. Eelkema R, Pollard MM, Vicario J, Katsonis N, Ramon BS. 61.  et al. 2006. Molecular machines: Nanomotor rotates microscale objects. Nature 440:163 [Google Scholar]
  62. Qin L, Banholzer MJ, Xu X, Huang L, Mirkin CA. 62.  2007. Rational design and synthesis of catalytically driven nanorotors. J. Am. Chem. Soc. 129:14870–71 [Google Scholar]
  63. Wang Y, Fei S, Byun Y, Lammert PE, Crespi VH. 63.  et al. 2009. Dynamic interactions between fast microscale rotors. J. Am. Chem. Soc. 131:9926–27 [Google Scholar]
  64. Wang W, Duan W, Sen A, Mallouk TE. 64.  2013. Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles. PNAS 110:17744–49 [Google Scholar]
  65. Ibele M, Mallouk TE, Sen A. 65.  2009. Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem. Int. Ed. 48:3308–12 [Google Scholar]
  66. Ibele ME, Lammert PE, Crespi VH, Sen A. 66.  2010. Emergent, collective oscillations of self-mobile particles and patterned surfaces under redox conditions. ACS Nano 4:4845–51 [Google Scholar]
  67. Hong Y, Diaz M, Córdova-Figueroa UM, Sen A. 67.  2010. Light-driven titanium-dioxide-based reversible microfireworks and micromotor/micropump systems. Adv. Funct. Mater. 20:1568–76 [Google Scholar]
  68. Duan W, Liu R, Sen A. 68.  2013. Transition between collective behaviors of micromotors in response to different stimuli. J. Am. Chem. Soc. 135:1280–83 [Google Scholar]
  69. Sen A, Ibele M, Hong Y, Velegol D. 69.  2009. Chemo and phototactic nano/microbots. Faraday Discuss. 143:15–27 [Google Scholar]
  70. McDermott JJ, Kar A, Daher M, Klara S, Wang G. 70.  et al. 2012. Self-generated diffusioosmotic flows from calcium carbonate micropumps. Langmuir 28:15491–97 [Google Scholar]
  71. Kar A, Chiang T, Rivera IO, Sen A, Velegol D. 71.  2015. Enhanced transport into and out of dead-end pores. ACS Nano 9:746–53 [Google Scholar]
  72. Yadav V, Freedman JD, Grinstaff M, Sen A. 72.  2013. Bone-crack detection, targeting, and repair using ion gradients. Angew. Chem. 52:10997–1001 [Google Scholar]
  73. Duan W, Ibele M, Liu R, Sen A. 73.  2012. Motion analysis of light-powered autonomous silver chloride nanomotors. Eur. Phys. J. E 35:77–84 [Google Scholar]
  74. Lee TC, Alarcón-Correa M, Miksch C, Hahn K, Gibbs JG, Fischer P. 74.  2014. Self-propelling nanomotors in the presence of strong Brownian forces. Nano Lett. 14:2407–12 [Google Scholar]
  75. Wheat PM, Marine NA, Moran JL, Posner JD. 75.  2010. Rapid fabrication of bimetallic spherical motors. Langmuir 26:13052–55 [Google Scholar]
  76. Ke H, Ye S, Carrol RL, Showalter K. 76.  2010. Motion analysis of self-propelled Pt−silica particles in hydrogen peroxide solutions. J. Phys. Chem. A 114:5462–67 [Google Scholar]
  77. Gibbs JG, Fragnito NA, Zhao Y. 77.  2010. Asymmetric Pt/Au coated catalytic micromotors fabricated by dynamic shadowing growth. Appl. Phys. Lett. 97:253107 [Google Scholar]
  78. Gibbs JG, Zhao YP. 78.  2009. Autonomously motile catalytic nanomotors by bubble propulsion. Appl. Phys. Lett. 94:163104 [Google Scholar]
  79. Brown A, Poon W. 79.  2014. Ionic effects in self-propelled Pt-coated Janus swimmers. Soft Matter 10:4016–27 [Google Scholar]
  80. Ebbens S, Gregory DA, Dunderdale G, Howse JR, Ibrahim Y. 80.  et al. 2014. Electrokinetic effects in catalytic platinum-insulator Janus swimmers. Eur. Phys. Lett. 106:58003 [Google Scholar]
  81. Mou F, Chen C, Zhong Q, Yin Y, Ma H, Guan J. 81.  2014. Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Appl. Mater. Interfaces 6:9897–903 [Google Scholar]
  82. Gao W, Feng X, Pei A, Gu Y, Li J, Wang J. 82.  2013. Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale 5:4696–700 [Google Scholar]
  83. Soler L, Magdanz V, Fomin VM, Sanchez S, Schmidt OG. 83.  2013. Self-propelled micromotors for cleaning polluted water. ACS Nano 7:9611–20 [Google Scholar]
  84. Gao W, Pei A, Dong R, Wang J. 84.  2014. Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels. J. Am. Chem. Soc. 136:2276–79 [Google Scholar]
  85. Li J, Li T, Xu T, Kiristi M, Liu W. 85.  et al. 2015. Magneto-acoustic hybrid nanomotor. Nano Lett. 15:4814–21 [Google Scholar]
  86. Burdick J, Laocharoensuk R, Wheat PM, Posner JD, Wang J. 86.  2008. Synthetic nanomotors in microchannel networks: directed microchip motion and controlled manipulation of cargo. J. Am. Chem. Soc. 130:8164–65 [Google Scholar]
  87. Kagan D, Laocharoensuk R, Zimmerman M, Clawson C, Balasubramanian S. 87.  et al. 2010. Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small 6:2741–47 [Google Scholar]
  88. Sundararajan S, Lammert PE, Zudans AW, Crespi VH, Sen A. 88.  2008. Catalytic motors for transport of colloidal cargo. Nano Lett. 8:1271–76 [Google Scholar]
  89. Sundararajan S, Sengupta S, Ibele ME, Sen A. 89.  2010. Drop-off of colloidal cargo transported by catalytic Pt-Au nanomotors via photochemical stimuli. Small 6:1479–82 [Google Scholar]
  90. Gao W, Sattayasamitsathit S, Manesh KM, Weihs D, Wang J. 90.  2010. Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc. 132:14403–5 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070115-032047
Loading
/content/journals/10.1146/annurev-matsci-070115-032047
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error