SiC-based ceramic fibers are derived from polycarbosilane or polymetallocarbosilane precursors and are classified into three groups according to their chemical composition, oxygen content, and C/Si atomic ratio. The first-generation fibers are Si-C-O (Nicalon) fibers and Si-Ti-C-O (Tyranno Lox M) fibers. Both fibers contain more than 10-wt% oxygen owing to oxidation during curing and lead to degradation in strength at temperatures exceeding 1,300°C. The maximum use temperature is 1,100°C. The second-generation fibers are SiC (Hi-Nicalon) fibers and Si-Zr-C-O (Tyranno ZMI) fibers. The oxygen content of these fibers is reduced to less than 1 wt% by electron beam irradiation curing in He. The thermal stability of these fibers is improved (they are stable up to 1,500°C), but their creep resistance is limited to a maximum of 1,150°C because their C/Si atomic ratio results in excess carbon. The third-generation fibers are stoichiometric SiC fibers, i.e., Hi-Nicalon Type S (hereafter Type S), Tyranno SA, and Sylramic™ fibers. They exhibit improved thermal stability and creep resistance up to 1,400°C. Stoichiometric SiC fibers meet many of the requirements for the use of ceramic matrix composites for high-temperature structural application. SiBNC fibers derived from polyborosilazane also show promise for structural applications, remain in the amorphous state up to 1,800°C, and have good high-temperature creep resistance.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Fritz G, Grofe J. 1.  1965. Carbosilanes. Adv. Inorg. Chem. Radiochem. 7:349 [Google Scholar]
  2. Yajima S, Okamura K, Hayashi J. 2.  1975. Continuous silicon carbide fiber of high tensile strength. Chem. Lett. 9:931–34 [Google Scholar]
  3. Bansal NP, Lamon J. 3.  2014. Ceramic Matrix Composites: Materials, Modeling and Technology New York: Wiley & Sons
  4. Schilling CL, Wesson JP, Williams TC. 4.  1983. Polycarbosilane precursors for silicon carbide. Am. Ceram. Soc. Bull. 62:912–15 [Google Scholar]
  5. Yajima S, Okamura K. 5.  1975. Structural analysis in continuous silicon carbide fiber of high tensile strength. Chem. Lett. 4:1209–12 [Google Scholar]
  6. Ishikawa T.6.  1994. Recent developments of the SiC fibers NICALON and its composites, including properties of the SiC fiber HI-NICALON for ultra-high temperature. Compos. Sci. Technol. 51:135–44 [Google Scholar]
  7. Kyushin S, Ichikawa K. 7.  2014. Study on the detailed structure of poly(dimethylsilylene). Organometallics 33:6298–303 [Google Scholar]
  8. Okamura K.8.  1985. Preparation of Preceramics from Polysilane Tokyo: CMC179
  9. Ichikawa H, Machino F, Teranishi H, Ishikawa T. 9.  1990. Oxidation reaction of polycarbosilane. Silicon-Based Polymer Science: A Comprehensive Resource JM Zeigler, FWG Fearon 619–37 Washington, DC: Am. Chem. Soc. [Google Scholar]
  10. Ichikawa H.10.  1987. Discussion on the formation mechanism of polycarbosilane by IR spectroscopy. Nippon Kagaku Kaishi 8:1573–78 [Google Scholar]
  11. Ichikawa H.11.  1986. Research for the preparation of silicon carbide fiber derived from polycarbosilane PhD Thesis, Osaka Univ 42
  12. Yajima S, Okamura K, Hayashi J, Omori M. 12.  1976. Synthesis of continuous SiC fibers with high tensile strength. J. Am. Ceram. Soc. 59:324–27 [Google Scholar]
  13. Yajima S, Okamura K, Hayashi J, Omori M. 13.  1976. Development of a SiC fibre with high tensile strength. Nature 261:683–85 [Google Scholar]
  14. Yajima S, Hayashi J, Okamura K. 14.  1977. Pyrolysis of a polyborodiphenylsiloxane. Nature 266:521–22 [Google Scholar]
  15. Yajima S, Hasegawa Y, Okamura K, Matsuzawa T. 15.  1978. Development of high tensile strength silicon carbide fibre using organosilicon precursor. Nature 273:525–27 [Google Scholar]
  16. Yajima S, Hayashi J, Omori M. 16.  1978. Method for producing organosilicon high molecular weight compounds having silicon and carbon as main skeleton components and said organosilicon high molecular weight compounds US Patent 4,052,430
  17. Simon G, Bunsell AR. 17.  1984. Mechanical and structural characterization of the Nicalon silicon carbide fibre. J. Mater. Sci. 19:3649–57 [Google Scholar]
  18. Wynne KJ, Rice RW. 18.  1984. Ceramics via polymer pyrolysis. Annu. Rev. Mater. Sci. 14:325–34 [Google Scholar]
  19. Yajima S.19.  1980. Tensile strength of SiC fibers as a function of fiber diameter. Philos. Trans. R. Soc. A 294:419–25 [Google Scholar]
  20. Ichikawa H.20.  1987. Effect of curing conditions on mechanical properties of SiC fibre (Nicalon). J. Mater. Sci. Lett. 6:420–22 [Google Scholar]
  21. Laffon C, Flank AM, Lagarde P, Laridjani M, Hagege R. 21.  et al. 1989. Study of Nicalon-based ceramic fibers and powders by XAFS spectrometry, X-ray diffractometry and some additional methods. J. Mater. Sci. 24:1503–12 [Google Scholar]
  22. Phani KK.22.  1988. A new modified Weibull distribution function for evaluation of the strength of silicon carbide and alumina fibers. J. Mater. Sci. 23:2424–28 [Google Scholar]
  23. Sawyer LC, Arons R,, Haimbach F, Jaffe M, Rappaport KD. 23.  1985. Characterization of Nicalon: strength, structure and fractography. Ceram. Eng. Sci. Proc. 6:7–8567–75 [Google Scholar]
  24. Ichikawa H.24.  1989. Mechanical and electrical properties of SiC fiber (Nicalon) and their composites. Proc. 1st Jpn. Int. SAMPE Symp.923–28 Covina, CA: SAMPE [Google Scholar]
  25. Goda K, Fukunaga H. 25.  1986. The evaluation of the strength distribution of silicon carbide and alumina fibers by a multi-model Weibull distribution. J. Mater. Sci. 21:4475–80 [Google Scholar]
  26. Maniette Y, Oberlin A. 26.  1989. TEM characterization of some crude or air heat-treated SiC Nicalon fibres. J. Mater. Sci. 24:3361–70 [Google Scholar]
  27. Sasaki Y, Nishina Y. 27.  1987. Raman study of SiC fibres made from polycarbosilane. J. Mater. Sci. 22:443–48 [Google Scholar]
  28. Ishikawa T, Ichikawa H. 28.  1987. Strength and structure of SiC fiber after exposure to high temperature. Proc. Symp. High Temp. Mater. Chem. 4:205–17 [Google Scholar]
  29. Mah T.29.  1984. Thermal stability of SiC fibres (Nicalon). J. Mater. Sci. 19:1191–201 [Google Scholar]
  30. Pysher DJ.30.  1989. Strength of ceramic fibers at elevated temperatures. J. Am. Ceram. Soc. 72:2284–88 [Google Scholar]
  31. Clark TJ, Arons RH, Stamatoff JB. 31.  1985. Thermal degradation of Nicalon SiC fibers. Ceram. Eng. Sci. Proc. 6:7–8576–78 [Google Scholar]
  32. Bodet R, Jia N, Tressler RE. 32.  1995. Thermomechanical stability of Nicalon fibres in carbon monoxide environment. J. Eur. Ceram. Soc. 15:997–1006 [Google Scholar]
  33. Johnson SM, Brittain RD. 33.  Degradation mechanisms of silicon carbide fibers. J. Am. Ceram. Soc. 71:3C132–35 [Google Scholar]
  34. Okamura K.34.  1987. Ceramic fibres from polymer precursors. Composites 18:259–72 [Google Scholar]
  35. Okamura K, Sato M, Seguchi T. 35.  1987. Application of electron beam irradiation for preparation of SiC fiber from polycarbosilane. Proceeding of the Internal Institute for Sintering Symposium (Sintering’87)102–7 [Google Scholar]
  36. Okamura K, Sato M, Seguchi T. 36.  1989. High temperature strength improvement of Si-C-O fiber by the reduction of oxygen content. Proc. 1st Jpn. Int. SAMPE Symp.929–34 Covina, CA: SAMPE [Google Scholar]
  37. Shimoo T, Hayatsu T,, Narisawa M, Takeda M, Ichikawa H,. 37.  et al. 1993. Mechanism of ceramization of electron-irradiation cured polycarbosilane fiber. J. Ceram. Soc. Jpn. 101:7809–13 [Google Scholar]
  38. Okamura K, Seguchi T. 38.  1992. Application of radiation curing in the preparation of polycarbosilane-derived SiC fibers. J. Inorg. Organomet. Polym. Chem. 2:1171–79 [Google Scholar]
  39. Sugimoto M, Shimoo T, Okamura K, Seguchi T. 39.  1995. Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation. 1. Evolved gas analysis. J. Am. Ceram. Soc. 78:41013–17 [Google Scholar]
  40. Takeda M, Imai Y,, Ichikawa H, Ishikawa T, Seguchi T, Okamura K. 40.  1991. Properties of the low oxygen content SiC fibers on high temperature heat treatment. Ceram. Eng. Sci. Proc. 12:7–81007–18 [Google Scholar]
  41. Takeda M, Imai Y, Ichikawa H, Ishikawa T, Kasai N. 41.  et al. 1992. Thermal stability of the low oxygen silicon carbide fibers derived from polycarbosilane. Ceram. Eng. Sci. Proc. 13:7–8209–17 [Google Scholar]
  42. Takeda M, Imai Y, Ichikawa H, Ishikawa T, Kasai N. 42.  et al. 1993. Thermomechanical analysis of the low oxygen silicon carbide fibers derived from polycarbosilane. Ceram. Eng. Sci. Proc. 14:7–8540–47 [Google Scholar]
  43. Chollon G, Pailler R, Naslain R, Olry P. 43.  1995. Structure, composition and mechanical behavior at high temperature of the oxygen-free Hi-Nicalon fiber. Ceram. Trans. 58:299–304 [Google Scholar]
  44. Bodet R, Bourrat X, Lamon J, Nslain R. 44.  1995. Tensile creep behavior of a silicon carbide-based fibre with a low oxygen content. J. Mater. Sci. 30:661–67 [Google Scholar]
  45. Chollon G, Bodet R, Pailler R, Bourrat X. 45.  1995. Structure and thermal evolution of SiC-based fibers with low oxygen content. Ceram. Trans. 58:305–10 [Google Scholar]
  46. Berger MH, Bunsell AR. 46.  1995. Microstructure and thermal-mechanical stability of a low-oxygen Nicalon fibre. J. Microsc. 177:3230–41 [Google Scholar]
  47. Takeda M.47.  2000. Preparation of silicon carbide fibers and their application to ceramic matrix composites PhD Thesis, Univ. Tokyo
  48. Takeda M, Saeki A, Sakamoto J, Imai Y, Ichikawa H. 48.  2000. Effect of hydrogen atmosphere on pyrolysis of cured polycarbosilane fibers. J. Am. Ceram. Soc. 83:51063–69 [Google Scholar]
  49. Takeda T, Sakamoto J, Imai Y, Ichikawa H, Seguchi T. 49.  et al. 1994. Properties of stoichiometric silicon carbide fiber derived from polycarbosilane. Ceram. Eng. Sci. Proc. 15:4133–41 [Google Scholar]
  50. Ichikawa H, Okamura K, Seguchi T. 50.  1995. Oxygen-free ceramic fibers from organosilicon precursors and E-beam curing. Ceram. Trans. 58:63–74 [Google Scholar]
  51. Takeda M, Sakamoto J, Saeki A, Imai Y, Ichikawa H. 51.  1995. High performance silicon carbide fiber Hi-Nicalon for ceramic matrix composites. Ceram. Eng. Sci. Proc. 16:4–537–44 [Google Scholar]
  52. Takeda M, Sakamoto J, Saeki A, Ichikawa H. 52.  1996. Mechanical and structural analysis of silicon carbide fiber Hi-Nicalon Type S. Ceram. Eng. Sci. Proc. 17:435–42 [Google Scholar]
  53. Takeda M, Urano A, Sakamoto J, Imai Y. 53.  2000. Microstructure and oxidation behavior of silicon carbide fibers derived from polycarbosilane. J. Am. Ceram. Soc. 83:51171–76 [Google Scholar]
  54. Morscher GN, DiCarlo JA. 54.  1991. Fiber creep evaluation by stress relaxation measurements. Ceram. Eng. Sci. Proc. 12:7–81032–38 [Google Scholar]
  55. Tressler RE, DiCarlo JA. 55.  1993. High temperature mechanical properties of advanced ceramic fibers. High Temperature Ceramic Matrix Composites R Naslain, J Lamon 33–49 Cambridge, UK: Woodland [Google Scholar]
  56. Yun H-M, DiCarlo JA. 56.  1999. Comparison of the tensile, creep, and rupture strength properties of stoichiometric SiC fibers. Ceram. Eng. Sci. Proc. 20:3259–72 [Google Scholar]
  57. Toreki W, Sacks MD. 57.  1994. Polymer-derived silicon carbide fibers with low oxygen content and improved thermomechanical stability. Compos. Sci. Technol. 51:145–59 [Google Scholar]
  58. Sacks MD, Morrone AA, Scheiffele GW, Saleem M. 58.  1995. Characterization of polymer-derived silicon carbide fibers with low oxygen content, near-stoichiometric composition, and improved thermo-mechanical stability. Ceram. Eng. Sci. Proc. 16:425–35 [Google Scholar]
  59. Sacks MD, Scheiffele GW, Zang L, Yang Y. 59.  1995. Polymer-derived silicon carbide fibers with near-stoichiometric and low oxygen content. Ceramic Matrix Composites: Advanced High Temperature Structural Materials (Mater. Res. Soc. Symp. Proc. 3653–10 Pittsburg, PA: Mater. Res. Soc. [Google Scholar]
  60. Lipowitz J, Rabe JA, Zank GA. 60.  1991. Polycrystalline SiC fibers from organosilicon polymers. Ceram. Eng. Sci. Proc. 12:9–101819–31 [Google Scholar]
  61. Xu Y, Zangvil A, Lipowitz J, Rabe JA, Zank GA. 61.  1993. Microstructure and microchemistry of polymer-derived crystalline SiC fibers. J. Am. Ceram. Soc. 76:123034–40 [Google Scholar]
  62. Lipowitz J,, Barnard T, Bujaski D, Rabe J, Zank G. 62.  1994. Fine-diameter polycrystalline SiC fibers. Compos. Sci. Technol. 51:167–71 [Google Scholar]
  63. Lipowitz J, Rabe JA, Orr LD, Androl RR. 63.  1994. Polymer derived stoichiometric SiC fibers. Mater. Res. Soc. Symp. Proc. 350:99–104 [Google Scholar]
  64. Lipowitz J, Rabe JA, Ngyuen KT, Orr LD, Androl RR. 64.  1995. Structure and properties of polymer-derived stoichiometric SiC fiber. Ceram. Eng. Sci. Proc. 16:455–62 [Google Scholar]
  65. Lipowitz J, Rabe JA, Zangvil A, Xu Y. 65.  1997. Structure and properties of SYLRAMIC silicon carbide fiber: a polycrystalline, stoichiometric β-SiC composition. Ceram. Eng. Sci. Proc. 18:3147–57 [Google Scholar]
  66. DiCarlo JA, Yun HM. 66.  2005. Non-oxide (silicon carbide) fibers. Handbook of Ceramic Composites NP Bansal 33–52 Boston: Kluwer Acad. [Google Scholar]
  67. Yajima S, Iwai T, Yamamura T, Okamura K, Hasegawa Y. 67.  1981. Synthesis of a polytitanocarbosilane and its conversion into inorganic compounds. J. Mater. Sci. 16:1349–55 [Google Scholar]
  68. Ishikawa T, Shibuya M, Yamamura T. 68.  1990. The conversion process from polydimethylsilane to polycarbosilane in the presence of polyborodiphenylsiloxane. J. Mater. Sci. 25:2809–14 [Google Scholar]
  69. Ishikawa T, Yamamura T, Okamura K. 69.  1990. The accelerating effect of boric compounds on the conversion of the polydimethyl-silane to polycarbosilane. Nippon Kagaku Kaishi 11:1277–83 [Google Scholar]
  70. Yamamura T, Ishikawa T, Shibuya M, Hisayuki T, Okamura K. 70.  1988. Development of a new continuous Si-Ti-C-O fibre using an organometallic polymer precursor. J. Mater. Sci. 23:2589–94 [Google Scholar]
  71. Ishikawa T, Yamamura T, Okamura K. 71.  1992. Production mechanism of polytitanocarbosilane and its conversion of the polymer into inorganic materials. J. Mater. Sci. 25:6627–34 [Google Scholar]
  72. Ichikawa H.72.  2000. 1.04 Silicon carbide fibers (organometallic pyrolysis). Comprehensive Composite Materials 1 A Kelly, C Zweben 126–45 Oxford, UK: Elsevier Sci [Google Scholar]
  73. Fischbach DB, Lemoine PM, Yen GV. 73.  1988. Mechanical properties and structure of a new commercial SiC-type fibre (Tyranno). J. Mater. Sci. 23:987–93 [Google Scholar]
  74. Kumagawa K, Yamaoka H, Shibuya M, Yamamura T. 74.  1997. Thermal stability and chemical corrosion resistance of newly developed continuous Si-Zr-C-O Tyranno fiber. Ceram. Eng. Sci. Proc. 18:3113–18 [Google Scholar]
  75. Ishikawa T, Kohtoku Y, Kumagawa K, Yamamura T, Nagasawa T. 75.  1998. High-strength alkali-resistant sintered SiC fibre stable to 2,200°C. Nature 391:6669773–75 [Google Scholar]
  76. Parthasarathy TA, Mah TI, Folsom CA, Katz AP. 76.  1995. Microstructure stability of Nicalon at 1000°C in air after exposure to salt (NaCl) water. J. Am. Ceram. Soc. 78:71992–96 [Google Scholar]
  77. Legrow GE, Lim TF, Lipowitz J, Reaoch RS. 77.  1987. Ceramics from hydridopolysilazane. J. Am. Ceram. Soc. Bull. 66:2363–67 [Google Scholar]
  78. Cannady JP.78.  1985. Silicon nitride–containing ceramics US Patent 4,535,007
  79. Cannady JP.79.  1985. Hydrosilazane polymers from (R3Si)2NH and HSiCl3 US Patent 4,540,803 [Google Scholar]
  80. Cannady JP.80.  1985. Silicon nitride–containing ceramic material prepared by pyrolysis hydrosilazane polymers from (R3Si)2NH and HSiCl3 US Patent 4,543,344 [Google Scholar]
  81. Sawyer LC, Jameleson M, Brikowski D, Haider MI. 81.  1987. Strength, structure and fracture properties of ceramic fibers produced from polymeric precursors. J. Am. Ceram. Soc. 70:11798–810 [Google Scholar]
  82. Lipowitz J.82.  1991. Polymer-derived ceramic fibers. Ceram. Bull. 70:121889–94 [Google Scholar]
  83. Bunsell AR.83.  1994. Inorganic fibers for composite materials. Compos. Sci. Technol. 51:127–33 [Google Scholar]
  84. Isoda T.84.  1989. Preparation of silicon nitride fibers. Development of Organosilicon Polymer H Sakurai 210–31 Tokyo: CMC [Google Scholar]
  85. Grisaffe SJ.85.  1990. Reinforcements: the key to high performance composites materials NASA Tech. Memo. 103230
  86. Funayama O, Arai M, Tashiro Y, Aoki H, Suzuki T. 86.  et al. 1990. Tensile strength of silicon nitride fibers produced from perhydropolysilazane. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 98:1104–7 [Google Scholar]
  87. 87. MATECH Introducing SiNC-1400X ceramic fiber Brochure, MATECH. http://www.matechgsm.com/brochures/SiNC1400X.pdf
  88. Baldus HP, Passing G, Scholz H, Sporn D, Jansen M, Göring J. 88.  1997. Properties of amorphous SiBNC-ceramic fibres. Key Eng. Mater. 127–131:177–84 [Google Scholar]
  89. Baldus HP, Jansen M, Wagner O. 89.  1992. Synthesis of advanced ceramics in the system Si-B-N and Si-B-N-C employing novel precursor compounds. Better Ceramics Through Chemistry V (Mater. Res. Soc. Symp. Proc., Vol. 271) MJ Hampden-Smith, WG Klemperer WG, CJ Brinker 821 Pittsburg, PA: Mater. Res. Soc. [Google Scholar]
  90. Baldus HP, Passing G. 90.  1994. Studies on SiBN(C)-ceramics: Oxidation-and crystallization behavior led the way to application. Better Ceramics Through Chemistry VI (Mater. Res. Soc. Symp. Proc., Vol. 346)617 Pittsburg, PA: Mater. Res. Soc. [Google Scholar]
  91. Baldus HP, Passing G. 91.  1995. Si-B-(N, C): a new ceramic material for high performance applications. Advanced Structural Fiber Composites P Vincenzini 125–32 Faenza, Italy: Techna [Google Scholar]
  92. DiCarlo JA, Dutta S. 92.  1995. Continuous ceramic fibers for ceramic composites. Handbook on Continuous Fiber Ceramic Matrix Composites R Lehmann, S El-Rahaiby, J Watchtman Jr 137–83 West Lafayette, IN: Ceram. Inf. Anal. Cent., Purdue Univ. [Google Scholar]
  93. Tressler RE, DiCarlo JA. 93.  1995. Creep and rupture of advanced ceramic fiber reinforcements. Ceramic Transaction High Temperature Ceramic Matrix Composites 57 AG Evans, R Naslain 141–55 Westerville, OH: Am. Ceram. Soc. [Google Scholar]
  94. Sacks MD,, Scheiffele GW, Zhang L, Yang Y. 94.  1998. Polymer-derived SiC-based fibers with high tensile strength and improved creep resistance. Ceram. Eng. Sci. Proc. 19:373–86 [Google Scholar]
  95. Wengenmayr R.95.  2015. A material that keeps its cool when hot. MaxPlanckResearch16–23 https://www.mpg.de/790289/F001_Focus_016-023.pdf

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error