This article reviews recent advances on the use of Raman spectroscopy to study and characterize carbon nanostructures. It starts with a brief survey of Raman spectroscopy of graphene and carbon nanotubes, followed by recent developments in the field. Various novel topics, including Stokes–anti-Stokes correlation, tip-enhanced Raman spectroscopy in two dimensions, phonon coherence, and high-pressure and shielding effects, are presented. Some consequences for other fields—quantum optics, near-field electromagnetism, archeology, materials and soil sciences—are discussed. The review ends with a discussion of new perspectives on Raman spectroscopy of carbon nanostructures, including how this technique can contribute to the development of biotechnological applications and nanotoxicology.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Dresselhaus MS, Dresselhaus G, Eklund PC. 1.  1996. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications San Diego: Academic
  2. Saito R, Dresselhaus G, Dresselhaus MS. 2.  1998. Physical Properties of Carbon Nanotubes. London: Imperial College Press
  3. Ferrari AC, Robertson J. 3.  2004. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. A 362:2477–512 [Google Scholar]
  4. Ferrari AC.4.  2007. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143:47–57 [Google Scholar]
  5. Pimenta M, Dresselhaus G, Dresselhaus MS, Cançado L, Jorio A, Saito R. 5.  2007. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9:1276–90 [Google Scholar]
  6. Reich S, Thomsen C, Maultzsch J. 6.  2008. Carbon Nanotubes: Basic Concepts and Physical Properties Weinheim, Ger: Wiley-VCH
  7. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. 7.  2010. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10:751–58 [Google Scholar]
  8. Jorio A, Dresselhaus M, Saito R, Dresselhaus G. 8.  2011. Raman Spectroscopy in Graphene Related Systems Weinheim, Ger: Wiley-VCH
  9. Jorio A.9.  2012. Raman spectroscopy in graphene-based systems: prototypes for nanoscience and nanometrology. ISRN Nanotechnol. 2012:234216 [Google Scholar]
  10. Jorio A, Cançado LG. 10.  2012. Perspectives on Raman spectroscopy of graphene-based systems: from the perfect two-dimensional surface to charcoal. Phys. Chem. Chem. Phys. 14:15246–56 [Google Scholar]
  11. Lucchese MM, Stavale F, Martins Ferreira EH, Vilani C, Moutinho MVO. 11.  et al. 2010. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48:1592–97 [Google Scholar]
  12. Glaser B, Haumaier L, Guggenberger G, Zech W. 12.  2001. The “Terra Preta phenomenon”: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41 [Google Scholar]
  13. Ribeiro-Soares J, Cançado L, Falcão N, Martins Ferreira E, Achete C, Jorio A. 13.  2013. The use of Raman spectroscopy to characterize the carbon materials found in Amazonian anthrosoils. J. Raman Spectrosc. 44:283–89 [Google Scholar]
  14. Mele EJ.14.  2010. Commensuration and interlayer coherence in twisted bilayer graphene. Phys. Rev. B 81:161405 [Google Scholar]
  15. Li G, Luican A, Dos Santos JL, Neto AC, Reina A. 15.  et al. 2010. Observation of van Hove singularities in twisted graphene layers. Nat. Phys. 6:109–13 [Google Scholar]
  16. Jorio A, Cançado LG. 16.  2013. Raman spectroscopy of twisted bilayer graphene. Solid State Commun. 175:3–12 [Google Scholar]
  17. Jorio A, Kasperczyk M, Clark N, Neu E, Maletinsky P. 17.  et al. 2014. Optical-phonon resonances with saddle-point excitons in twisted-bilayer graphene. Nano Lett. 14:5687–92 [Google Scholar]
  18. Liu Z, Winters M, Holodniy M, Dai H. 18.  2007. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. 46:2023–27 [Google Scholar]
  19. Ladeira M, Andrade V, Gomes E, Aguiar C, Moraes E. 19.  et al. 2010. Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes. Nanotechnology 21:385101 [Google Scholar]
  20. Bianco A, Kostarelos K, Prato M. 20.  2005. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9:674–79 [Google Scholar]
  21. Zhao X, Ando Y, Liu Y, Jinno M, Suzuki T. 21.  2003. Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. Phys. Rev. Lett. 90:187401 [Google Scholar]
  22. Schedin F, Lidorikis E, Lombardo A, Kravets VG, Geim AK. 22.  et al. 2010. Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4:5617–26 [Google Scholar]
  23. Heeg S, Fernandez-Garcia R, Oikonomou A, Schedin F, Narula R. 23.  et al. 2012. Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene. Nano Lett. 13:301–8 [Google Scholar]
  24. Heeg S, Oikonomou A, Fernandez-Garcia R, Lehmann C, Maier SA. 24.  et al. 2014. Plasmon-enhanced Raman scattering by carbon nanotubes optically coupled with near-field cavities. Nano Lett. 14:1762–68 [Google Scholar]
  25. Malard LM, Guimarães MHD, Mafra DL, Mazzoni MSC, Jorio A. 25.  2009. Group-theory analysis of electrons and phonons in N-layer graphene systems. Phys. Rev. B 79:125426 [Google Scholar]
  26. Piscanec S, Lazzeri M, Robertson J, Ferrari AC, Mauri F. 26.  2007. Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. Phys. Rev. B 75:1–22 [Google Scholar]
  27. Ribeiro-Soares J, Almeida R, Cançado L, Dresselhaus M, Jorio A. 27.  2015. Group theory for structural analysis and lattice vibrations in phosphorene systems. Phys. Rev. B 91:205421 [Google Scholar]
  28. Tan P, Hu C, Dong J, Shen W, Zhang B. 28.  2001. Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering of Raman modes in a graphite whisker. Phys. Rev. B 64:214301 [Google Scholar]
  29. Thomsen C, Reich S. 29.  2000. Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85:5214–17 [Google Scholar]
  30. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M. 30.  et al. 2006. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97:187401 [Google Scholar]
  31. Saito R, Jorio A, Souza Filho A, Dresselhaus G, Dresselhaus M, Pimenta M. 31.  2001. Probing phonon dispersion relations of graphite by double resonance Raman scattering. Phys. Rev. Lett. 88:027401 [Google Scholar]
  32. Tuinstra F, Koenig J. 32.  1970. Raman spectrum of graphite. J. Chem. Phys. 53:1126 [Google Scholar]
  33. Ferrari AC, Robertson J. 33.  2000. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61:14095–107 [Google Scholar]
  34. Tan P, Han W, Zhao W, Wu Z, Chang K. 34.  et al. 2012. The shear mode of multilayer graphene. Nat. Mater. 11:294–300 [Google Scholar]
  35. Lui CH, Malard LM, Kim S, Lantz G, Laverge FE. 35.  et al. 2012. Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Lett. 12:5539–44 [Google Scholar]
  36. Popov VN, Van Alsenoy C. 36.  2014. Low-frequency phonons of few-layer graphene within a tight-binding model. Phys. Rev. B 90:245429 [Google Scholar]
  37. Malard L, Pimenta M, Dresselhaus G, Dresselhaus M. 37.  2009. Raman spectroscopy in graphene. Phys. Rep. 473:51–87 [Google Scholar]
  38. Gupta AK, Tang Y, Crespi VH, Eklund PC. 38.  2010. Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene. Phys. Rev. B 82:241406 [Google Scholar]
  39. Carozo V, Almeida CM, Ferreira EH, Cancado LG, Achete CA, Jorio A. 39.  2011. Raman signature of graphene superlattices. Nano Lett. 11:4527–34 [Google Scholar]
  40. Righi A, Costa S, Chacham H, Fantini C, Venezuela P. 40.  et al. 2011. Graphene Moiré patterns observed by umklapp double-resonance Raman scattering. Phys. Rev. B 84:241409 [Google Scholar]
  41. Campos-Delgado J, Cançado LG, Achete CA, Jorio A, Raskin JP. 41.  2013. Raman scattering study of the phonon dispersion in twisted bilayer graphene. Nano Res. 6:269–74 [Google Scholar]
  42. Takai K, Oga M, Sato H, Enoki T, Ohki Y. 42.  et al. 2003. Structure and electronic properties of a nongraphitic disordered carbon system and its heat-treatment effects. Phys. Rev. B 67:214202 [Google Scholar]
  43. Cançado L, Takai K, Enoki T, Endo M, Kim Y. 43.  et al. 2006. General equation for the determination of the crystallite size la of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88:163106 [Google Scholar]
  44. Cançado L, Jorio A, Ferreira E, Stavale F, Achete C. 44.  et al. 2011. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11:3190–96 [Google Scholar]
  45. Ribeiro-Soares J, Oliveros M, Garin C, David M, Martins L. 45.  et al. 2015. Structural analysis of polycrystalline graphene systems by Raman spectroscopy. Carbon 95:646–52 [Google Scholar]
  46. Chou SG, Son H, Kong J, Jorio A, Saito R. 46.  et al. 2007. Length characterization of DNA-wrapped carbon nanotubes using Raman spectroscopy. Appl. Phys. Lett. 90:131109 [Google Scholar]
  47. Martins-Ferreira E, Moutinho M, Stavale F, Lucchese M, Capaz R. 47.  et al. 2010. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 82:125429 [Google Scholar]
  48. Barros EB, Jorio A, Samsonidze GG, Capaz RB, Souza Filho AG. 48.  et al. 2006. Review on the symmetry-related properties of carbon nanotubes. Phys. Rep. 431:261–302 [Google Scholar]
  49. Spataru CD, Ismail-Beigi S, Benedict LX, Louie SG. 49.  2004. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 92:077402 [Google Scholar]
  50. Milnera M, Kürti J, Hulman M, Kuzmany H. 50.  2000. Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes. Phys. Rev. Lett. 84:1324–27 [Google Scholar]
  51. Fantini C, Jorio A, Souza M, Strano M, Dresselhaus M, Pimenta M. 51.  2004. Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects. Phys. Rev. Lett. 93:147406 [Google Scholar]
  52. Telg H, Maultzsch J, Reich S, Hennrich F, Thomsen C. 52.  2004. Chirality distribution and transition energies of carbon nanotubes. Phys. Rev. Lett. 93:177401 [Google Scholar]
  53. Jorio A, Saito R, Hafner J, Lieber C, Hunter M. 53.  et al. 2001. Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86:1118 [Google Scholar]
  54. Araujo P, Pesce P, Dresselhaus M, Sato K, Saito R, Jorio A. 54.  2010. Resonance Raman spectroscopy of the radial breathing modes in carbon nanotubes. Physica E 42:1251–61 [Google Scholar]
  55. Sasaki K, Saito R, Dresselhaus G, Dresselhaus MS, Farhat H, Kong J. 55.  2008. Curvature induced optical phonon frequency shift in metallic carbon nanotubes. Phys. Rev. B 77:245441 [Google Scholar]
  56. Christofilos D, Arvanitidis J, Kourouklis GA, Ves S, Takenobu T. 56.  et al. 2007. Identification of inner and outer shells of double-wall carbon nanotubes using high pressure Raman spectroscopy. Phys. Rev. B 76:113402 [Google Scholar]
  57. Caillier C, Machon D, San-Miguel A, Arenal R, Montagnac G. 57.  et al. 2008. Probing high-pressure properties of single-wall carbon nanotubes through fullerene encapsulation. Phys. Rev. B 77:125418 [Google Scholar]
  58. Peters MJ, McNeil LE, Lu JP, Kahn D. 58.  2000. Structural phase transition in carbon nanotube bundles under pressure. Phys. Rev. B 61:5939–44 [Google Scholar]
  59. Elliott JA, Sandler JK, Windle AH, Young RJ, Shaffer MS. 59.  2004. Collapse of single-wall carbon nanotubes is diameter dependent. Phys. Rev. Lett. 92:095501 [Google Scholar]
  60. Yao M, Wang Z, Liu B, Zou Y, Yu S. 60.  et al. 2008. Raman signature to identify the structural transition of single-wall carbon nanotubes under high pressure. Phys. Rev. B 78:205411 [Google Scholar]
  61. Capaz RB, Sparatu CD, Tangney P, Cohen ML, Louie SG. 61.  2004. Hydrostatic pressure effects on the structural and electronic properties of carbon nanotubes. Phys. Status Solid. B 241:3352–59 [Google Scholar]
  62. Ye X, Sun DY, Gong XG. 62.  2005. Pressure-induced structural transition of double-walled carbon nanotubes. Phys. Rev. B 72:035454 [Google Scholar]
  63. Kürti J, Zólyomi V, Grüneis A, Kuzmany H. 63.  2002. Double resonant Raman phenomena enhanced by van Hove singularities in single-wall carbon nanotubes. Phys. Rev. B 65:165433 [Google Scholar]
  64. Araujo PT, Maciel IO, Pesce PBC, Pimenta Ma, Doorn SK. 64.  et al. 2008. Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Phys. Rev. B 77:2–5 [Google Scholar]
  65. Dresselhaus M, Jorio A, Saito R. 65.  2010. Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu. Rev. Condens. Matter Phys. 1:89–108 [Google Scholar]
  66. Jorio A, Lucchese M, Stavale F, Martins-Ferreira E, Moutinho M. 66.  et al. 2010. Raman study of ion-induced defects in N-layer graphene. J. Phys. Condens. Matter 22:334204 [Google Scholar]
  67. Faugeras C, Faugeras B, Orlita M, Potemski M, Nair RR, Geim A. 67.  2010. Thermal conductivity of graphene in corbino membrane geometry. ACS Nano 4:1889–92 [Google Scholar]
  68. Berciaud S, Han MY, Mak KF, Brus LE, Kim P, Heinz TF. 68.  2010. Electron and optical phonon temperatures in electrically biased graphene. Phys. Rev. Lett. 104:227401 [Google Scholar]
  69. Steiner M, Freitag M, Perebeinos V, Tsang JC, Small JP. 69.  et al. 2009. Phonon populations and electrical power dissipation in carbon nanotube transistors. Nature Nanotechnol. 4:320–24 [Google Scholar]
  70. Souza Filho A, Jorio A, Hafner J, Lieber C, Saito R. 70.  et al. 2001. Electronic transition energy Eii for an isolated (n, m) single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio. Phys. Rev. B 63:241404 [Google Scholar]
  71. Song D, Wang F, Dukovic G, Zheng M, Semke E. 71.  et al. 2008. Direct measurement of the lifetime of optical phonons in single-walled carbon nanotubes. Phys. Rev. Lett. 100:225503 [Google Scholar]
  72. Klyshko D.72.  1977. Correlation between the Stokes and anti-Stokes components in inelastic scattering of light. Sov. J. Quantum Electron. 7:755 [Google Scholar]
  73. Kasperczyk M, Jorio A, Neu E, Maletinsky P, Novotny L. 73.  2015. Stokes–anti-Stokes correlations in diamond. Opt. Lett. 40:2393–96 [Google Scholar]
  74. Parra-Murillo CA, Santos MF, Monken CH, Jorio A. 74.  2015. Power dependence of Klyshko's Stokes–anti-Stokes correlation in the inelastic scattering of light. arXiv 1503.01518 [cond-mat.mtrl-sci]
  75. Jorio A, Kasperczyk M, Clark N, Neu E, Maletinsky P. 75.  et al. 2015. Stokes and anti-Stokes Raman spectra of the high-energy C–C stretching modes in graphene and diamond. Phys. Status Solid. B 252:112380–84 [Google Scholar]
  76. Lee K, Sussman B, Sprague M, Michelberger P, Reim K. 76.  et al. 2012. Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond. Nat. Photonics 6:41–44 [Google Scholar]
  77. Cançado LG, Hartschuh A, Novotny L. 77.  2009. Tip-enhanced Raman spectroscopy of carbon nanotubes. J. Raman Spectrosc. 40:1420–26 [Google Scholar]
  78. Schmid T, Opilik L, Blum C, Zenobi R. 78.  2013. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Angew. Chem. Int. Ed. 52:5940–54 [Google Scholar]
  79. Chen C, Hayazawa N, Kawata S. 79.  2014. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 5:3312 [Google Scholar]
  80. Zhang R, Zhang Y, Dong Z, Jiang S, Zhang C. 80.  et al. 2013. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498:82–86 [Google Scholar]
  81. Hartschuh A, Sánchez EJ, Xie XS, Novotny L. 81.  2003. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90:095503 [Google Scholar]
  82. Cançado L, Jorio A, Ismach A, Joselevich E, Hartschuh A, Novotny L. 82.  2009. Mechanism of near-field Raman enhancement in one-dimensional systems. Phys. Rev. Lett. 103:186101 [Google Scholar]
  83. Anderson N, Hartschuh A, Cronin S, Novotny L. 83.  2005. Nanoscale vibrational analysis of single-walled carbon nanotubes. J. Am. Chem. Soc. 127:2533–37 [Google Scholar]
  84. Hartschuh A, Qian H, Meixner AJ, Anderson N, Novotny L. 84.  2005. Nanoscale optical imaging of excitons in single-walled carbon nanotubes. Nano Lett. 5:2310–13 [Google Scholar]
  85. Saito Y, Hayazawa N, Kataura H, Murakami T, Tsukagoshi K. 85.  et al. 2005. Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes. Chem. Phys. Lett. 410:136–41 [Google Scholar]
  86. Anderson N, Hartschuh A, Novotny L. 86.  2007. Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. Nano Lett. 7:577–82 [Google Scholar]
  87. Maciel I, Anderson N, Pimenta M, Hartschuh A, Qian H. 87.  et al. 2008. Electron and phonon renormalization near charged defects in carbon nanotubes. Nat. Mater. 7:878–83 [Google Scholar]
  88. Qian H, Araujo PT, Georgi C, Gokus T, Hartmann N. 88.  et al. 2008. Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping. Nano Lett. 8:2706–11 [Google Scholar]
  89. Saito Y, Verma P, Masui K, Inouye Y, Kawata S. 89.  2009. Nano-scale analysis of graphene layers by tip-enhanced near-field Raman spectroscopy. J. Raman Spectrosc. 40:1434–40 [Google Scholar]
  90. Domke KF, Pettinger B. 90.  2009. Tip-enhanced Raman spectroscopy of 6H-SiC with graphene adlayers: selective suppression of E1 modes. J. Raman Spectrosc. 40:1427–33 [Google Scholar]
  91. Stadler J, Schmid T, Zenobi R. 91.  2010. Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy. Nano Lett. 10:4514–20 [Google Scholar]
  92. Su W, Roy D. 92.  2013. Visualizing graphene edges using tip-enhanced Raman spectroscopy. J. Vac. Sci. Technol. B 31:041808 [Google Scholar]
  93. Beams R, Cançado LG, Jorio A, Vamivakas AN, Novotny L. 93.  2015. Tip-enhanced Raman mapping of local strain in graphene. Nanotechnology 26:175702 [Google Scholar]
  94. Cançado LG, Beams R, Jorio A, Novotny L. 94.  2014. Theory of spatial coherence in near-field Raman scattering. Phys. Rev. X 4:031054 [Google Scholar]
  95. Beams R, Cançado LG, Oh SH, Jorio A, Novotny L. 95.  2014. Spatial coherence in near-field Raman scattering. Phys. Rev. Lett. 113:186101 [Google Scholar]
  96. Zhao X, Ando Y, Liu Y, Jinno M, Suzuki T. 96.  2003. Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. Phys. Rev. Lett. 90:187401 [Google Scholar]
  97. Pfeiffer R, Kuzmany H, Kramberger C, Schaman C, Pichler T. 97.  et al. 2003. Unusual high degree of unperturbed environment in the interior of single-wall carbon nanotubes. Phys. Rev. Lett. 90:225501 [Google Scholar]
  98. Ghandour AJ, Dunstan DJ, Sapelkin A, Proctor JE, Halsall MP. 98.  2008. High-pressure Raman response of single-walled carbon nanotubes: effect of the excitation laser energy. Phys. Rev. B 78:125420 [Google Scholar]
  99. Arvanitidis J, Christofilos D, Papagelis K, Andrikopoulos KS, Takenobu T. 99.  et al. 2005. Pressure screening in the interior of primary shells in double-wall carbon nanotubes. Phys. Rev. B 71:125404 [Google Scholar]
  100. Merlen A, Toulemonde P, Bendiab N, Aouizerat A. 100.  et al. 2006. Raman spectroscopy of open-ended single wall carbon nanotubes under pressure: effect of the pressure transmitting medium. Phys. Status Solid. B 243:690–99 [Google Scholar]
  101. Aguiar AL, Barros EB, Capaz RB, Souza Filho AG, Freire PTC. 101.  et al. 2011. Pressure-induced collapse in double-walled carbon nanotubes: chemical and mechanical screening effects. J. Phys. Chem. C 115:5378–84 [Google Scholar]
  102. Aguiar AL, San-Miguel A, Barros EB, Kalbáč M, Machon D. 102.  et al. 2012. Effects of intercalation and inhomogeneous filling on the collapse pressure of double-wall carbon nanotubes. Phys. Rev. B 86:195410 [Google Scholar]
  103. Puech P, Hubel H, Dunstan DJ, Bacsa RR, Laurent C, Bacsa WS. 103.  2004. Discontinuous tangential stress in double wall carbon nanotubes. Phys. Rev. Lett. 93:095506 [Google Scholar]
  104. Merlen A, Bendiab N, Toulemonde P, Aouizerat A, Miguel AS. 104.  et al. 2005. Resonant Raman spectroscopy of single-wall carbon nanotubes under pressure. Phys. Rev. B 72:035409 [Google Scholar]
  105. Caillier C, Machon D, San-Miguel A, Arenal R, Montagnac G. 105.  et al. 2008. Probing high-pressure properties of single-wall carbon nanotubes through fullerene encapsulation. Phys. Rev. B 77:125418 [Google Scholar]
  106. Alvarez L, Bantignies JL, Leparc R, Aznar R, Sauvajol JL. 106.  et al. 2010. High-pressure behaviour of polyiodides confined into single-walled carbon nanotubes: a Raman study. Phys. Rev. B 82:205403 [Google Scholar]
  107. Muramatsu H, Shimamoto D, Hayashi T, Kim YA, Terrones M. 107.  et al. 2011. Bulk synthesis of narrow diameter and highly crystalline triple-walled carbon nanotubes by coalescing fullerene peapods. Adv. Mater. 23:1761–64 [Google Scholar]
  108. Hirschmann TC, Araujo PT, Muramatsu H, Zhang X, Nielsch K. 108.  et al. 2013. Characterization of bundled and individual triple-walled carbon nanotubes by resonant Raman spectroscopy. ACS Nano 7:2381–87 [Google Scholar]
  109. Hirschmann TC, Araujo PT, Muramatsu H, Rodriguez-Nieva JF, Seifert M. 109.  et al. 2014. Role of intertube interactions in double- and triple-walled carbon nanotubes. ACS Nano 8:1330–41 [Google Scholar]
  110. Hirschmann TC, Dresselhaus MS, Muramatsu H, Seifert M, Wurstbauer U. 110.  et al. 2015. G′ band in double- and triple-walled carbon nanotubes: a Raman study. Phys. Rev. B 91:075402 [Google Scholar]
  111. Alencar RS, Aguiar AL, Paschoal AR, Freire PTC, Kim YA. 111.  et al. 2014. Pressure-induced selectivity for probing inner tubes in double- and triple-walled carbon nanotubes: a resonance Raman study. J. Phys. Chem. C 118:8153–58 [Google Scholar]
  112. Artyukhov VI, Liu M, Yakobson BI. 112.  2014. Mechanically induced metal-insulator transition in carbyne. Nano Lett. 14:4224–29 [Google Scholar]
  113. Liu M, Artyukhov VI, Lee H, Xu F, Yakobson BI. 113.  2013. Carbyne from first principles: chain of C atoms, a nanorod or a nanorope. ACS Nano 7:10075–82 [Google Scholar]
  114. Cataldo F.114.  2006. Polyynes: synthesis, properties, and applications. J. Am. Chem. Soc. 128:8987–88 [Google Scholar]
  115. Fantini C, Cruz E, Jorio A, Terrones M, Terrones H. 115.  et al. 2006. Resonance Raman study of linear carbon chains formed by the heat treatment of double-wall carbon nanotubes. Phys. Rev. B 73:193408 [Google Scholar]
  116. Nishide D, Dohi H, Wakabayashi T, Nishibori E, Aoyagi S. 116.  et al. 2006. Single-wall carbon nanotubes encaging linear chain C10H2 polyyne molecules inside. Chem. Phys. Lett. 428:356–60 [Google Scholar]
  117. Jinno M, Ando Y, Bandow S, Fan J, Yudasaka M, Iijima S. 117.  2006. Raman scattering study for heat-treated carbon nanotubes: the origin of ≈1855 cm−1 Raman band. Chem. Phys. Lett. 418:109–14 [Google Scholar]
  118. Kastner J, Kuzmany H, Kavan L, Dousek FP, Kurti J. 118.  1995. Reductive preparation of carbyne with high yield: an in situ Raman scattering study. Macromolecules 28:344–53 [Google Scholar]
  119. Yang S, Kertesz M. 119.  2008. Linear CN clusters: Are they acetylenic or cumulenic. ? J. Phys. Chem. A 112:146–51 [Google Scholar]
  120. Kertesz M, Yang S. 120.  2009. Energetics of linear carbon chains in one-dimensional restricted environment. Phys. Chem. Chem. Phys. 11:425–30 [Google Scholar]
  121. Andrade N, Vasconcelos T, Gouvea C, Archanjo B, Achete C. 121.  et al. 2015. Linear carbon chains encapsulated in multiwall carbon nanotubes: resonance Raman spectroscopy and transmission electron microscopy studies. Carbon 90:172–80 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error