Powder bed fusion processes are additive manufacturing technologies that are expected to induce the third industrial revolution. Components are built up layer by layer in a powder bed by selectively melting confined areas, according to sliced 3D model data. This technique allows for manufacturing of highly complex geometries hardly machinable with conventional technologies. However, the underlying physical phenomena are sparsely understood and difficult to observe during processing. Therefore, an intensive and expensive trial-and-error principle is applied to produce components with the desired dimensional accuracy, material characteristics, and mechanical properties. This review presents numerical modeling approaches on multiple length scales and timescales to describe different aspects of powder bed fusion processes. In combination with tailored experiments, the numerical results enlarge the process understanding of the underlying physical mechanisms and support the development of suitable process strategies and component topologies.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. ASTM 2012. Standard terminology for additive manufacturing technologies ASTM Stand. F2792 [Google Scholar]
  2. 2. The Economist 2012. The third industrial revolution. The Economist April 21 [Google Scholar]
  3. 3. Wohlers Assoc 2014. Wohlers report 2014: 3D printing and additive manufacturing state of the industry Rep., Wohlers Assoc. [Google Scholar]
  4. Mani M, Lane BM, Donmez MA, Feng SC, Moylan SP, Fesperman RR Jr. 4.  2015. Measurement science needs for real-time control of additive manufacturing powder bed fusion processes Tech. Rep., Natl. Inst. Stand. Technol Provides a comprehensive overview of requirements for real-time control of powder bed fusion processes. [Google Scholar]
  5. Kruth JP, Levy G, Klocke F, Childs T. 5.  2007. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. Manuf. Technol. 56:730–59 [Google Scholar]
  6. Murr L, Gaytan S, Ramirez D, Martinez E, Hernandez J. 6.  et al. 2012. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28:1–14 [Google Scholar]
  7. Al-Bermani S, Blackmore M, Zhang W, Todd I. 7.  2010. The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V. Metall. Mater. Trans. A 41:3422–34 [Google Scholar]
  8. Körner C, Bauereiß A, Attar E. 8.  2013. Fundamental consolidation mechanisms during selective beam melting of powders. Model. Simul. Mater. Sci. Eng. 21:085011 [Google Scholar]
  9. Gu D, Meiners W, Wissenbach K, Poprawe R. 9.  2012. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57:133–64 [Google Scholar]
  10. Heinl P, Rottmair A, Körner C, Singer R. 10.  2007. Cellular titanium by selective electron beam melting. Adv. Eng. Mater. 9:360–64 [Google Scholar]
  11. Markl M.11.  2015. Numerical modeling and simulation of selective electron beam melting using a coupled lattice Boltzmann and discrete element method. PhD Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg Provides a comprehensive overview of a 3D model for selective electron beam melting. [Google Scholar]
  12. Parteli E.12.  2013. DEM simulation of particles of complex shapes using the multisphere method: application for additive manufacturing. AIP Conf. Proc. 1542:185–88 [Google Scholar]
  13. Drouin D, Couture A, Joly D, Tastet X, Aimez V, Gauvin R. 13.  2007. Casino v2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29:92–101 [Google Scholar]
  14. Wang X, Kruth J. 14.  2000. Energy absorption and penetration in selective laser sintering: a ray tracing model. Proc. Int. Conf. Math. Model. Simul. Met. Technol.673–82 [Google Scholar]
  15. Zhou J, Zhang Y, Chen J. 15.  2009. Numerical simulation of laser irradiation to a randomly packed bimodal powder bed. Int. J. Heat Mass Transf. 52:3137–46 [Google Scholar]
  16. Körner C, Attar E, Heinl P. 16.  2011. Mesoscopic simulation of selective beam melting processes. J. Mater. Proc. Technol. 211:978–87Reports the first numerical lattice Boltzmann model to analyze selective beam melting processes on the powder scale. [Google Scholar]
  17. Ammer R, Markl M, Ljungblad U, Körner C, Rüde U. 17.  2014. Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method. Comput. Math. Appl. 67:318–30 [Google Scholar]
  18. Khairallah S, Anderson A. 18.  2014. Mesoscopic simulation model of selective laser melting of stainless steel powder. J. Mater. Proc. Technol. 214:2627–36 [Google Scholar]
  19. Panwisawas C, Gebelin JC, Warnken N, Broomfield R, Reed R. 19.  2011. Numerical modelling of stress and strain evolution during solidification of a single crystal superalloy. Adv. Mater. Res. 278:204–9 [Google Scholar]
  20. Geiger M, Leitz KH, Koch H, Otto A. 20.  2009. A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets. Prod. Eng. 3:127–36 [Google Scholar]
  21. Jamshidinia M, Kong F, Kovacevic R. 21.  2013. The coupled CFD-FEM model of electron beam melting (EBM). ASME Dist. F ECTC Proc. 12:163–71 [Google Scholar]
  22. Zäh M, Lutzmann S. 22.  2010. Modelling and simulation of electron beam melting. Prod. Eng. 4:15–23 [Google Scholar]
  23. Dai K, Shaw L. 23.  2001. Thermal and stress modeling of multi-material laser processing. Acta Mater. 49:4171–81 [Google Scholar]
  24. Hussein A, Hao L, Yan C, Everson R. 24.  2013. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater. Des. 52:638–47 [Google Scholar]
  25. Papadakis L, Loizou A, Risse J, Schrage J. 25.  2014. Numerical computation of component shape distortion manufactured by selective laser melting. Procedia CIRP 18:90–95 [Google Scholar]
  26. Gong X, Chou K. 26.  2015. Phase-field modeling of microstructure evolution in electron beam additive manufacturing. JOM 67:1176–82 [Google Scholar]
  27. Markl M, Bauereiß A, Rai A, Körner C. 27.  2016. Numerical investigations of selective electron beam melting on the powder scale. Proc. Fraunhofer Dir. Digit. Manuf. Conf. In press [Google Scholar]
  28. Rai A, Markl M, Körner C. 28.  2016. A coupled cellular automaton–lattice Boltzmann model for grain structure simulation during additive manufacturing. Submitted to Comput. Mater. Sci. [Google Scholar]
  29. Rai A, Helmer H, Körner C. 29.  2016. Simulation of grain structure evolution during powder bed based additive manufacturing. Submitted to Additive ManufacturingCompares grain structure characteristics emerging from selective electron beam melting with cellular automaton simulation results. [Google Scholar]
  30. Zhang J, Liou F, Seufzer W, Newkirk J, Fan Z. 30.  et al. 2013. Probabilistic simulation of solidification microstructure evolution during laser-based metal deposition. Proc. Int. Solid Freeform Fabr. Symp., 24th739–48 [Google Scholar]
  31. Tolochko N, Laoui T, Khlopkov Y, Mozzharov S, Titov V, Ignatiev M. 31.  2000. Absorptance of powder materials suitable for laser sintering. Rapid Prototyp. J. 6:155–60 [Google Scholar]
  32. Gusarov A, Kruth JP. 32.  2005. Modelling of radiation transfer in metallic powders at laser treatment. Int. J. Heat Mass Transf. 48:3423–34 [Google Scholar]
  33. Klassen A, Bauereiß A, Körner C. 33.  2014. Modelling of electron beam absorption in complex geometries. J. Phys. D 47:065307 [Google Scholar]
  34. Eschey C, Lutzmann S, Zäh M. 34.  2009. Examination of the powder spreading effect in electron beam melting (EBM). Proc. Int. Solid Freeform Fabr. Symp., 20th308–19 [Google Scholar]
  35. Scharowsky T, Osmanlic F, Singer R, Körner C. 35.  2014. Melt pool dynamics during selective electron beam melting. Appl. Phys. A 114:1303–7 [Google Scholar]
  36. Tolochko N, Mozzharov S, Yadroitsev I, Laoui T, Froyen L. 36.  et al. 2004. Balling processes during selective laser treatment of powders. Rapid Prototyp. J. 10:78–87 [Google Scholar]
  37. Yadroitsev I, Bertrand P, Smurov I. 37.  2007. Parametric analysis of the selective laser melting process. Appl. Surf. Sci. 253:8064–69 [Google Scholar]
  38. Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I. 38.  2010. Single track formation in selective laser melting of metal powders. J. Mater. Proc. Technol. 210:1624–31 [Google Scholar]
  39. Louvis E, Fox P, Sutcliffe C. 39.  2011. Selective laser melting of aluminium components. J. Mater. Proc. Technol. 211:275–84 [Google Scholar]
  40. Das S.40.  2003. Physical aspects of process control in selective laser sintering of metals. Adv. Eng. Mater. 5:701–11 [Google Scholar]
  41. Mercelis P, Kruth JP. 41.  2006. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 12:254–65Lays out an excellent physical and mathematical background on residual stresses. [Google Scholar]
  42. Zäh M, Branner G. 42.  2010. Investigations on residual stresses and deformations in selective laser melting. Prod. Eng. 4:35–45Compares numerical and experimental stresses and distortions of cantilevers manufactured by selective laser melting. [Google Scholar]
  43. Murr L, Quinones S, Gaytan S, Lopez M, Rodela A. 43.  et al. 2009. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2:20–32 [Google Scholar]
  44. Bauereiß A, Scharowsky T, Körner C. 44.  2014. Defect generation and propagation mechanism during additive manufacturing by selective beam melting. J. Mater. Proc. Technol. 214:2522–28 [Google Scholar]
  45. Vandenbroucke B, Kruth J. 45.  2007. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp. J. 13:196–203 [Google Scholar]
  46. Zäh M, Kahnert M. 46.  2009. The effect of scanning strategies on electron beam sintering. Prod. Eng. 3:217–24 [Google Scholar]
  47. Gusarov A, Yadroitsev I, Bertrand P, Smurov I. 47.  2007. Heat transfer modelling and stability analysis of selective laser melting. Appl. Surf. Sci. 254:975–79 [Google Scholar]
  48. Strano G, Hao L, Everson R, Evans K. 48.  2013. Surface roughness analysis, modelling and prediction in selective laser melting. J. Mater. Proc. Technol. 213:589–97Provides an excellent physical and mathematical background on surface roughness. [Google Scholar]
  49. Kruth JP, Badrossamay M, Yasa E, Deckers J, Thijs L, Van Humbeeck J. 49.  2010. Part and material properties in selective laser melting of metals. Int. Symp. Electromach., 16th3–14 [Google Scholar]
  50. Jüchter V, Scharowsky T, Singer R, Körner C. 50.  2014. Processing window and evaporation phenomena for Ti-6Al-4V produced by selective electron beam melting. Acta Mater. 76:252–58 [Google Scholar]
  51. Panwisawas C, Qiu C, Sovani Y, Brooks J, Attallah M, Basoalto H. 51.  2015. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting. Scr. Mater. 105:14–17 [Google Scholar]
  52. Gürtler FJ, Karg M, Leitz KH, Schmidt M. 52.  2013. Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method. Phys. Procedia 41:881–86 [Google Scholar]
  53. Shi Y, Zhang Y. 53.  2008. Simulation of random packing of spherical particles with different size distributions. Appl. Phys. A 92:621–26 [Google Scholar]
  54. Cundall PA, Strack ODL. 54.  1979. Discrete numerical model for granular assemblies. Geotechnique 29:47–65 [Google Scholar]
  55. Parteli E, Schmidt J, Blümel C, Wirth KE, Peukert W, Pöschel T. 55.  2014. Attractive particle interaction forces and packing density of fine glass powders. Sci. Rep. 4:6227 [Google Scholar]
  56. Fischer P, Romano V, Weber H, Karapatis N, Boillat E, Glardon R. 56.  2003. Sintering of commercially pure titanium powder with a Nd:YAG laser source. Acta Mater. 51:1651–62 [Google Scholar]
  57. Mahale TR.57.  2009. Electron beam melting of advanced materials and structures PhD Thesis, N. C. State Univ. [Google Scholar]
  58. Markl M, Ammer R, Ljungblad U, Rüde U, Körner C. 58.  2013. Electron beam absorption algorithms for electron beam melting processes simulated by a three-dimensional thermal free surface lattice Boltzmann method in a distributed and parallel environment. Procedia Comput. Sci. 18:2127–36 [Google Scholar]
  59. Scharowsky T, Bauereiß A, Singer R, Körner C. 59.  2012. Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting. Proc. Int. Solid Freeform Fabr. Symp., 23rd815–20 [Google Scholar]
  60. Körner C, Pohl T, Rüde U, Thürey N, Zeiser T. 60.  2006. Parallel lattice Boltzmann methods for CFD applications. Numerical Solution of Partial Differential Equations on Parallel Computers A Bruaset, A Tveito 439–66 Berlin/Heidelberg, Ger: Springer [Google Scholar]
  61. Markl M, Körner C. 61.  2015. Free surface Neumann boundary condition for the advection-diffusion lattice Boltzmann method. J. Comput. Phys. 301:230–46 [Google Scholar]
  62. Attar E, Körner C. 62.  2011. Lattice Boltzmann model for thermal free surface flows with liquid-solid phase transition. Int. J. Heat Fluid Flow 32:156–63 [Google Scholar]
  63. Attar E, Körner C. 63.  2009. Lattice Boltzmann method for dynamic wetting problems. J. Colloid Interface Sci. 335:84–93 [Google Scholar]
  64. Chen S, Doolen G. 64.  1998. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30:329–64 [Google Scholar]
  65. Klassen A, Scharowsky T, Körner C. 65.  2014. Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods. J. Phys. D 47:275303 [Google Scholar]
  66. King W, Barth H, Castillo V, Gallegos G, Gibbs J. 66.  et al. 2014. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Proc. Technol. 214:2915–25 [Google Scholar]
  67. Eymard R, Gallouët T, Herbin R. 67.  2000. Finite volume methods. Handb. Numer. Anal.7:713–1018 [Google Scholar]
  68. Szabo B, Babuška I. 68.  1991. Finite Element Analysis New York: Wiley [Google Scholar]
  69. Deligianni D, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis Y. 69.  2001. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials 22:1241–51 [Google Scholar]
  70. Heinl P, Müller L, Körner C, Singer R, Müller F. 70.  2008. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 4:1536–44 [Google Scholar]
  71. Cansizoglu O, Harrysson O, Cormier D, West H, Mahale T. 71.  2008. Properties of Ti-6Al-4V non-stochastic lattice structures fabricated via electron beam melting. Mater. Sci. Eng. A 492:468–74 [Google Scholar]
  72. Qiu C, Panwisawas C, Ward M, Basoalto H, Brooks J, Attallah M. 72.  2015. On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater. 96:72–79 [Google Scholar]
  73. Gürtler FJ, Karg M, Dobler M, Kohl S, Tzivilsky I, Schmidt M. 73.  2014. Influence of powder distribution on process stability in laser beam melting: analysis of melt pool dynamics by numerical simulations. Proc. Int. Solid Freeform Fabr. Symp., 25th1099–117 [Google Scholar]
  74. Ammer R, Rüde U, Markl M, Jüchter V, Körner C. 74.  2014. Validation experiments for LBM simulations of electron beam melting. Int. J. Mod. Phys. C 25:1441009 [Google Scholar]
  75. Markl M, Ammer R, Rüde U, Körner C. 75.  2015. Numerical investigations on hatching process strategies for powder-bed-based additive manufacturing using an electron beam. Int. J. Adv. Manuf. Technol. 78:239–47 [Google Scholar]
  76. Gusarov A, Yadroitsev I, Bertrand P, Smurov I. 76.  2009. Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. J. Heat Transf. 131:1–10 [Google Scholar]
  77. King W, Anderson A, Ferencz R, Hodge N, Kamath C, Khairallah S. 77.  2015. Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater. Sci. Technol. 31:957–68Gives a multiscale overview of 3D numerical models for powder bed fusion. [Google Scholar]
  78. Li J, Li L, Stott F. 78.  2004. Comparison of volumetric and surface heating sources in the modeling of laser melting of ceramic materials. Int. J. Heat Mass Transf. 47:1159–74 [Google Scholar]
  79. Rombouts M, Froyen L, Gusarov A, Bentefour E, Glorieux C. 79.  2005. Photopyroelectric measurement of thermal conductivity of metallic powders. J. Appl. Phys. 97:024905 [Google Scholar]
  80. Gusarov A, Kovalev E. 80.  2009. Model of thermal conductivity in powder beds. Phys. Rev. B 80:024202 [Google Scholar]
  81. Loh LE, Chua CK, Yeong WY, Song J, Mapar M. 81.  et al. 2014. Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061. Int. J. Heat Mass Transf. 80:288–300 [Google Scholar]
  82. Schilp J, Seidel C, Krauss H, Weirather J. 82.  2014. Investigations on temperature fields during laser beam melting by means of process monitoring and multiscale process modelling. Adv. Mech. Eng. 6:217584 [Google Scholar]
  83. Shen N, Chou K. 83.  2012. Thermal modeling of electron beam additive manufacturing process—powder sintering effects. Presented at ASME Int. Manuf. Sci. Eng. Conf., Pap. MSEC2012-7253 287–95
  84. Soylemez E, Beuth J, Taminger K. 84.  2010. Controlling melt pool dimensions over a wide range of material deposition rates in electron beam additive manufacturing. Proc. Int. Solid Freeform Fabr. Symp., 21st571–82 [Google Scholar]
  85. Cheng B, Chou K. 85.  2013. Melt pool geometry simulations for powder-based electron beam additive manufacturing. Proc. Int. Solid Freeform Fabr. Symp., 24th644–54 [Google Scholar]
  86. Childs T, Hauser G, Badrossamay M. 86.  2005. Selective laser sintering (melting) of stainless and tool steel powders: experiments and modelling. Proc. Inst. Mech. Eng. B 219:339–57 [Google Scholar]
  87. Jamshidinia M, Kong F, Kovacevic R. 87.  2013. Numerical modeling of heat distribution in the electron beam melting of Ti-6Al-4V. J. Manuf. Sci. Eng. Trans. ASME 135:061010 [Google Scholar]
  88. Yuan P, Gu D. 88.  2015. Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments. J. Phys. D 48:035303 [Google Scholar]
  89. Gusarov A, Smurov I. 89.  2010. Modeling the interaction of laser radiation with powder bed at selective laser melting. Phys. Procedia 5:381–94 [Google Scholar]
  90. Contuzzi N, Campanelli S, Ludovico A. 90.  2011. 3D finite element analysis in the selective laser melting process. Int. J. Simul. Model. 10:113–21 [Google Scholar]
  91. Ilin A, Logvinov R, Kulikov A, Prihodovsky A, Xu H. 91.  et al. 2014. Computer aided optimisation of the thermal management during laser beam melting process. Phys. Procedia 56:390–99 [Google Scholar]
  92. Hodge N, Ferencz R, Solberg J. 92.  2014. Implementation of a thermomechanical model for the simulation of selective laser melting. Comput. Mech. 54:33–51 [Google Scholar]
  93. Jamshidinia M, Kovacevic R. 93.  2014. The influence of heat accumulation on the surface roughness in additive manufacturing by electron beam melting (EBM). Proc. ASPE Spring Meet.45–50 [Google Scholar]
  94. Verhaeghe F, Craeghs T, Heulens J, Pandelaers L. 94.  2009. A pragmatic model for selective laser melting with evaporation. Acta Mater. 57:6006–12 [Google Scholar]
  95. Riedlbauer D, Steinmann P, Mergheim J. 95.  2014. Thermomechanical finite element simulations of selective electron beam melting processes: performance considerations. Comput. Mech. 54:109–22 [Google Scholar]
  96. Shen N, Chou K. 96.  2012. Simulations of thermo-mechanical characteristics in electron beam additive manufacturing. ASME Int. Mech. Eng. Congr. Expo. Proc. 3:67–74 [Google Scholar]
  97. Matsumoto M, Shiomi M, Osakada K, Abe F. 97.  2002. Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int. J. Mach. Tools Manuf. 42:61–67 [Google Scholar]
  98. Li J, Li L, Stott F. 98.  2004. Thermal stresses and their implication on cracking during laser melting of ceramic materials. Acta Mater. 52:4385–98 [Google Scholar]
  99. Li J, Li L, Stott F. 99.  2004. A three-dimensional numerical model for a convection-diffusion phase change process during laser melting of ceramic materials. Int. J. Heat Mass Transf. 47:5523–39 [Google Scholar]
  100. Dai K, Shaw L. 100.  2006. Parametric studies of multi-material laser densification. Mater. Sci. Eng. A 430:221–29 [Google Scholar]
  101. Dai K, Shaw L. 101.  2005. Finite element analysis of the effect of volume shrinkage during laser densification. Acta Mater. 53:4743–54 [Google Scholar]
  102. Dai K, Shaw L. 102.  2004. Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders. Acta Mater. 52:69–80 [Google Scholar]
  103. Krol T, Seidel C, Zäh M. 103.  2013. Prioritization of process parameters for an efficient optimisation of additive manufacturing by means of a finite element method. Procedia CIRP 12:169–74 [Google Scholar]
  104. Krol T, Seidel C, Schilp J, Hofmann M, Gan W, Zäh M. 104.  2013. Verification of structural simulation results of metal-based additive manufacturing by means of neutron diffraction. Phys. Procedia 41:849–57 [Google Scholar]
  105. Seidel C, Zäh MF, Wunderer M, Weirather J, Krol TA, Ott M. 105.  2014. Simulation of the laser beam melting process—approaches for an efficient modelling of the beam-material interaction. Procedia CIRP 25:146–53 [Google Scholar]
  106. Papadakis L, Loizou A, Risse J, Bremen S, Schrage J. 106.  2014. A computational reduction model for appraising structural effects in selective laser melting manufacturing. Virtual Phys. Prototyp. 9:17–25 [Google Scholar]
  107. Keller N, Neugebauer F, Xu H, Ploshikhin V. 107.  2013. Thermo-mechanical simulation of additive layer manufacturing of titanium aerospace structures. Proc. DGM Int. Congr. Light Mater. [Google Scholar]
  108. Neugebauer F, Keller N, Xu H, Kober C, Ploshikhin V. 108.  2014. Simulation of selective laser melting using process specific layer based meshing. Proc. Fraunhofer Dir. Digit. Manuf. Conf.297–302 [Google Scholar]
  109. Boettinger W, Warren J, Beckermann C, Karma A. 109.  2002. Phase-field simulation of solidification. Annu. Rev. Mater. Sci. 32:163–94 [Google Scholar]
  110. Chen LQ.110.  2002. Phase-field models for microstructure evolution. Annu. Rev. Mater. Sci. 32:113–40 [Google Scholar]
  111. Rappaz M, Gandin CA. 111.  1993. Probabilistic modelling of microstructure formation in solidification processes. Acta Metall. Mater. 41:345–60 [Google Scholar]
  112. Boettinger W, Coriell S, Greer A, Karma A, Kurz W. 112.  et al. 2000. Solidification microstructures: recent developments, future directions. Acta Mater. 48:43–70 [Google Scholar]
  113. Wolfram S.113.  1983. Statistical mechanics of cellular automata. Rev. Mod. Phys. 55:601–44 [Google Scholar]
  114. Körner C, Helmer H, Bauereiß A, Singer R. 114.  2014. Tailoring the grain structure of IN718 during selective electron beam melting. MATEC Web Conf. 14:08001 [Google Scholar]
  115. Garg A, Tai K, Savalani M. 115.  2014. State-of-the-art in empirical modelling of rapid prototyping processes. Rapid Prototyp. J. 20:164–78 [Google Scholar]
  116. Munguía J, Ciurana J, Riba C. 116.  2009. Neural-network-based model for build-time estimation in selective laser sintering. Proc. Inst. Mech. Eng. B 223:995–1003 [Google Scholar]
  117. Boillat E, Kolossov S, Glardon R, Loher M, Saladin D, Levy G. 117.  2004. Finite element and neural network models for process optimization in selective laser sintering. Proc. Inst. Mech. Eng. B 218:607–14 [Google Scholar]
  118. Bendsøe M, Sigmund O. 118.  2003. Topology Optimization: Theory, Methods, and Applications Berlin/Heidelberg, Ger: Springer [Google Scholar]
  119. Querin O, Steven G, Xie Y. 119.  1998. Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng. Comput. 15:1031–48 [Google Scholar]
  120. Brackett D, Ashcroft I, Hague R. 120.  2011. Topology optimization for additive manufacturing. Proc. Int. Solid Freeform Fabr. Symp., 22nd348–62 [Google Scholar]
  121. Khanoki S, Pasini D. 121.  2011. Multiscale design and multiobjective optimization of orthopaedic cellular hip implants. Proc. ASME Design Eng. Tech. Conf. 5:935–44 [Google Scholar]
  122. Greifenstein J, Stingl M. 122.  2014. Simultaneous material and topology optimization based on topological derivatives. IFIP Adv. Inf. Commun. Technol. 443:118–27 [Google Scholar]
  123. Mitschke H, Schwerdtfeger J, Schury F, Stingl M, Körner C. 123.  et al. 2011. Finding auxetic frameworks in periodic tessellations. Adv. Mater. 23:2669–74 [Google Scholar]
  124. Schwerdtfeger J, Wein F, Leugering G, Singer R, Körner C. 124.  et al. 2011. Design of auxetic structures via mathematical optimization. Adv. Mater. 23:2650–54 [Google Scholar]
  125. Chahine G, Smith P, Kovacevic R. 125.  2010. Application of topology optimization in modern additive manufacturing. Proc. Int. Solid Freeform Fabr. Symp., 21st606–18 [Google Scholar]
  126. Doubrovski Z, Verlinden J, Geraedts J. 126.  2011. Optimal design for additive manufacturing: opportunities and challenges. Proc. ASME Des. Eng. Tech. Conf. 9:635–46 [Google Scholar]
  127. Hu D, Kovacevic R. 127.  2003. Sensing, modeling and control for laser-based additive manufacturing. Int. J. Mach. Tools Manuf. 43:51–60 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error