1932

Abstract

Hard solids with predominantly covalent–ionic bonding are finding rapidly increasing usage in many modern technologies. However, this class of solids is severely limited by their intrinsic brittleness—they break easily. It is in this context that a fundamental knowledge of brittle fracture mechanisms is of practical importance. This review covers the essential features of crack behavior in characteristically brittle solids, starting with fundamental physical and chemical models, with distinctions between equilibrium and kinetic states, stability and instability, and crack propagation and initiation. Means of imparting higher strength and toughness to otherwise brittle materials are then explored along with their pros and cons. Select technological areas where fracture properties constitute a vital facet of material function—windows and display panels, structural ceramics, biomaterials, layer structures, manufacturing, and nanomechanics—are then presented as illustrative case studies. The balance between factors such as strength and toughness, scaling and threshold effects, and crack containment and crack avoidance, as well as structure at the atomic and microstructural scales, emerge as critical factors in materials design.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070121-042249
2022-07-01
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-070121-042249.html?itemId=/content/journals/10.1146/annurev-matsci-070121-042249&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Griffith AA. 1921. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. A 221:163–98
    [Google Scholar]
  2. 2.
    Irwin GR. 1958. Fracture. Elasticity and Plasticity S Flügge 551–90 Berlin: Springer-Verlag
    [Google Scholar]
  3. 3.
    Lawn BR. 1983. Physics of fracture. J. Am. Ceram. Soc. 66:83–91
    [Google Scholar]
  4. 4.
    Atkins AG, Mai YM. 1985. Elastic and Plastic Fracture Chichester, UK: Ellis Horwood
    [Google Scholar]
  5. 5.
    Lawn BR. 1993. Fracture of Brittle Solids Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  6. 6.
    Barenblatt GI. 1962. The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7:55–129
    [Google Scholar]
  7. 7.
    Elliot HA. 1947. An analysis of the condition for rupture due to Griffith cracks. Proc. Phys. Soc. London 59:208–23
    [Google Scholar]
  8. 8.
    Gilman JJ. 1960. Direct measurements of the surface energies of solids. J. Appl. Phys. 31:2208–18
    [Google Scholar]
  9. 9.
    Thomson RM, Hsieh C, Rana V 1971. Lattice trapping of fracture cracks. J. Appl. Phys. 42:3154–60
    [Google Scholar]
  10. 10.
    Sinclair JE, Lawn BR. 1972. An atomistic study of cracks in diamond-structure crystals. Proc. R. Soc. A 329:83–103
    [Google Scholar]
  11. 11.
    Gumbsch P. 2011. An atomistic study of brittle fracture: toward explicit failure criteria from atomistic modeling. J. Mater. Res. 10:2897–907
    [Google Scholar]
  12. 12.
    Hockey BJ, Lawn BR. 1975. Electron microscopy of microcracking about indentations in aluminum oxide and silicon carbide. J. Mater. Sci. 10:1275–84
    [Google Scholar]
  13. 13.
    Lawn BR, Hockey BJ, Wiederhorn SM. 1980. Atomically sharp cracks in brittle solids: an electron microscopy study. J. Mater. Sci. 15:1207–23
    [Google Scholar]
  14. 14.
    Guin J-P, Wiederhorn SM. 2004. Fracture of silicate glasses: ductile or brittle?. Phys. Rev. Lett. 92:215502
    [Google Scholar]
  15. 15.
    Orowan E. 1944. The fatigue of glass under stress. Nature 154:341–43
    [Google Scholar]
  16. 16.
    Wiederhorn SM. 1967. Influence of water vapor on crack propagation in soda-lime glass. J. Am. Ceram. Soc. 50:407–14
    [Google Scholar]
  17. 17.
    Wiederhorn SM, Bolz LH. 1970. Stress corrosion and static fatigue of glass. J. Am. Ceram. Soc. 53:543–48
    [Google Scholar]
  18. 18.
    Wiederhorn SM. 1972. A chemical interpretation of static fatigue. J. Am. Ceram. Soc. 55:81–85
    [Google Scholar]
  19. 19.
    Lawn BR. 1974. Diffusion-controlled subcritical crack growth. Mater. Sci. Eng. 13:277–83
    [Google Scholar]
  20. 20.
    Wan K-T, Lathabai S, Lawn BR. 1990. Crack velocity functions and thresholds in brittle solids. J. Eur. Ceram. Soc. 6:259–68
    [Google Scholar]
  21. 21.
    Michalske TA, Freiman SW. 1981. A molecular interpretation of stress corrosion in silica. Nature 295:511–12
    [Google Scholar]
  22. 22.
    Garofalini SH. 1990. Molecular dynamics computer simulations of silica surface structure and adsorption of water molecules. J. Non-Cryst. Solids 120:1–12
    [Google Scholar]
  23. 23.
    Israelachvili JN. 2011. Intermolecular and Surface Forces London: Academic
    [Google Scholar]
  24. 24.
    Lawn BR, Roach DH, Thomson RM. 1987. Thresholds and reversibility in brittle cracks: an atomistic surface force model. J. Mater. Sci. 22:4036–50
    [Google Scholar]
  25. 25.
    Lawn BR. 1967. Partial cone crack formation in a brittle material loaded with a sliding indenter. Proc. R. Soc. A 299:307–16
    [Google Scholar]
  26. 26.
    Tolansky S, Howes VR. 1957. Induction of ring cracks on diamond surfaces. Proc. Phys. Soc. Lond. B 70:521–26
    [Google Scholar]
  27. 27.
    Hill MJ, Rowcliffe DJ. 1974. Deformation of silicon at low temperatures. J. Mater. Sci. 9:1569–76
    [Google Scholar]
  28. 28.
    Page TF, Oliver WC, McHargue CJ. 1992. The deformation behavior of ceramic crystals subjected to very low load (nano)indentations. J. Mater. Res. 7:450–73
    [Google Scholar]
  29. 29.
    Bradby JE, Williams JS, Wong-Leung J, Swain MV, Munroe P. 2001. Mechanical deformation in silicon by micro-indentation. J. Mater. Res. 16:1500–7
    [Google Scholar]
  30. 30.
    Zarudi I, Zhang LC, Swain MV. 2003. Microstructure evolution in monocrystalline silicon in cyclic microindentations. J. Mater. Res. 18:758–61
    [Google Scholar]
  31. 31.
    Zener C. 1948. The micromechanism of fracture. Fracturing of Metals3–31 Cleveland, OH: Am. Soc. Met.
    [Google Scholar]
  32. 32.
    Ashby MF, Hallam SD. 1986. The failure of brittle solids containing small cracks under compressive stress states. Acta Metall. 34:497–510
    [Google Scholar]
  33. 33.
    Horii H, Nemat-Nasser S. 1986. Brittle failure in compression: splitting, faulting and brittle-ductile transition. Philos. Trans. R. Soc. A 319:337–74
    [Google Scholar]
  34. 34.
    Lawn BR, Marshall DB. 1998. Nonlinear stress–strain curves for solids containing closed cracks with friction. J. Mech. Phys. Solids 46:85–113
    [Google Scholar]
  35. 35.
    Lawn BR. 1998. Indentation of ceramics with spheres: a century after Hertz. J. Am. Ceram. Soc. 81:1977–94
    [Google Scholar]
  36. 36.
    Lange FF. 1989. Powder processing science and technology for increased reliability. J. Am. Ceram. Soc. 72:3–15
    [Google Scholar]
  37. 37.
    Tabor D. 1951. Hardness of Metals Oxford, UK: Clarendon
    [Google Scholar]
  38. 38.
    Kendall K. 1978. The impossibility of comminuting small particles by compression. Nature 272:710–11
    [Google Scholar]
  39. 39.
    Hagan JT. 1979. Micromechanics of crack nucleation during indentations. J. Mater. Sci. 14:2975–80
    [Google Scholar]
  40. 40.
    Hagan JT. 1980. Shear deformation under pyramidal indenters in soda-lime glass. J. Mater. Sci. 15:1417–24
    [Google Scholar]
  41. 41.
    Fang X, Bishara H, Ding K, Tsybenko H, Porz L et al. 2021. Nanoindentation pop-in in oxides at room temperature: dislocation activation or crack formation?. J. Am. Ceram. Soc. 104:4728–41
    [Google Scholar]
  42. 42.
    Lawn BR, Marshall DB. 1979. Hardness, toughness, and brittleness: an indentation analysis. J. Am. Ceram. Soc. 62:347–50
    [Google Scholar]
  43. 43.
    Rice RW. 1972. Strength/grain-size effects in ceramics. Proc. Br. Ceram. Soc. 20:205–57
    [Google Scholar]
  44. 44.
    Lawn BR. 2004. Fracture and deformation in brittle solids: a perspective on the issue of scale. J. Mater. Res. 19:22–29
    [Google Scholar]
  45. 45.
    Evans AG. 1990. Perspective on the development of high-toughness ceramics. J. Am. Ceram. Soc. 73:187–206
    [Google Scholar]
  46. 46.
    Becher PF. 1991. Microstructural design of toughened ceramics. J. Am. Ceram. Soc. 74:255–69
    [Google Scholar]
  47. 47.
    Kendall K. 2020. Crack Control: Using Fracture Theory to Create Tough New Materials Amsterdam: Elsevier
    [Google Scholar]
  48. 48.
    He M-Y, Hutchinson JW. 1989. Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 25:1053–67
    [Google Scholar]
  49. 49.
    Shaw MC, Marshall DB, Dadkhah MS, Evans AG. 1993. Cracking and damage mechanisms in ceramic/metal multilayers. Acta Metall. 41:3311–22
    [Google Scholar]
  50. 50.
    Lee JJ-W, Lloyd IK, Chai H, Jung J-G, Lawn BR. 2007. Arrest, deflection, penetration and reinitiation of cracks in brittle layers across interfaces. Acta Mater. 58:5859–66
    [Google Scholar]
  51. 51.
    Faber KT, Evans AG. 1983. Crack deflection processes—I. Theory. Acta Metall. 31:565–76
    [Google Scholar]
  52. 52.
    Faber KT, Evans AG. 1983. Crack deflection processes—II. Experiment. Acta Metall. 31:577–84
    [Google Scholar]
  53. 53.
    Burns SJ, Webb WW. 1966. Plastic deformation during cleavage of LiF. Trans. Metall. Soc. AIME 236:1165–74
    [Google Scholar]
  54. 54.
    Rice JR, Thomson RM. 1974. Ductile versus brittle behaviour of crystals. Philos. Mag. 29:73–97
    [Google Scholar]
  55. 55.
    Green DJ, Hannink RHJ, Swain MV. 1989. Transformation Toughening of Ceramics Boca Raton, FL: CRC Press
    [Google Scholar]
  56. 56.
    Swanson PL, Fairbanks CJ, Lawn BR, Mai Y-W, Hockey BJ. 1987. Crack-interface grain bridging as a fracture resistance mechanism in ceramics: I. Experimental study on alumina. J. Am. Ceram. Soc. 70:279–89
    [Google Scholar]
  57. 57.
    Lange FF. 1979. Fracture toughness of Si3N4 as a function of the initial α-phase content. J. Am. Ceram. Soc. 62:428–30
    [Google Scholar]
  58. 58.
    Marshall DB, Cox BN, Evans AG. 1985. The mechanics of matrix cracking in brittle-matrix fibre composites. Acta Metall. 23:2013–21
    [Google Scholar]
  59. 59.
    Marshall DB, Cox BN. 2008. Integral textile ceramic structures. Annu. Rev. Mater. Res. 38:425–43
    [Google Scholar]
  60. 60.
    Cox BN, Marshall DB. 1994. Concepts for bridged cracks in fracture and fatigue. Acta Metall. Mater. 42:341–63
    [Google Scholar]
  61. 61.
    Ritchie RO. 1988. Mechanisms of fatigue crack propagation in metals, ceramics, composites: role of crack-tip shielding. Mater. Sci. Eng. A 103:15–28
    [Google Scholar]
  62. 62.
    Karasu B, Bereket O, Biryan E, Sanoglu D. 2017. The latest developments in glass science and technology. El-Cezerî J. Sci. Eng. 4:209–33
    [Google Scholar]
  63. 63.
    Bos F, Louter C 2021. Structural glass in architecture. Encyclopedia of Glass Science, Technology, History, and Culture P Richet 1071–80 Hoboken, NJ: Wiley
    [Google Scholar]
  64. 64.
    Yadavali SK, Dai Z, Zhou H, Padture NP. 2020. Facile healing of cracks in organic–inorganic halide perovskite thin films. Acta Mater. 187:112–21
    [Google Scholar]
  65. 65.
    Evans AG, Wiederhorn SM. 1974. Proof testing of ceramic materials—an analytical basis for failure prediction. Int. J. Fract. 10:379–92
    [Google Scholar]
  66. 66.
    Lawn BR, Wiederhorn SM, Johnson H 1975. Strength degradation of brittle surfaces: blunt indenters. J. Am. Ceram. Soc. 58:428–32
    [Google Scholar]
  67. 67.
    Wiederhorn SM, Lawn BR. 1977. Strength degradation of glass resulting from impact with spheres. J. Am. Ceram. Soc. 60:451–58
    [Google Scholar]
  68. 68.
    Wiederhorn SM, Hockey BJ. 1983. Effect of material parameters on the erosion resistance of brittle materials. J. Mater. Sci. 18:766–80
    [Google Scholar]
  69. 69.
    Maurer RD. 1975. Strength of fiber optical waveguides. Appl. Phys. Lett. 27:220–21
    [Google Scholar]
  70. 70.
    Kurkjian CR, Krause JT, Mathewson MG. 1989. Strength and fatigue of silica optical fibers. J. Lightwave Technol. 7:1360–70
    [Google Scholar]
  71. 71.
    Pambianchi MS, Dejneka M, Gross T, Ellison A, Gomez S et al. 2016. Corning Incorporated: designing a new future with glass and optics. Materials Research for Manufacturing LD Madsen, EB Svedberg 1–38 Cham, Switz: Springer
    [Google Scholar]
  72. 72.
    Gross TM, Price JJ. 2017. Vickers indentation cracking of ion-exchanged glasses: quasistatic versus dynamic contact. Front. Mater. 4:4
    [Google Scholar]
  73. 73.
    Lawn BR, Marshall DB. 1977. Contact fracture resistance of physically and chemically tempered glass plates: a theoretical model. Phys. Chem. Glasses 18:7–18
    [Google Scholar]
  74. 74.
    Godfrey DJ. 1983. The use of ceramics for engines. Mater. Des. 4:759–65
    [Google Scholar]
  75. 75.
    Garvie RC, Hannink RHJ, Pascoe RT. 1975. Ceramic steel?. Nature 258:703–4
    [Google Scholar]
  76. 76.
    Heuer AH, Hobbs LW, eds. 1981. Science and Technology of Zirconia, Vol. 3 Cleveland, OH: Am. Ceram. Soc.
    [Google Scholar]
  77. 77.
    Hannink RHJ, Swain MV. 1994. Progress in transformation toughening of ceramics. Annu. Rev. Mater. Sci. 24:359–408
    [Google Scholar]
  78. 78.
    Ritchie RO. 1998. Mechanisms of fatigue crack propagation in ductile and brittle solids. Int. J. Fract. 100:55–83
    [Google Scholar]
  79. 79.
    Zhang Y, Sailer I, Lawn BR. 2013. Fatigue of dental ceramics. J. Dent. 41:1135–47
    [Google Scholar]
  80. 80.
    Chevalier J, Cales B, Drouin JM. 1999. Low-temperature aging of Y-TZP ceramics. J. Am. Ceram. Soc. 82:2150–54
    [Google Scholar]
  81. 81.
    Bennison SJ, Lawn BR. 1989. Role of interfacial grain-bridging sliding friction in the crack-resistance and strength properties of nontransforming ceramics. Acta Metall. 37:2659–71
    [Google Scholar]
  82. 82.
    Padture NP, Lawn BR. 1994. Toughness properties of a silicon carbide with an in-situ-induced heterogeneous grain structure. J. Am. Ceram. Soc. 77:2518–22
    [Google Scholar]
  83. 83.
    Kelly A. 1966. Strong Solids Oxford, UK: Clarendon Press
    [Google Scholar]
  84. 84.
    Morgan PED, Marshall DB. 1995. Ceramic composites of monazite and alumina. J. Am. Ceram. Soc. 78:1553–63
    [Google Scholar]
  85. 85.
    Cox BN, Yang QD, Marshall DB, Davis JB. 2005. Design issues in using integral textile ceramic composites in turbine engine combustors. J. Propuls. Power 21:314–26
    [Google Scholar]
  86. 86.
    Cox BN, Bale HA, Begley M, Naderi M, Novak M et al. 2014. Stochastic virtual tests for high-temperature ceramic matrix composites. Annu. Rev. Mater. Res. 44:479–529
    [Google Scholar]
  87. 87.
    Steibel J. 2019. Ceramic matrix composites taking flight at GE aviation. Am. Ceram. Soc. Bull. 98:30–33
    [Google Scholar]
  88. 88.
    Fellet M, Rossner W. 2015. Ceramic-matrix composites take the heat. Mater. Res. Soc. Bull. 40:916–18
    [Google Scholar]
  89. 89.
    Shah SP 1990. Toughening Mechanisms in Quasi-Brittle Materials Dordrecht, Neth: Kluwer Acad.
    [Google Scholar]
  90. 90.
    Shah SP, Swartz SE, Ouyang C. 1995. Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock, and Other Quasi-Brittle Materials New York: John Wiley
    [Google Scholar]
  91. 91.
    Jaeger JC, Cook NGW. 1979. Fundamentals of Rock Mechanics London: Chapman & Hall
    [Google Scholar]
  92. 92.
    Lowry AR, Pérez-Gussinyé M. 2011. The role of crustal quartz in controlling Cordilleran deformation. Nature 471:353–57
    [Google Scholar]
  93. 93.
    Lawn B, Marshall D, Raj R, Hirth G, Page T, Yeomans J. 2021. Precipitous weakening of quartz at the α–β inversion. J. Am. Ceram. Soc. 104:23–26
    [Google Scholar]
  94. 94.
    Chan HM. 1997. Layered ceramics: processing and mechanical behavior. Annu. Rev. Mater. Sci. 27:249–82
    [Google Scholar]
  95. 95.
    Padture NP, Gell M, Jordan EH. 2002. Thermal barrier coatings for gas-turbine engine applications. Science 296:280–84
    [Google Scholar]
  96. 96.
    Clarke DR, Levi CG. 2003. Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res. 33:383–417
    [Google Scholar]
  97. 97.
    Clarke DR, Oechsner M, Padture NP. 2012. Thermal barrier coatings for more efficient gas-turbine engines. Mater. Res. Soc. Bull. 37:891–98
    [Google Scholar]
  98. 98.
    Hutchinson JW, Suo Z. 1992. Mixed-mode cracking in layered materials. Adv. Appl. Mech. 29:63–191
    [Google Scholar]
  99. 99.
    Bernard B, Bianchi L, Malié A, Joulia A, Rémy B. 2016. Columnar suspension plasma sprayed coating microstructural control for thermal barrier coating application. J. Eur. Ceram. Soc. 36:1081–89
    [Google Scholar]
  100. 100.
    Lawn BR, Lee KS, Chai H, Pajares A, Kim DK et al. 2000. Damage-resistant brittle coatings. Adv. Eng. Mater. 2:745–48
    [Google Scholar]
  101. 101.
    Lawn BR, Deng Y, Miranda P, Pajares A, Chai H, Kim DK. 2002. Overview: damage in brittle layer structures from concentrated loads. J. Mater. Res. 17:3019–36
    [Google Scholar]
  102. 102.
    Lawn BR, Bush MB, Barani A, Constantino P, Wroe S. 2013. Inferring biological evolution from fracture patterns in teeth. J. Theor. Biol. 338:59–65
    [Google Scholar]
  103. 103.
    Evans AG, Suo Z, Wang RZ, Askay IA, He MY, Hutchinson JW. 2001. Model for the robust mechanical behavior of nacre. J. Mater. Res. 16:2475–84
    [Google Scholar]
  104. 104.
    Wang C-A, Huang Y, Qingfeng Z, Gao H. 2000. Biomimetic structure design—a possible approach to change the brittleness of ceramics in nature. Mater. Sci. Eng. C 11:9–12
    [Google Scholar]
  105. 105.
    Fratzl P. 2007. Biomimetic materials research: What can we learn from nature's structural materials?. J. R. Soc. Interface 4:637–42
    [Google Scholar]
  106. 106.
    Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO. 2008. Tough, bio-inspired hybrid materials. Science 322:1516–20
    [Google Scholar]
  107. 107.
    Wegst UGJ, Bao H, Saiz E, Tomsia AP, Ritchie RO. 2014. Bioinspired structural materials. Nat. Mater. 14:23–36
    [Google Scholar]
  108. 108.
    Mirkhalaf M, Dastjerdi AK, Bartelat F. 2014. Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nat. Commun. 5:3166
    [Google Scholar]
  109. 109.
    Yin Z, Hannard F, Barthelat F. 2019. Impact-resistant nacre-like transparent materials. Science 364:1260–63
    [Google Scholar]
  110. 110.
    Thompson VP. 2020. The tooth: an analogue for biomimetic materials design and processing. Dent. Mater. 36:25–42
    [Google Scholar]
  111. 111.
    Lucas PW. 2004. Dental Functional Morphology: How Teeth Work Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  112. 112.
    Lawn BR, Lee JJ-W, Chai H. 2010. Teeth: among nature's most durable biocomposites. Annu. Rev. Mater. Res. 40:55–75
    [Google Scholar]
  113. 113.
    Borrero-Lopez O, Constantino PJ, Bush MB, Lawn BR. 2020. On the vital role of enamel prism interfaces and graded properties in human tooth survival. Biol. Lett. 16:20200498
    [Google Scholar]
  114. 114.
    Ritchie RO, Buehler MJ, Hasma P. 2009. Plasticity and toughness in bone. Phys. Today 62:41–47
    [Google Scholar]
  115. 115.
    Launey ME, Buehler MJ, Ritchie RO. 2010. On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Res. 40:255–53
    [Google Scholar]
  116. 116.
    Fu Q, Saiz E, Rahaman MN, Tomsia AP. 2011. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater. Sci. Eng. C 31:1245–56
    [Google Scholar]
  117. 117.
    Nalla RK, Stölken JS, Kinny JH, Ritchie RO. 2005. Fracture in human cortical bone: local fracture criteria and toughening mechanisms. J. Biomech. 38:1517–25
    [Google Scholar]
  118. 118.
    Zimmerman EA, Busse B, Ritchie RO. 2015. The fracture mechanics of human bone: influence of disease and treatment. BoneKEy Rep 4:743
    [Google Scholar]
  119. 119.
    Miranda P, Pajares A, Saiz E, Tomsia AP, Guibertau F. 2008. Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. J. Biomed. Mater. Res. 85:218–27
    [Google Scholar]
  120. 120.
    Kelly JR. 1997. Ceramics in restorative and prosthetic dentistry. Annu. Rev. Mater. Sci. 27:443–68
    [Google Scholar]
  121. 121.
    Rekow ED, Silva NRFA, Coehlo PG, Zhang Y, Guess P, Thompson VP. 2011. Performance of dental ceramics: challenges for improvements. J. Dent. Res. 90:937–52
    [Google Scholar]
  122. 122.
    Zhang Y, Mai Z, Barani A, Bush M, Lawn B. 2016. Fracture-resistant monolithic dental crowns. Dent. Mater. 32:442–49
    [Google Scholar]
  123. 123.
    Zhang Y, Lawn BR. 2018. Novel zirconia materials in dentistry. J. Dent. Res. 97:140–47
    [Google Scholar]
  124. 124.
    Ungar PS. 2010. Mammal Teeth Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  125. 125.
    Lee JJ-W, Constantino PJ, Lucas PW, Lawn BR. 2011. Fracture in teeth—a diagnostic for inferring bite force and tooth function. Biol. Rev. Camb. Philos. Soc. 86:959–74
    [Google Scholar]
  126. 126.
    Barani A, Bush MB, Lawn BR. 2012. Effect of property gradients on enamel fracture in human enamel. J. Mech. Behav. Biomed. Mater. 15:121–30
    [Google Scholar]
  127. 127.
    Jahanmir S 1993. Machining of Advanced Materials. Washington, DC: US Gov. Print. Off.
    [Google Scholar]
  128. 128.
    Lawn BR, Borrero-Lopez O, Huang H, Zhang Y. 2020. Micromechanics of machining and wear in hard and brittle materials. J. Am. Ceram. Soc. 104:5–22
    [Google Scholar]
  129. 129.
    Evans AG, Marshall DB 1981. Wear mechanisms in ceramics. Fundamentals of Friction and Wear of Materials DA Rigney 439–52 Metals Park, OH: Am. Soc. Met.
    [Google Scholar]
  130. 130.
    Marshall DB, Lawn BR, Evans AG. 1982. Elastic/plastic indentation damage in ceramics: the lateral crack system. J. Am. Ceram. Soc. 65:561–66
    [Google Scholar]
  131. 131.
    Lawn BR, Padture NP, Cai H, Guiberteau F. 1994. Making ceramics “ductile.”. Science 263:1114–16
    [Google Scholar]
  132. 132.
    Jahanmir S, Xu HHK, Ives LK 1998. Mechanisms of material removal in abrasive machining of ceramics. Machining of Ceramics and Composites S Jahanmir, M Ramulu, P Koshy 11–84 New York: Marcel Dekker
    [Google Scholar]
  133. 133.
    Blaedel KL, Taylor JS, Evans CJ 1998. Ductile-regime grinding of brittle materials. Machining of Ceramics and Composites S Jahanmir, M Ramulu, P Koshy 139–76 New York: Marcel Dekker
    [Google Scholar]
  134. 134.
    Kovalchenko AM. 2012. Studies of the ductile mode of cutting brittle materials (a review). J. Superhard Mater. 35:259–76
    [Google Scholar]
  135. 135.
    Huang H, Li X, Mu D, Lawn BR. 2021. Science and art of ductile grinding of brittle solids. Int. J. Mach. Tools Manuf. 161:103675
    [Google Scholar]
  136. 136.
    Bifano TG, Dow TA, Scattergood RO. 1991. Ductile-regime grinding: a new technology for machining brittle materials. J. Eng. Ind. 113:184–89
    [Google Scholar]
  137. 137.
    Malkin S, Guo C. 2008. Grinding Technology: Theory and Application of Machining with Abrasives New York: Ind. Press
    [Google Scholar]
  138. 138.
    Antwil EK, Liu K, Wang H. 2018. A review on ductile mode cutting of brittle materials. Front. Mech. Eng. 13:251–63
    [Google Scholar]
  139. 139.
    Arzt E. 1998. Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater. 16:5611–26
    [Google Scholar]
  140. 140.
    Jung Y-G, Pajares A, Banerjee R, Lawn BR. 2004. Strength of silicon, sapphire and glass in the subthreshold flaw region. Acta Mater. 52:3459–66
    [Google Scholar]
  141. 141.
    Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY. 2012. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6:1522–31
    [Google Scholar]
  142. 142.
    Page TF, Oliver WC, McHargue CJ. 2011. The deformation behavior of ceramic crystals subjected to very low load (nano) indentations. J. Mater. Res. 7:450–73
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070121-042249
Loading
/content/journals/10.1146/annurev-matsci-070121-042249
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error