1932

Abstract

Advances in biomaterials science and engineering are crucial to translating regenerative engineering, an emerging field that aims to recreate complex tissues, into clinical practice. In this regard, citrate-based biomaterials have become an important tool owing to their versatile material and biological characteristics including unique antioxidant, antimicrobial, adhesive, and fluorescent properties. This review discusses fundamental design considerations, strategies to incorporate unique functionality, and examples of how citrate-based biomaterials can be an enabling technology for regenerative engineering.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070214-020815
2015-07-01
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/matsci/45/1/annurev-matsci-070214-020815.html?itemId=/content/journals/10.1146/annurev-matsci-070214-020815&mimeType=html&fmt=ahah

Literature Cited

  1. Laurencin CT, Khan Y. 1.  2012. Regenerative engineering. Sci. Transl. Med. 4:160ed9 [Google Scholar]
  2. Bettinger CJ. 2.  2011. Biodegradable elastomers for tissue engineering and cell-biomaterial interactions. Macromol. Biosci. 11:467–82 [Google Scholar]
  3. Engler AJ, Sen S, Sweeney HL, Discher DE. 3.  2006. Matrix elasticity directs stem cell lineage specification. Cell 126:677–89 [Google Scholar]
  4. Engler AJ, Sweeney HL, Discher DE, Schwarzbauer JE. 4.  2007. Extracellular matrix elasticity directs stem cell differentiation. J. Musculoskelet. Neuronal Interact. 7:335 [Google Scholar]
  5. Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y. 5.  et al. 2012. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11:642–49 [Google Scholar]
  6. Wang Y, Ameer GA, Sheppard BJ, Langer R. 6.  2002. A tough biodegradable elastomer. Nat. Biotechnol. 20:602–6 [Google Scholar]
  7. Rai R, Tallawi M, Grigore A, Boccaccini AR. 7.  2012. Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): a review. Prog. Polym. Sci. 37:1051–78 [Google Scholar]
  8. Yang J, Webb AR, Ameer GA. 8.  2004. Novel citric acid-based biodegradable elastomers for tissue engineering. Adv. Mater. 16:511–16 [Google Scholar]
  9. Yang J, Webb AR, Pickerill SJ, Hageman G, Ameer GA. 9.  2006. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials 27:1889–98 [Google Scholar]
  10. He H, Matsuda T. 10.  2002. Arterial replacement with compliant hierarchic hybrid vascular graft: biomechanical adaptation and failure. Tissue Eng. 8:213–24 [Google Scholar]
  11. Xue L, Greisler HP. 11.  2003. Biomaterials in the development and future of vascular grafts. J. Vasc. Surg. 37:472–80 [Google Scholar]
  12. Huebsch N, Mooney DJ. 12.  2009. Inspiration and application in the evolution of biomaterials. Nature 462:426–32 [Google Scholar]
  13. Lutolf MP, Gilbert PM, Blau HM. 13.  2009. Designing materials to direct stem-cell fate. Nature 462:433–41 [Google Scholar]
  14. Rehfeldt F, Engler AJ, Eckhardt A, Ahmed F, Discher DE. 14.  2007. Cell responses to the mechanochemical microenvironment: implications for regenerative medicine and drug delivery. Adv. Drug Deliv. Rev. 59:1329–39 [Google Scholar]
  15. Serrano MC, Chung EJ, Ameer GA. 15.  2010. Advances and applications of biodegradable elastomers in regenerative medicine. Adv. Funct. Mater. 20:192–208 [Google Scholar]
  16. Ding T, Liu QY, Shi R, Tian M, Yang H, Zhang LQ. 16.  2006. Synthesis, characterization and in vitro degradation study of a novel and rapidly degradable elastomer. Polym. Degrad. Stab. 91:733–39 [Google Scholar]
  17. Li J, Zheng W, Pan P, Sun X, Zhang Y. 17.  2014. Synthesis and characterization of poly(1,2-propanediol-co-1,8-octanediol-co-citrate) biodegradable elastomers for tissue engineering. Biomed. Mater. Eng. 24:619–24 [Google Scholar]
  18. Lei LJ, Ding T, Shi R, Liu QY, Zhang LQ. 18.  et al. 2007. Synthesis, characterization and in vitro degradation of a novel degradable poly((1,2-propanediol-sebacate)-citrate) bioelastomer. Polym. Degrad. Stab. 92:389–96 [Google Scholar]
  19. Djordjevic I, Choudhury NR, Dutta NK, Kumar S. 19.  2009. Synthesis and characterization of novel citric acid-based polyester elastomers. Polymer 50:1682–91 [Google Scholar]
  20. Djordjevic I, Choudhury NR, Dutta NK, Kumar S. 20.  2011. Poly[octanediol-co-(citric acid)-co-(sebacic acid)] elastomers: novel bio-elastomers for tissue engineering. Polym. Int. 60:333–43 [Google Scholar]
  21. Djordjevic I, Choudhury NR, Dutta NK, Kumar S, Szili EJ, Steele DA. 21.  2010. Polyoctanediol citrate/sebacate bioelastomer films: surface morphology, chemistry and functionality. J. Biomater. Sci. Polym. Ed. 21:237–51 [Google Scholar]
  22. Webb AR, Yang J, Ameer GA. 22.  2008. A new strategy to characterize the extent of reaction of thermoset elastomers. J. Polym. Sci. 46:1318–28 [Google Scholar]
  23. Guo J, Xie Z, Tran RT, Xie D, Jin D. 23.  et al. 2014. Click chemistry plays a dual role in biodegradable polymer design. Adv. Mater. 26:1906–11 [Google Scholar]
  24. Gyawali D, Tran RT, Guleserian KJ, Tang L, Yang J. 24.  2010. Citric-acid-derived photo-cross-linked biodegradable elastomers. J. Biomater. Sci. Polym. Ed. 21:1761–82 [Google Scholar]
  25. Franklin DS, Guhanathan S. 25.  2014. Synthesis and characterization of citric acid-based pH-sensitive biopolymeric hydrogels. Polym. Bull. 71:93–110 [Google Scholar]
  26. Gyawali D, Nair P, Zhang Y, Tran RT, Zhang C. 26.  et al. 2010. Citric acid-derived in situ crosslinkable biodegradable polymers for cell delivery. Biomaterials 31:9092–105 [Google Scholar]
  27. Tran RT, Thevenot P, Gyawali D, Chiao JC, Tang L, Yang J. 27.  2010. Synthesis and characterization of a biodegradable elastomer featuring a dual crosslinking mechanism. Soft Matter 6:2449–61 [Google Scholar]
  28. Zhao HC, Ameer GA. 28.  2009. Modulating the mechanical properties of poly(diol citrates) via the incorporation of a second type of crosslink network. J. Appl. Polym. Sci. 114:1464–70 [Google Scholar]
  29. Dey J, Xu H, Shen J, Thevenot P, Gondi SR. 29.  et al. 2008. Development of biodegradable crosslinked urethane-doped polyester elastomers. Biomaterials 29:4637–49 [Google Scholar]
  30. Dey J, Tran RT, Shen J, Tang L, Yang J. 30.  2011. Development and long-term in vivo evaluation of a biodegradable urethane-doped polyester elastomer. Macromol. Mater. Eng. 296:1149–57 [Google Scholar]
  31. Webb AR, Kumar VA, Ameer GA. 31.  2007. Biodegradable poly(diol citrate) nanocomposite elastomers for soft tissue engineering. J. Mater. Chem. 17:900–06 [Google Scholar]
  32. Lei LJ, Li L, Zhang LQ, Chen DF, Tian W. 32.  2009. Structure and performance of nano-hydroxyapatite filled biodegradable poly((1,2-propanediol-sebacate)-citrate) elastomers. Polym. Degrad. Stab. 94:1494–502 [Google Scholar]
  33. Liu QY, Wu JY, Tan TW, Zhang LQ, Chen DF, Tian W. 33.  2009. Preparation, properties and cytotoxicity evaluation of a biodegradable polyester elastomer composite. Polym. Degrad. Stab. 94:1427–35 [Google Scholar]
  34. Wu Y, Shi R, Chen DF, Zhang LQ, Tian W. 34.  2012. Nanosilica filled poly(glycerol-sebacate-citrate) elastomers with improved mechanical properties, adjustable degradability, and better biocompatibility. J. Appl. Polym. Sci. 123:1612–20 [Google Scholar]
  35. Serrano MC, Carbajal L, Ameer GA. 35.  2011. Novel biodegradable shape-memory elastomers with drug-releasing capabilities. Adv. Mater. 23:2211–15 [Google Scholar]
  36. van Lith R, Gregory EK, Yang J, Kibbe MR, Ameer GA. 36.  2014. Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues. Biomaterials 35:8113–22 [Google Scholar]
  37. Yang J, van Lith R, Baler K, Hoshi RA, Ameer GA. 37.  2014. A thermoresponsive biodegradable polymer with intrinsic antioxidant properties. Biomacromolecules 15:3942–52 [Google Scholar]
  38. Zhao H, Serrano MC, Popowich DA, Kibbe MR, Ameer GA. 38.  2010. Biodegradable nitric oxide-releasing poly(diol citrate) elastomers. J. Biomed. Mater. Res. A 93:356–63 [Google Scholar]
  39. Wang Y, Kibbe MR, Ameer GA. 39.  2013. Photo-crosslinked biodegradable elastomers for controlled nitric oxide delivery. Biomater. Sci. 1:625–32 [Google Scholar]
  40. Karahaliloglu Z, Ercan B, Chung S, Taylor E, Denkbas EB, Webster TJ. 40.  2014. Nanostructured anti-bacterial poly-lactic-co-glycolic acid films for skin tissue engineering applications. J. Biomed. Mater. Res. A 102:4598–608 [Google Scholar]
  41. Machado MC, Tarquinio KM, Webster TJ. 41.  2012. Decreased Staphylococcus aureus biofilm formation on nanomodified endotracheal tubes: a dynamic airway model. Int. J. Nanomed. 7:3741–50 [Google Scholar]
  42. Coneski PN, Fulmer PA, Wynne JH. 42.  2012. Thermal polycondensation of poly(diol citrate)s with tethered quaternary ammonium biocides. RSC Adv. 2:12824–34 [Google Scholar]
  43. Kompany K, Mirza EH, Hosseini S, Pingguan-Murphy B, Djordjevic I. 43.  2014. Polyoctanediol citrate-ZnO composite films: preparation, characterization and release kinetics of nanoparticles from polymer matrix. Mater. Lett. 126:165–68 [Google Scholar]
  44. Halpern JM, Urbanski R, Weinstock AK, Iwig DF, Mathers RT, von Recum HA. 44.  2014. A biodegradable thermoset polymer made by esterification of citric acid and glycerol. J. Biomed. Mater. Res. A 102:1467–77 [Google Scholar]
  45. Garcia-Arguelles S, Serrano MC, Gutierrez MC, Ferrer ML, Yuste L. 45.  et al. 2013. Deep eutectic solvent-assisted synthesis of biodegradable polyesters with antibacterial properties. Langmuir 29:9525–34 [Google Scholar]
  46. Su LC, Xie Z, Zhang Y, Nguyen KT, Yang J. 46.  2014. Study on the antimicrobial properties of citrate-based biodegradable polymers. Front. Bioeng. Biotechnol. 2:23 [Google Scholar]
  47. Mehdizadeh M, Yang J. 47.  2013. Design strategies and applications of tissue bioadhesives. Macromol. Biosci. 13:271–88 [Google Scholar]
  48. Vuocolo T, Haddad R, Edwards GA, Lyons RE, Liyou NE. 48.  et al. 2012. A highly elastic and adhesive gelatin tissue sealant for gastrointestinal surgery and colon anastomosis. J. Gastrointest. Surg. 16:744–52 [Google Scholar]
  49. Oda S, Morita S, Tanoue Y, Eto M, Matsuda T, Tominaga R. 49.  2010. Experimental use of an elastomeric surgical sealant for arterial hemostasis and its long-term tissue response. Interact. Cardiovasc. Thorac. Surg. 10:258–61 [Google Scholar]
  50. Lurtz C, Voss K, Hahn V, Schauer F, Wegmann J. 50.  et al. 2013. In vitro degradation and drug release of a biodegradable tissue adhesive based on functionalized 1,2-ethylene glycol bis(dilactic acid) and chitosan. J. Mater. Sci. Mater. Med. 24:667–78 [Google Scholar]
  51. Rohm HW, Lurtz C, Wegmann J, Odermatt EK, Behrend D. 51.  et al. 2011. Development of a biodegradable tissue adhesive based on functionalized 1,2-ethylene glycol bis(dilactic acid). II. J. Biomed. Mater. Res. B 97:66–73 [Google Scholar]
  52. Sternberg K, Rohm HW, Lurtz C, Wegmann J, Odermatt EK. 52.  et al. 2010. Development of a biodegradable tissue adhesive based on functionalized 1,2-ethylene glycol bis(dilactic acid). I. J. Biomed. Mater. Res. B 94:318–26 [Google Scholar]
  53. Waite JH. 53.  1987. Nature's underwater adhesive specialist. Int. J. Adhes. Adhes. 7:9–14 [Google Scholar]
  54. Mehdizadeh M, Weng H, Gyawali D, Tang L, Yang J. 54.  2012. Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 33:7972–83 [Google Scholar]
  55. Janib SM, Moses AS, MacKay JA. 55.  2010. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 62:1052–63 [Google Scholar]
  56. Sumer B, Gao J. 56.  2008. Theranostic nanomedicine for cancer. Nanomedicine 3:137–40 [Google Scholar]
  57. Yang J, Zhang Y, Gautam S, Liu L, Dey J. 57.  et al. 2009. Development of aliphatic biodegradable photoluminescent polymers. PNAS 106:10086–91 [Google Scholar]
  58. Zhang Y, Yang J. 58.  2013. Design strategies for fluorescent biodegradable polymeric biomaterials. J. Mater. Chem. B 1:132–48 [Google Scholar]
  59. Serrano CA, Zhang Y, Yang J, Schug KA. 59.  2011. Matrix-assisted laser desorption/ionization mass spectrometric analysis of aliphatic biodegradable photoluminescent polymers using new ionic liquid matrices. Rapid Commun. Mass Spectrom. 25:1152–58 [Google Scholar]
  60. Kasprzyk W, Bednarz S, Bogdal D. 60.  2013. Luminescence phenomena of biodegradable photoluminescent poly(diol citrates). Chem. Commun. 49:6445–47 [Google Scholar]
  61. Xie Z, Zhang Y, Liu L, Weng H, Mason RP. 61.  et al. 2014. Development of intrinsically photoluminescent and photostable polylactones. Adv. Mater. 26:4491–96 [Google Scholar]
  62. Zhang Y, Tran RT, Gyawali D, Yang J. 62.  2011. Development of photocrosslinkable urethane-doped polyester elastomers for soft tissue engineering. Int. J. Biomater. Res. Eng. 1:18–31 [Google Scholar]
  63. Gyawali D, Zhou S, Tran RT, Zhang Y, Liu C. 63.  et al. 2014. Fluorescence imaging enabled biodegradable photostable polymeric micelles. Adv. Healthc. Mater. 3:182–86 [Google Scholar]
  64. Wadajkar AS, Menon JU, Kadapure T, Tran RT, Yang J, Nguyen KT. 64.  2013. Design and application of magnetic-based theranostic nanoparticle systems. Recent Pat. Biomed. Eng. 6:47–57 [Google Scholar]
  65. Zhang Y, Tran RT, Qattan IS, Tsai YT, Tang L. 65.  et al. 2013. Fluorescence imaging enabled urethane-doped citrate-based biodegradable elastomers. Biomaterials 34:4048–56 [Google Scholar]
  66. Niklason LE, Langer RS. 66.  1997. Advances in tissue engineering of blood vessels and other tissues. Transpl. Immunol. 5:303–6 [Google Scholar]
  67. Motlagh D, Allen J, Hoshi R, Yang J, Lui K, Ameer G. 67.  2007. Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering. J. Biomed. Mater. Res. A 82:907–16 [Google Scholar]
  68. Yang J, Motlagh D, Allen JB, Webb AR, Kibbe MR. 68.  et al. 2006. Modulating expanded polytetrafluoroethylene vascular graft host response via citric acid-based biodegradable elastomers. Adv. Mater. 18:1493–98 [Google Scholar]
  69. Kibbe MR, Martinez J, Popowich DA, Kapadia MR, Ahanchi SS. 69.  et al. 2010. Citric acid-based elastomers provide a biocompatible interface for vascular grafts. J. Biomed. Mater. Res. A 93:314–24 [Google Scholar]
  70. Hoshi RA, Van Lith R, Jen MC, Allen JB, Lapidos KA, Ameer G. 70.  2013. The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts. Biomaterials 34:30–41 [Google Scholar]
  71. Serrano MC, Vavra AK, Jen M, Hogg ME, Murar J. 71.  et al. 2011. Poly(diol-co-citrate)s as novel elastomeric perivascular wraps for the reduction of neointimal hyperplasia. Macromol. Biosci. 11:700–9 [Google Scholar]
  72. Gregory EK, Webb AR, Martinez-Vercammen J, Flynn ME, Ameer GA, Kibbe MR. 72.  2014. Periadventital atRA via citrate-based polyester membranes reduces neointimal hyperplasia and restenosis after carotid injury in rats. Am. J. Physiol. Heart Circ. Physiol. 307H1419–29 [Google Scholar]
  73. Liu J, Argenta L, Morykwas M, Wagner WD. 73.  2014. Properties of single electrospun poly(diol citrate)-collagen-proteoglycan nanofibers for arterial repair and in applications requiring viscoelasticity. J. Biomater. Appl. 28:729–38 [Google Scholar]
  74. Yang J, Motlagh D, Webb AR, Ameer GA. 74.  2005. Novel biphasic elastomeric scaffold for small-diameter blood vessel tissue engineering. Tissue Eng. 11:1876–86 [Google Scholar]
  75. Dey J, Xu H, Nguyen KT, Yang J. 75.  2010. Crosslinked urethane-doped polyester biphasic scaffolds: potential for in vivo vascular tissue engineering. J. Biomed. Mater. Res. A 95:361–70 [Google Scholar]
  76. Tran RT, Naseri E, Kolasnikov A, Bai X, Yang J. 76.  2011. A new generation of sodium chloride porogen for tissue engineering. Biotechnol. Appl. Biochem. 58:335–44 [Google Scholar]
  77. Allen J, Khan S, Serrano MC, Ameer G. 77.  2008. Characterization of porcine circulating progenitor cells: toward a functional endothelium. Tissue Eng. Part A 14:183–94 [Google Scholar]
  78. Allen JB, Khan S, Lapidos KA, Ameer GA. 78.  2010. Toward engineering a human neoendothelium with circulating progenitor cells. Stem Cells 28:318–28 [Google Scholar]
  79. Su LC, Xu H, Tran RT, Tsai YT, Tang L. 79.  et al. 2014. In situ re-endothelialization via multifunctional nanoscaffolds. ACS Nano 8:10826–36 [Google Scholar]
  80. Praemer A, Furner S, Rice DP. 80.  1999. Musculoskeletal Conditions in the United States Park Ridge, NJ: Am. Acad. Orthop. Surg. [Google Scholar]
  81. Nardecchia S, Serrano MC, Gutierrez MC, Portoles MT, Ferrer ML, del Monte F. 81.  2012. Osteoconductive performance of carbon nanotube scaffolds homogeneously mineralized by flow-through electrodeposition. Adv. Funct. Mater. 22:4411–20 [Google Scholar]
  82. Marsh D. 82.  1998. Concepts of fracture union, delayed union, and nonunion. Clin. Orthop. Relat. Res. 355Suppl.22–30 [Google Scholar]
  83. Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG. 83.  et al. 2000. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann. Intern. Med. 133:635–46 [Google Scholar]
  84. Hu YY, Rawal A, Schmidt-Rohr K. 84.  2010. Strongly bound citrate stabilizes the apatite nanocrystals in bone. PNAS 107:22425–29 [Google Scholar]
  85. Costello LC, Franklin RB, Reynolds MA, Chellaiah M. 85.  2012. The important role of osteoblasts and citrate production in bone formation: “osteoblast citration” as a new concept for an old relationship. Open Bone J. 4:27–34 [Google Scholar]
  86. Davies E, Muller KH, Wong WC, Pickard CJ, Reid DG. 86.  et al. 2014. Citrate bridges between mineral platelets in bone. PNAS 111:E1354–63 [Google Scholar]
  87. Costello LC, Franklin RB. 87.  2013. A review of the important central role of altered citrate metabolism during the process of stem cell differentiation. J. Regen. Med. Tissue Eng. 2:1 [Google Scholar]
  88. Tran RT, Wang L, Zhang C, Huang M, Tang W. 88.  et al. 2014. Synthesis and characterization of biomimetic citrate-based biodegradable composites. J. Biomed. Mater. Res. A 102:2521–32 [Google Scholar]
  89. Shirazi FS, Moghaddam E, Mehrali M, Oshkour AA, Metselaar HS. 89.  et al. 2014. In vitro characterization and mechanical properties of beta-calcium silicate/POC composite as a bone fixation device. J. Biomed. Mater. Res. A 102:3973–85 [Google Scholar]
  90. Rho JY, Kuhn-Spearing L, Zioupos P. 90.  1998. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20:92–102 [Google Scholar]
  91. Qiu H, Yang J, Kodali P, Koh J, Ameer GA. 91.  2006. A citric acid-based hydroxyapatite composite for orthopedic implants. Biomaterials 27:5845–54 [Google Scholar]
  92. Chung EJ, Sugimoto MJ, Ameer GA. 92.  2011. The role of hydroxyapatite in citric acid-based nanocomposites: surface characteristics, degradation, and osteogenicity in vitro. Acta Biomater. 7:4057–63 [Google Scholar]
  93. Chung EJ, Qiu H, Kodali P, Yang S, Sprague SM. 93.  et al. 2011. Early tissue response to citric acid-based micro- and nanocomposites. J. Biomed. Mater. Res. A 96:29–37 [Google Scholar]
  94. Chung EJ, Kodali P, Laskin W, Koh JL, Ameer GA. 94.  2011. Long-term in vivo response to citric acid-based nanocomposites for orthopaedic tissue engineering. J. Mater. Sci. Mater. Med. 22:2131–38 [Google Scholar]
  95. Levi-Polyachenko N, Rosenbalm T, Kuthirummal N, Shelton J, Hardin W. 95.  et al. 2015. Development and characterization of elastic nanocomposites for craniofacial contraction osteogenesis. J. Biomed. Mater. Res. B 103407–16 [Google Scholar]
  96. Chung E, Sugimoto M, Koh J, Ameer G. 96.  2014. A biodegradable tri-component graft for anterior cruciate ligament reconstruction. J. Tissue Eng. Regen. Med. doi:10.1002/term.1966 [Google Scholar]
  97. Guo Y, Tran RT, Xie D, Wang Y, Nguyen DY. 97.  et al. 2014. Citrate-based biphasic scaffolds for the repair of large segmental bone defects. J. Biomed. Mater. Res. A 103:772–81 [Google Scholar]
  98. Gyawali D, Nair P, Kim HK, Yang J. 98.  2013. Citrate-based biodegradable injectable hydrogel composites for orthopedic applications. Biomater. Sci. 1:52–64 [Google Scholar]
  99. Jiao Y, Gyawali D, Stark JM, Akcora P, Nair P. 99.  et al. 2012. A rheological study of biodegradable injectable PEGMC/HA composite scaffolds. Soft Matter 8:1499–507 [Google Scholar]
  100. Murphy L, Helmick CG. 100.  2012. The impact of osteoarthritis in the United States: a population-health perspective. Am. J. Nurs. 112:S13–19 [Google Scholar]
  101. Corti MC, Rigon C. 101.  2003. Epidemiology of osteoarthritis: prevalence, risk factors and functional impact. Aging Clin. Exp. Res. 15:359–63 [Google Scholar]
  102. Hunziker EB. 102.  1999. Articular cartilage repair: Are the intrinsic biological constraints undermining this process insuperable?. Osteoarthr. Cartil. 7:15–28 [Google Scholar]
  103. LaPrade RF, Swiontkowski MF. 103.  1999. New horizons in the treatment of osteoarthritis of the knee. JAMA 281:876–78 [Google Scholar]
  104. Newman AP. 104.  1998. Articular cartilage repair. Am. J. Sports Med. 26:309–24 [Google Scholar]
  105. Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB. 105.  1995. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108:1497–508 [Google Scholar]
  106. Kelly TA, Wang CC, Mauck RL, Ateshian GA, Hung CT. 106.  2004. Role of cell-associated matrix in the development of free-swelling and dynamically loaded chondrocyte-seeded agarose gels. Biorheology 41:223–37 [Google Scholar]
  107. Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT. 107.  2003. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr. Cartil. 11:879–90 [Google Scholar]
  108. Hung CT, Mauck RL, Wang CC, Lima EG, Ateshian GA. 108.  2004. A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading. Ann. Biomed. Eng. 32:35–49 [Google Scholar]
  109. Mauck RL, Nicoll SB, Seyhan SL, Ateshian GA, Hung CT. 109.  2003. Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng. 9:597–611 [Google Scholar]
  110. Rahman MS, Tsuchiya T. 110.  2001. Enhancement of chondrogenic differentiation of human articular chondrocytes by biodegradable polymers. Tissue Eng. 7:781–90 [Google Scholar]
  111. Kang Y, Yang J, Khan S, Anissian L, Ameer GA. 111.  2006. A new biodegradable polyester elastomer for cartilage tissue engineering. J. Biomed. Mater. Res. A 77:331–9 [Google Scholar]
  112. Jeong CG, Hollister SJ. 112.  2010. Mechanical, permeability, and degradation properties of 3D designed poly(1,8 octanediol-co-citrate) scaffolds for soft tissue engineering. J. Biomed. Mater. Res. B 93:141–49 [Google Scholar]
  113. Jeong CG, Hollister SJ. 113.  2010. A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. Biomaterials 31:4304–12 [Google Scholar]
  114. Jeong CG, Hollister SJ. 114.  2010. Mechanical and biochemical assessments of three-dimensional poly(1,8-octanediol-co-citrate) scaffold pore shape and permeability effects on in vitro chondrogenesis using primary chondrocytes. Tissue Eng. Part A 16:3759–68 [Google Scholar]
  115. Jeong CG, Zhang H, Hollister SJ. 115.  2011. Three-dimensional poly(1,8-octanediol-co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes. Acta Biomater. 7:505–14 [Google Scholar]
  116. Bender MD, Bennett JM, Waddell RL, Doctor JS, Marra KG. 116.  2004. Multi-channeled biodegradable polymer/CultiSpher composite nerve guides. Biomaterials 25:1269–78 [Google Scholar]
  117. Ao Q, Wang A, Cao W, Zhang L, Kong L. 117.  et al. 2006. Manufacture of multimicrotubule chitosan nerve conduits with novel molds and characterization in vitro. J. Biomed. Mater. Res. A 77:11–18 [Google Scholar]
  118. Bozkurt A, Brook GA, Moellers S, Lassner F, Sellhaus B. 118.  et al. 2007. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng. 13:2971–79 [Google Scholar]
  119. Flynn L, Dalton PD, Shoichet MS. 119.  2003. Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering. Biomaterials 24:4265–72 [Google Scholar]
  120. Brayfield CA, Marra KG, Leonard JP, Cui XT, Gerlach JC. 120.  2008. Excimer laser channel creation in polyethersulfone hollow fibers for compartmentalized in vitro neuronal cell culture scaffolds. Acta Biomater. 4:244–55 [Google Scholar]
  121. Zhang M, Yannas IV. 121.  2005. Peripheral nerve regeneration. Adv. Biochem. Eng. Biotechnol. 94:67–89 [Google Scholar]
  122. Hu X, Huang J, Ye Z, Xia L, Li M. 122.  et al. 2009. A novel scaffold with longitudinally oriented microchannels promotes peripheral nerve regeneration. Tissue Eng. Part A 15:3297–308 [Google Scholar]
  123. Li J, Rickett TA, Shi R. 123.  2009. Biomimetic nerve scaffolds with aligned intraluminal microchannels: a “sweet” approach to tissue engineering. Langmuir 25:1813–17 [Google Scholar]
  124. Tran RT, Choy WM, Cao H, Qattan I, Chiao JC. 124.  et al. 2014. Fabrication and characterization of biomimetic multichanneled crosslinked-urethane-doped polyester tissue engineered nerve guides. J. Biomed. Mater. Res. A 102:2793–804 [Google Scholar]
  125. Sharma AK, Hota PV, Matoka DJ, Fuller NJ, Jandali D. 125.  et al. 2010. Urinary bladder smooth muscle regeneration utilizing bone marrow derived mesenchymal stem cell seeded elastomeric poly(1,8-octanediol-co-citrate) based thin films. Biomaterials 31:6207–17 [Google Scholar]
  126. Sharma AK, Bury MI, Fuller NJ, Rozkiewicz DI, Hota PV. 126.  et al. 2012. Growth factor release from a chemically modified elastomeric poly(1,8-octanediol-co-citrate) thin film promotes angiogenesis in vivo. J. Biomed. Mater. Res. A 100:561–70 [Google Scholar]
  127. Sharma AK, Bury MI, Fuller NJ, Marks AJ, Kollhoff DM. 127.  et al. 2013. Cotransplantation with specific populations of spina bifida bone marrow stem/progenitor cells enhances urinary bladder regeneration. PNAS 110:4003–8 [Google Scholar]
  128. Tran RT, Palmer M, Tang SJ, Abell TL, Yang J. 128.  2012. Injectable drug-eluting elastomeric polymer: a novel submucosal injection material. Gastrointest. Endosc. 75:1092–97 [Google Scholar]
  129. Bielefeld KA, Amini-Nik S, Alman BA. 129.  2013. Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell. Mol. Life Sci. 70:2059–81 [Google Scholar]
  130. Jackson WM, Nesti LJ, Tuan RS. 130.  2012. Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Transl. Med. 1:44–50 [Google Scholar]
  131. Hoshi RA, Behl S, Ameer GA. 131.  2009. Nanoporous biodegradable elastomers. Adv. Mater. 21:188–92 [Google Scholar]
  132. Serrano MC, Gutierrez MC, Jimenez R, Ferrer ML, del Monte F. 132.  2012. Synthesis of novel lidocaine-releasing poly(diol-co-citrate) elastomers by using deep eutectic solvents. Chem. Commun. 48:579–81 [Google Scholar]
  133. Komabayashi T, Wadajkar A, Santimano S, Ahn C, Zhu Q. 133.  et al. 2014. Preliminary study of light-cured hydrogel for endodontic drug delivery vehicle. J. Investig. Clin. Dent. doi:10.1111/jicd.12118 [Google Scholar]
  134. Saxena BB, Koldras KE, Singh M, Nguyen N, Rathnam P. 134.  et al. 2012. Development of a nanoporous elastomere intra-vaginal ring (IVR) for the sustained release of non-hormonal contraceptives. J. Pharm. Drug Deliv. Res. 1:1–4 [Google Scholar]
  135. Zhang XQ, Tang H, Hoshi R, De Laporte L, Qiu H. 135.  et al. 2009. Sustained transgene expression via citric acid-based polyester elastomers. Biomaterials 30:2632–41 [Google Scholar]
  136. Akinc A, Thomas M, Klibanov AM, Langer R. 136.  2005. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 7:657–63 [Google Scholar]
  137. Zhang XQ, Wang XL, Huang SW, Zhuo RX, Liu ZL. 137.  et al. 2005. In vitro gene delivery using polyamidoamine dendrimers with a trimesyl core. Biomacromolecules 6:341–50 [Google Scholar]
  138. Steinstraesser L, Hirsch T, Beller J, Mittler D, Sorkin M. 138.  et al. 2007. Transient non-viral cutaneous gene delivery in burn wounds. J. Gene Med. 9:949–55 [Google Scholar]
  139. Huang SW, Wang J, Zhang PC, Mao HQ, Zhuo RX, Leong KW. 139.  2004. Water-soluble and nonionic polyphosphoester: synthesis, degradation, biocompatibility and enhancement of gene expression in mouse muscle. Biomacromolecules 5:306–11 [Google Scholar]
  140. Gharwan H, Wightman L, Kircheis R, Wagner E, Zatloukal K. 140.  2003. Nonviral gene transfer into fetal mouse livers (a comparison between the cationic polymer PEI and naked DNA). Gene Ther. 10:810–17 [Google Scholar]
  141. Rolland AP. 141.  1998. From genes to gene medicines: recent advances in nonviral gene delivery. Crit. Rev. Ther. Drug Carrier Syst. 15:143–98 [Google Scholar]
  142. Jen MC, Baler K, Hood AR, Shin S, Shea LD, Ameer GA. 142.  2013. Sustained, localized transgene expression mediated from lentivirus-loaded biodegradable polyester elastomers. J. Biomed. Mater. Res. A 101:1328–35 [Google Scholar]
  143. Hidalgo-Bastida LA, Barry JJ, Everitt NM, Rose FR, Buttery LD. 143.  et al. 2007. Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering. Acta Biomater. 3:457–62 [Google Scholar]
  144. Moradi A, Dalilottojari A, Pingguan-Murphy B, Djordjevic I. 144.  2013. Fabrication and characterization of elastomeric scaffolds comprised of a citric acid-based polyester/hydroxyapatite microcomposite. Mater. Des. 50:446–50 [Google Scholar]
  145. Chung EJ, Sugimoto M, Koh JL, Ameer GA. 145.  2012. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering. Tissue Eng. Part C 18:113–21 [Google Scholar]
  146. Thaker H, Sharma AK. 146.  2012. Engaging stem cells for customized tendon regeneration. Stem Cells Int. 2012:309187 [Google Scholar]
  147. Thomas LV, Arun U, Remya S, Nair PD. 147.  2009. A biodegradable and biocompatible PVA-citric acid polyester with potential applications as matrix for vascular tissue engineering. J. Mater. Sci. Mater. Med. 20:Suppl. 1259–69 [Google Scholar]
  148. Liu QY, Wu SZ, Tan TW, Weng JY, Zhang LQ. 148.  et al. 2009. Preparation and properties of a novel biodegradable polyester elastomer with functional groups. J. Biomater. Sci. Polym. Ed. 20:1567–78 [Google Scholar]
  149. Liu Q, Tan T, Weng J, Zhang L. 149.  2009. Study on the control of the compositions and properties of a biodegradable polyester elastomer. Biomed. Mater. 4:025015 [Google Scholar]
  150. Thomas LV, Nair PD. 150.  2011. (Citric acid-co-polycaprolactone triol) polyester: a biodegradable elastomer for soft tissue engineering. Biomatter 1:81–90 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070214-020815
Loading
/content/journals/10.1146/annurev-matsci-070214-020815
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error