A promising approach to the next generation of low-power, functional, and green nanoelectronics relies on advances in the electric-field control of lattice, charge, orbital, and spin degrees of freedom in novel materials. The possibility of electric-field control of these multiple materials functionalities offers interesting options across a range of modern technologies, including information communication, computing processes, data storage, active components, and functional electronics. This article reviews electric-field control and modulation of various degrees of freedom through the medium of multiferroic BiFeO. Coexisting order parameters and inherent couplings in this materials system form a potent playground, enabling direct and indirect manipulation to obtain intriguing properties and functionalities with an electric stimulus. An in-depth understanding of those electrically controlled phenomena and breakthroughs is highlighted, paving a new route toward multifunctional nanoelectronics. This article concludes with a brief discussion on foreseeable challenges as well as future directions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Crawley EF, Deluis J. 1.  1987. Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25:1373–85 [Google Scholar]
  2. Tzou HS, Tseng CI. 2.  1990. Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a piezoelectric finite element approach. J. Sound Vib. 138:17–34 [Google Scholar]
  3. Chee CYK, Tong LY, Steven GP. 3.  1998. A review on the modelling of piezoelectric sensors and actuators incorporated in intelligent structures. J. Intell. Mater. Syst. Struct. 9:3–19 [Google Scholar]
  4. Javey A, Guo J, Wang Q, Lundstrom M, Dai HJ. 4.  2003. Ballistic carbon nanotube field-effect transistors. Nature 434:654–57 [Google Scholar]
  5. Xiang J, Lu W, Hu YJ, Wu Y, Yan H, Lieber CM. 5.  2006. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441:489–93 [Google Scholar]
  6. Sirringhaus H. 6.  2005. Device physics of solution-processed organic field-effect transistors. Adv. Mater. 17:2411–25 [Google Scholar]
  7. Lee ML, Fitzgerald EA, Bulsara MT, Currie MT, Lochtefeld A. 7.  2005. Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 97:011101 [Google Scholar]
  8. Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K. 8.  et al. 2002. Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory. J. Appl. Phys. 91:5246–49 [Google Scholar]
  9. Tehrani S, Slaughter JM, Chen E, Durlam M, Shi J, DeHerrera M. 9.  1999. Progress and outlook for MRAM technology. IEEE Trans. Magn. 35:2814–19 [Google Scholar]
  10. Parkin SSP, Roche KP, Samant MG, Rice PM, Beyers RB. 10.  et al. 1999. Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory. J. Appl. Phys. 85:5828–33 [Google Scholar]
  11. Ramesh R, Spaldin NA. 11.  2007. Multiferroics: progress and prospects in thin films. Nat. Mater. 6:21–29 [Google Scholar]
  12. Khomskii DI. 12.  2006. Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306:1–8 [Google Scholar]
  13. Martin LW, Crane SP, Chu YH, Holcomb MB, Gajek M. 13.  et al. 2008. Multiferroics and magnetoelectrics: thin films and nanostructures. J. Phys. Condens. Matter 20:434220 [Google Scholar]
  14. Wang KF, Liu JM, Ren ZF. 14.  2009. Multiferroicity: the coupling between magnetic and polarization orders. Adv. Phys. 58:321–448 [Google Scholar]
  15. Spaldin NA, Cheong SW, Ramesh R. 15.  2010. Multiferroics: past, present, and future. Phys. Today 63:38–43 [Google Scholar]
  16. Zhao T, Scholl A, Zavaliche F, Lee K, Barry M. 16.  et al. 2006. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 film at room temperature. Nat. Mater. 5:823–29 [Google Scholar]
  17. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB. 17.  et al. 2003. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–22 [Google Scholar]
  18. Michel C, Moreau JM, Achenbach GD, Gerson R, James WJ. 18.  1969. The atomic structure of BiFeO3. Solid State Commun. 7:701–4 [Google Scholar]
  19. Moreaua JM, Michela C, Gersona R, Jamesa WJ. 19.  1971. Ferroelectric BiFeO3 X-ray and neutron diffraction study. J. Phys. Chem. Solids 32:1315–20 [Google Scholar]
  20. Dzyaloshinskii IE. 20.  1957. Thermodynamic theory of ‘weak’ ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5:1259–62 [Google Scholar]
  21. Moriya T. 21.  1960. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120:91–98 [Google Scholar]
  22. Ederer C, Spaldin NA. 22.  2005. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71:060401(R) [Google Scholar]
  23. Zeches RJ, Rossell MD, Zhang JX, Hatt AJ, He Q. 23.  et al. 2009. A strain-driven morphotropic phase boundary in BiFeO3. Science 326:977–80 [Google Scholar]
  24. Infante IC, Lisenkov S, Dupé B, Bibes M, Fusil S. 24.  et al. 2010. Bridging multiferroic phase transitions by epitaxial strain in BiFeO3. Phys. Rev. Lett. 105:057601 [Google Scholar]
  25. Dupé B, Prosandeev S, Geneste G, Dkhil B, Bellaiche L. 25.  2011. BiFeO3 films under tensile epitaxial strain from first principles. Phys. Rev. Lett. 106:237601 [Google Scholar]
  26. Lubk A, Gemming S, Spaldin NA. 26.  2009. First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite. Phys. Rev. B 80:104110 [Google Scholar]
  27. Shang SL, Sheng G, Wang Y, Chen LQ, Liu ZK. 27.  2009. Elastic properties of cubic and rhombohedral BiFeO3 from first-principles calculations. Phys. Rev. B 80:052102 [Google Scholar]
  28. Biegalski MD, Kim DH, Choudhury S, Chen LQ, Christen HM, Dorr K. 28.  2011. Strong strain dependence of ferroelectric coercivity in a BiFeO3 film. Appl. Phys. Lett. 98:142902 [Google Scholar]
  29. Ravindran P, Vidya R, Kjekshus A, Fjellvag H, Eriksson O. 29.  2006. Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys. Rev. B 74:224412 [Google Scholar]
  30. Sando D, Agbelele A, Rahmedov D, Liu J, Rovillain P. 30.  et al. 2013. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12:641–46 [Google Scholar]
  31. Ederer C, Spaldin NA. 31.  2005. Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 95:257601 [Google Scholar]
  32. Hatt AJ, Spaldin NA, Ederer C. 32.  2010. Strain-induced isosymmetric phase transition in BiFeO3. Phys. Rev. B 81:054109 [Google Scholar]
  33. Arnold DC, Knight KS, Morrison FD, Lightfoot P. 33.  2009. Ferroelectric-paraelectric transition in BiFeO3: crystal structure of the orthorhombic β phase. Phys. Rev. Lett. 102:027602 [Google Scholar]
  34. Khomchenko VA, Karpinsky DV, Kholkin AL, Sobolev NA, Kakazei GN. 34.  2010. Rhombohedral-to-orthorhombic transition and multiferroic properties of Dy-substituted BiFeO3. J. Appl. Phys. 108:074109 [Google Scholar]
  35. Yang JC, Yeh CH, Chen YT, Liao SC, Huang R. 35.  et al. 2014. Conduction control at ferroic domain walls via external stimuli. Nanoscale 6:10524–29 [Google Scholar]
  36. Yang JC, He Q, Suresha SJ, Kuo CY, Peng CY. 36.  et al. 2012. Orthorhombic BiFeO3. Phys. Rev. Lett. 109:247606 [Google Scholar]
  37. Yang SY, Seidel J, Byrnes SJ, Shafer P, Yang CH. 37.  et al. 2010. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5:143–47 [Google Scholar]
  38. Bhatnagar A, Chaudhuri AR, Kim YH, Hesse D, Alexe M. 38.  2013. Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 4:2835 [Google Scholar]
  39. Chen ZH, Qi YJ, You L, Yang P, Huang CW. 39.  et al. 2013. Large tensile-strain-induced monoclinic MB phase in BiFeO3 epitaxial thin films on a PrScO3 substrate. Phys. Rev. B 88:054114 [Google Scholar]
  40. Ren W, Yang Y, Diéguez O, Íñiguez J, Choudhury N, Bellaiche L. 40.  2013. Ferroelectric domains in multiferroic BiFeO3 films under epitaxial strains. Phys. Rev. Lett. 110:187601 [Google Scholar]
  41. Li JF, Wang JL, Wuttig M, Ramesh R, Wang N. 41.  et al. 2004. Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions. Appl. Phys. Lett. 84:5261–63 [Google Scholar]
  42. Mazumdar D, Shelke V, Iliev M, Jesse S, Kumar A. 42.  et al. 2010. Nanoscale switching characteristics of nearly tetragonal BiFeO3 thin films. Nano Lett. 10:2555–61 [Google Scholar]
  43. Singh MK, Ryu S, Jang HM. 43.  2005. Polarized Raman scattering of multiferroic BiFeO3 thin films with pseudo-tetragonal symmetry. Phys. Rev. B 72:132101 [Google Scholar]
  44. Christen HM, Nam JH, Kim HS, Hatt AJ, Spaldin NA. 44.  2011. Stress-induced R−MA−MC−T symmetry changes in BiFeO3 films. Phys. Rev. B 83:144107 [Google Scholar]
  45. Vasudevan RK, Liu YY, Li JY, Kumar A, Liang WI. 45.  et al. 2011. Nanoscale control of phase variants in strain-engineered BiFeO3. Nano Lett. 11:3346–54 [Google Scholar]
  46. Béa H, Dupé B, Fusil S, Mattana R, Jacquet E. 46.  et al. 2009. Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett. 102:217603 [Google Scholar]
  47. Pailloux F, Couillard M, Fusil S, Bruno F, Saidi W. 47.  et al. 2014. Atomic structure and microstructures of supertetragonal multiferroic BiFeO3 thin films. Phys. Rev. B 89:104106 [Google Scholar]
  48. Infante IC, Juraszek J, Fusil S, Dupé B, Gemeiner P. 48.  et al. 2011. Multiferroic phase transition near room temperature in BiFeO3 films. Phys. Rev. Lett. 107:237601 [Google Scholar]
  49. Zhang JX, He Q, Trassin M, Luo W, Yi D. 49.  et al. 2011. Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO3. Phys. Rev. Lett. 107:147602 [Google Scholar]
  50. Kim K-E, Jang B-K, Heo Y, Lee JH, Jeong M. 50.  et al. 2014. Electric control of straight stripe conductive mixed-phase nanostructures in La-doped BiFeO3. NPG Asia Mater. 6e81
  51. He Q, Chu YH, Heron JT, Yang SY, Liang WI. 51.  et al. 2011. Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics. Nat. Commun. 2:225 [Google Scholar]
  52. Liu HJ, Liang CW, Liang WI, Chen HJ, Yang JC. 52.  et al. 2012. Strain-driven phase boundaries in BiFeO3 thin films studied by atomic force microscopy and X-ray diffraction. Phys. Rev. B 85:014104 [Google Scholar]
  53. You L, Chen ZH, Zou X, Ding H, Chen WG. 53.  et al. 2012. Characterization and manipulation of mixed phase nanodomains in highly strained BiFeO3 thin films. ACS Nano 6:5388–94 [Google Scholar]
  54. Beekman C, Siemons W, Ward TZ, Chi M, Howe J. 54.  et al. 2013. Phase transitions, phase coexistence, and piezoelectric switching behavior in highly strained BiFeO3 films. Adv. Mater. 25:5561–67 [Google Scholar]
  55. Rossell MD, Erni R, Prange MP, Idrobo JC, Luo W. 55.  et al. 2012. Atomic structure of highly strained BiFeO3 thin films. Phys. Rev. Lett. 108:047601 [Google Scholar]
  56. Zhang JX, Xiang B, He Q, Seidel J, Zeches RJ. 56.  et al. 2011. Large field-induced strains in a lead-free piezoelectric material. Nat. Nanotechnol. 6:98–102 [Google Scholar]
  57. He Q, Arenholz E, Scholl A, Chu YH, Ramesh R. 57.  2012. Nanoscale characterization of emergent phenomena in multiferroics. Curr. Opin. Solid State Mater. Sci. 16:216–26 [Google Scholar]
  58. Chen YC, He Q, Chu FN, Huang YC, Chen JW. 58.  et al. 2012. Electrical control of multiferroic orderings in mixed-phase BiFeO3 films. Adv. Mater. 24:3070–75 [Google Scholar]
  59. Zhang JX, Zeches RJ, He Q, Chu YH, Ramesh R. 59.  2012. Nanoscale phase boundary: a new twist to novel functionalities. Nanoscale 4:6196–204 [Google Scholar]
  60. Imada M, Fujimori A, Tokura Y. 60.  1998. Metal-insulator transitions. Rev. Mod. Phys. 70:1039–263 [Google Scholar]
  61. Yang CH, Seidel J, Kim SY, Rossen PB, Yu P. 61.  et al. 2009. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8:485–93 [Google Scholar]
  62. Strelcov E, Kim Y, Jesse S, Wang CH, Teng YC. 62.  et al. 2013. Probing local ionic dynamics in functional oxides at the nanoscale. Nano Lett. 13:3455–62 [Google Scholar]
  63. Daraktchiev M, Catalan G, Scott JF. 63.  2008. Landau theory of ferroelectric domain walls in magnetoelectrics. Ferroelectrics 375:122–31 [Google Scholar]
  64. Catalan G, Scott JF. 64.  2009. Physics and applications of bismuth ferrite. Adv. Mater. 21:2463–85 [Google Scholar]
  65. Aird A, Salje EKH. 65.  1998. Sheet superconductivity in twin walls: experimental evidence of WO3−x. J. Phys. Condens. Matter 10:L377–80 [Google Scholar]
  66. Bartels M, Hagen V, Burianek M, Getzlaff M, Bismayer U, Wiesendanger R. 66.  2003. Impurity-induced resistivity of ferroelastic domain walls in doped lead phosphate. J. Phys. Condens. Matter 15:957–62 [Google Scholar]
  67. Meier D, Seidel J, Cano A, Delaney K, Kumagai Y. 67.  et al. 2012. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11:284–88 [Google Scholar]
  68. Guyonnet J, Gaponenko I, Gariglio S, Paruch P. 68.  2011. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23:5277–82 [Google Scholar]
  69. Choi T, Horibe Y, Yi HT, Choi YJ, Wu W, Cheong SW. 69.  2010. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mater. 9:253–58 [Google Scholar]
  70. Sluka T, Tagantsev AK, Bednyakov P, Setter N. 70.  2013. Free-electron gas at charged domain walls in insulating BaTiO3. Nat. Commun. 4:1808 [Google Scholar]
  71. Tselev A, Meunier V, Strelcov E, Shelton WA, Luk'yanchuk IA. 71.  et al. 2010. Mesoscopic metal–insulator transition at ferroelastic domain walls in VO2. ACS Nano 4:4412–19 [Google Scholar]
  72. Allwood DA, Xiong G, Faulkner CC, Atkinson D, Petit D, Cowburn RP. 72.  2005. Magnetic domain-wall logic. Science 309:1688–92 [Google Scholar]
  73. Thomas L, Hayashi M, Jiang X, Moriya R, Rettner C, Parkin SSP. 73.  2007. Resonant amplification of magnetic domain-wall motion by a train of current pulses. Science 315:1553–56 [Google Scholar]
  74. Parkin SSP, Hayashi M, Thomas L. 74.  2008. Magnetic domain-wall racetrack memory. Science 320:190–94 [Google Scholar]
  75. Thomas L, Moriya R, Rettner C, Parkin SSP. 75.  2010. Dynamics of magnetic domain walls under their own inertia. Science 330:1810–13 [Google Scholar]
  76. Seidel J, Maksymovych P, Batra Y, Katan A, Yang SY. 76.  et al. 2010. Domain wall conductivity in La-doped BiFeO3. Phys. Rev. Lett. 105:197603 [Google Scholar]
  77. Balke N, Winchester B, Ren W, Chu YH, Morozovska AN. 77.  et al. 2012. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nat. Phys. 8:81–88 [Google Scholar]
  78. Balke N, Choudhury S, Jesse S, Huijben M, Chu YH. 78.  et al. 2009. Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotechnol. 4:868–75 [Google Scholar]
  79. Cruz MP, Chu YH, Zhang JX, Yang PL, Zavaliche F. 79.  et al. 2007. Strain control of domain-wall stability in epitaxial BiFeO3 (110) films. Phys. Rev. Lett. 99:217601 [Google Scholar]
  80. Seidel J, Martin LW, He Q, Zhan Q, Chu YH. 80.  et al. 2009. Conducting domain walls in oxide multiferroics. Nat. Mater. 8:485–93 [Google Scholar]
  81. Maksymovych P, Seidel J, Chu YH, Wu P, Baddorf AP. 81.  et al. 2011. Dynamic conductivity of ferroelectric domain walls in BiFeO3. Nano Lett. 11:1906–12 [Google Scholar]
  82. Vasudevan RK, Morozovska AN, Eliseev EA, Britson J, Yang JC. 82.  et al. 2012. Domain wall geometry controls conduction in ferroelectrics. Nano Lett. 12:5524–31 [Google Scholar]
  83. Chiu YP, Chen YT, Huang BC, Shih MC, Yang JC. 83.  et al. 2011. Atomic scale evolution of local electronic structure across multiferroic domain walls. Adv. Mater. 23:1530–34 [Google Scholar]
  84. Streiffer SK, Parker CB, Romanov AE, Lefevre MJ, Zhao L. 84.  et al. 1998. Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments. J. Appl. Phys. 83:2742–53 [Google Scholar]
  85. Romanov AE, Lefevre MJ, Speck JS, Pompe W, Streiffer SK, Foster CM. 85.  1998. Domain pattern formation in epitaxial rhombohedral ferroelectric films. II. Interfacial defects and energetics. J. Appl. Phys. 83:2754–65 [Google Scholar]
  86. Chu YH, He Q, Yang CH, Yu P, Martin LW. 86.  et al. 2009. Nanoscale control of domain architectures in BiFeO3 thin films. Nano Lett. 9:1726–30 [Google Scholar]
  87. He Q, Yeh CH, Yang JC, Singh-Bhalla G, Laing CW. 87.  et al. 2012. Magnetotransport at domain walls in BiFeO3. Phys. Rev. Lett. 108:067203 [Google Scholar]
  88. Béa H, Bibes M, Sirena M, Herranz G, Bouzehouane K, Jacquet E. 88.  et al. 2006. Combining half-metals and multiferroics into epitaxial heterostructures for spintronics. Appl. Phys. Lett. 88:062502 [Google Scholar]
  89. Wu SM, Cybart SA, Yi D, Parker JM, Ramesh R, Dynes RC. 89.  2013. Full electric control of exchange bias. Phys. Rev. Lett. 110:067202 [Google Scholar]
  90. Béa H, Bibes M, Cherifi S, Nolting F, Warot-Fonrose B. 90.  et al. 2006. Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films. Appl. Phys. Lett. 89:242114 [Google Scholar]
  91. You L, Wang BM, Zou X, Lim ZS, Zhou Y. 91.  et al. 2013. Origin of the uniaxial magnetic anisotropy in La0.7Sr0.3MnO3 on stripe-domain BiFeO3. Phys. Rev. B 88:184426 [Google Scholar]
  92. You L, Lu C, Yang P, Han G, Wu T. 92.  et al. 2010. Uniaxial magnetic anisotropy in La0.7Sr0.3MnO3 thin films induced by multiferroic BiFeO3 with striped ferroelectric domains. Adv. Mater. 22:4964–68 [Google Scholar]
  93. Yi D, Liu J, Okamoto S, Suresha SJ, Chen YC. 93.  et al. 2013. Tuning the competition between ferromagnetism and antiferromagnetism in a half-doped manganite through magnetoelectric coupling. Phys. Rev. Lett. 111:127601 [Google Scholar]
  94. Crassous A, Bernard R, Fusil S, Bouzehouane K, Le Bourdais D. 94.  et al. 2011. Nanoscale electrostatic manipulation of magnetic flux quanta in ferroelectric/superconductor BiFeO3/YBa2Cu3O7-δ heterostructures. Phys. Rev. Lett. 107:247002 [Google Scholar]
  95. Crassous A, Bernard R, Fusil S, Bouzehouane K, Briatico J. 95.  et al. 2013. BiFeO3/YBa2Cu3O7-δ heterostructures for strong ferroelectric modulation of superconductivity. J. Appl. Phys. 113:024910 [Google Scholar]
  96. Yang Q, Ma X, Dai Q, Zhang H, Nie R, Wang F. 96.  2013. The structural and superconducting properties in the YBa2Cu3O7-δ/BiFeO3 heterostructures. Physica C 492:181–85 [Google Scholar]
  97. Zhu JX, Wen XD, Haraldsen JT, He M, Panagopoulos C, Chia EEM. 97.  2014. Induced ferromagnetism at BiFeO3/YBa2Cu3O7 interfaces. Sci. Rep. 4:5368 [Google Scholar]
  98. Chen XM, Wu GH, Zhang HL, Qin N, Wang T. 98.  et al. 2010. Nonvolatile bipolar resistance switching effects in multiferroic BiFeO3 thin films on LaNiO3-electrodized Si substrates. Appl. Phys. A 100:987–90 [Google Scholar]
  99. Wang Y, Lin YH, Nan CW. 99.  2008. Thickness dependent size effect of BiFeO3 films grown on LaNiO3-buffered Si substrates. J. Appl. Phys. 104:123912 [Google Scholar]
  100. Ohtomo A, Hwang HY. 100.  2004. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427:423–26 [Google Scholar]
  101. Herranz G, Basletic M, Bibes M, Carretero C, Tafra E. 101.  et al. 2007. High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives. Phys. Rev. Lett. 98:216803 [Google Scholar]
  102. Popovic ZS, Satpathy S, Martin RM. 102.  2008. Origin of the two-dimensional electron gas carrier density at the LaAlO3 on SrTiO3 interface. Phys. Rev. Lett. 101:256801 [Google Scholar]
  103. Reyren N, Thiel S, Caviglia AD, Kourkoutis LF, Hammerl G. 103.  et al. 2007. Superconducting interfaces between insulating oxides. Science 317:1196–99 [Google Scholar]
  104. Janicka K, Velev JP, Tsymbal EY. 104.  2009. Quantum nature of two-dimensional electron gas confinement at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 102:106803 [Google Scholar]
  105. Tra VT, Chen JW, Huang PC, Huang BC, Cao Y. 105.  et al. 2013. Ferroelectric control of the conduction at the LaAlO3/SrTiO3 heterointerface. Adv. Mater. 25:3357–64 [Google Scholar]
  106. Dikin DA, Mehta M, Bark CW, Folkman CM, Eom CB, Chandrasekhar V. 106.  2011. Coexistence of superconductivity and ferromagnetism in two dimensions. Phys. Rev. Lett. 107:056802 [Google Scholar]
  107. Chen HH, Kolpak AM, Ismail-Beigi S. 107.  2010. Electronic and magnetic properties of SrTiO3/LaAlO3 interfaces from first principles. Adv. Mater. 22:2881–99 [Google Scholar]
  108. Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U. 108.  et al. 2007. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 6:493–96 [Google Scholar]
  109. Li L, Richter C, Mannhart J, Ashoori RC. 109.  2011. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat. Phys. 7:762–66 [Google Scholar]
  110. Bert JA, Kalisky B, Bell C, Kim M, Hikita Y. 110.  et al. 2011. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat. Phys. 7:767–71 [Google Scholar]
  111. Yu P, Lee JS, Okamoto S, Rossell MD, Huijben M. 111.  et al. 2010. Interface ferromagnetism and orbital reconstruction in BiFeO3-La0.7Sr0.3MnO3 heterostructures. Phys. Rev. Lett. 105:027201 [Google Scholar]
  112. Yu P, Chu YH, Ramesh R. 112.  2012. Oxide interfaces: pathways to novel phenomena. Mater. Today 15:320–27 [Google Scholar]
  113. Yu P, Chu YH, Ramesh R. 113.  2012. Emergent phenomena at multiferroic heterointerface. Philos. Trans. R. Soc. A 370:4856–71 [Google Scholar]
  114. Yu P, Luo W, Yi D, Zhang JX, Rossell MD. 114.  et al. 2012. Interface control of bulk ferroelectric polarization. PNAS 109:9710–15 [Google Scholar]
  115. Singh S, Haraldsen JT, Xiong J, Choi EM, Lu P. 115.  et al. 2014. Induced magnetization in La0.7Sr0.3MnO3/BiFeO3 superlattices. Phys. Rev. Lett. 113:047204 [Google Scholar]
  116. Lebeugle D, Mougin A, Viret M, Colson D, Ranno L. 116.  2009. Electric field switching of the magnetic anisotropy of a ferromagnetic layer exchange coupled to the multiferroic compound BiFeO3. Phys. Rev. Lett. 103:257601 [Google Scholar]
  117. Dong S, Yamauchi K, Yunoki S, Yu R, Liang SH. 117.  et al. 2009. Exchange bias driven by the Dzyaloshinskii-Moriya interaction and ferroelectric polarization at G-type antiferromagnetic perovskite interfaces. Phys. Rev. Lett. 103:127201 [Google Scholar]
  118. Dho JH, Qi XD, Kim H, MacManus-Driscoll JL, Blamire MG. 118.  2006. Large electric polarization and exchange bias in multiferroic BiFeO3. Adv. Mater. 18:1445–48 [Google Scholar]
  119. Martin LW, Chu YH, Holcomb MB, Huijben M, Yu P. 119.  et al. 2008. Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 8:2050–55 [Google Scholar]
  120. Wu SM, Cybart SA, Yu P, Rossell MD, Zhang JX. 120.  et al. 2010. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9:756–61 [Google Scholar]
  121. Ohno H, Chiba D, Matsukura F, Omiya T, Abe E. 121.  et al. 2000. Electric-field control of ferromagnetism. Nature 408:944–46 [Google Scholar]
  122. Chiba D, Sawicki M, Nishitani Y, Nakatani Y, Matsukura F, Ohno H. 122.  2008. Magnetization vector manipulation by electric fields. Nature 455:515–18 [Google Scholar]
  123. Chernyshov A, Overby M, Liu X, Furdyna JK, Lyanda-Geller Y, Rokhinson LP. 123.  2009. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 5:656–59 [Google Scholar]
  124. Sahoo S, Polisetty S, Duan CG, Jaswal SS, Tsymbal EY, Binek C. 124.  2007. Ferroelectric control of magnetism in BaTiO3/Fe heterostructures via interface strain coupling. Phys. Rev. B 76:092108 [Google Scholar]
  125. Geprägs S, Brandlmaier A, Opel1 M, Gross R, Goennenwein STB. 125.  2010. Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures. Appl. Phys. Lett. 96:142509 [Google Scholar]
  126. Myers EB, Ralph DC, Katine JA, Louie RN, Buhrman RA. 126.  1999. Current-induced switching of domains in magnetic multilayer devices. Science 285:867–70 [Google Scholar]
  127. Ralpha DC, Stilesb MD. 127.  2008. Spin transfer torques. J. Magn. Magn. Mater. 320:1190–216 [Google Scholar]
  128. Slonczewski JC. 128.  1996. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159:L1–7 [Google Scholar]
  129. Yang T, Kimura T, Otani Y. 129.  2008. Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching. Nat. Phys. 4:851–54 [Google Scholar]
  130. Spaldin NA, Fiebig M. 130.  2005. The renaissance of magnetoelectric multiferroics. Science 309:391–92 [Google Scholar]
  131. Eerenstein W, Mathur ND, Scott JF. 131.  2006. Multiferroic and magnetoelectric materials. Nature 442:759–65 [Google Scholar]
  132. Lebeugle D, Colson D, Forget A, Viret M, Bataille AM, Gukasov A. 132.  2008. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100:227602 [Google Scholar]
  133. Lee S, Ratcliff W II, Cheong SW, Kiryukhin V. 133.  2008. Electric field control of the magnetic state in BiFeO3 single crystals. Appl. Phys. Lett. 92:192906 [Google Scholar]
  134. Lottermoser T, Lonkai T, Amann U, Hohlwein D, Ihringer J, Fiebig M. 134.  2004. Magnetic phase control by an electric field. Nature 430:541–44 [Google Scholar]
  135. Hill NA. 135.  2000. Why are there so few magnetic ferroelectrics?. J. Phys. Chem. B 104:6694–709 [Google Scholar]
  136. Chu YH, Martin LW, Holcomb MB, Gajek M, Han SJ. 136.  et al. 2008. Electrical field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7:478–82 [Google Scholar]
  137. Heron JT, Trassin M, Ashraf K, Gajek M, He Q. 137.  et al. 2011. Electric-field-induced magnetization reversal in a ferromagnetic-multiferroic heterostructure. Phys. Rev. Lett. 107:217202 [Google Scholar]
  138. Bibes M, Barthélémy A. 138.  2008. Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7:425–26 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error