Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Geim AK, Grigorieva IV. 1.  2013. Van der Waals heterostructures. Nature 499:419–25 [Google Scholar]
  2. Ponomarenko LA, Geim AK, Zhukov AA, Jalil R, Morozov SV. 2.  et al. 2011. Tunable metal-insulator transition in double-layer graphene heterostructures. Nat. Phys. 7:958–61 [Google Scholar]
  3. Osada M, Sasaki T. 3.  2012. Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24:210–28 [Google Scholar]
  4. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA. 4.  et al. 2013. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–926 [Google Scholar]
  5. Schlom DG, Chen L-Q, Pan X, Schmehl A, Zurbuchen MA. 5.  2008. A thin film approach to engineering functionality into oxides. J. Am. Ceram. Soc. 91:2429–54 [Google Scholar]
  6. Azadmanjiri J, Berndt CC, Wang J, Kapoor A, Srivastavac VK, Wen C. 6.  2014. A review on hybrid nanolaminate materials synthesized by deposition techniques for energy storage applications. J. Mater. Chem. A 2:3695–708 [Google Scholar]
  7. Rouxel J, Meerschaut A, Wiegers GA. 7.  1995. Chalcogenide misfit layer compounds. J. Alloys Compd. 229:144–57 [Google Scholar]
  8. Westover RD, Atkins RA, Ditto JJ, Johnson DC. 8.  2014. Synthesis of [(SnSe)1.15]m(TaSe2)n ferecrystals: structurally tunable metallic compounds. Chem. Mater. 26:3443–49 [Google Scholar]
  9. Bianco E, Butler S, Jiang S, Restrepo OD, Windl W, Goldberger JE. 9.  2013. Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano 7:4414–21 [Google Scholar]
  10. Jiang S, Butler S, Bianco E, Restrepo OD, Windl W, Goldberger JE. 10.  2014. Improving the stability and optical properties of germanane via one-step covalent methyl-termination. Nat. Commun. 5:3389 [Google Scholar]
  11. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J. 11.  et al. 2011. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23:4248–53 [Google Scholar]
  12. Schwinghammer K, Mesch MB, Duppel V, Ziegler C, Senker J, Lotsch BV. 12.  2014. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 136:1730–33 [Google Scholar]
  13. Algara-Siller G, Severin N, Chong SY, Björkman T, Palgrave RG. 13.  et al. 2014. Triazine-based graphitic carbon nitride: a two-dimensional semiconductor. Angew. Chem. 53:7450–55 [Google Scholar]
  14. Kory MJ, Wörle M, Weber T, Payamyar P, van de Poll SW. 14.  et al. 2014. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 6:779–84 [Google Scholar]
  15. Rodenas T, Luz I, Prieto G, Seoane B, Miro H. 15.  et al. 2015. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 1448–55 [Google Scholar]
  16. Rao CNR, Matte HSSR, Maitra U. 16.  2013. Graphene analogues of inorganic layered materials. Angew. Chem. Int. Ed. 52:13162–85 [Google Scholar]
  17. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. 17.  2012. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7:699–712 [Google Scholar]
  18. Balendhran S, Walia S, Nili H, Ou JZ, Zhuiykov S. 18.  et al. 2013. Two-dimensional molybdenum trioxide and dichalcogenides. Adv. Funct. Mater. 23:3952–70 [Google Scholar]
  19. Rao CNR, Maitra U. 19.  2015. Inorganic graphene analogs. Annu. Rev. Mater. Res. 4529–62 [Google Scholar]
  20. Ma R, Sasaki T. 20.  2015. Organization of artificial superlattices utilizing nanosheets as a building block and exploration of their advanced functions. Annu. Rev. Mater. Res. 45: 111–27 [Google Scholar]
  21. Caldwell JD, Anderson TJ, Culbertson JC, Jernigan GG, Hobart KD. 21.  et al. 2010. Technique for the dry transfer of epitaxial graphene onto arbitrary substrates. ACS Nano 4:1108–14 [Google Scholar]
  22. Lim H, Yoon SI, Kim G, Jang A-R, Shin SH. 22.  2014. Stacking of two-dimensional materials in lateral and vertical directions. Chem. Mater. 26:4891–903 [Google Scholar]
  23. Schneider GF, Calado VE, Zandbergen H, Vandersypen LMK, Dekker C. 23.  2010. Wedging transfer of nanostructures. Nano Lett. 10:1912–16 [Google Scholar]
  24. Li H, Wu J, Huang X, Yin Z, Liu J, Zhang H. 24.  2014. A universal, rapid method for clean transfer of nanostructures onto various substrates. ACS Nano 8:6563–70 [Google Scholar]
  25. Song J, Kam F-Y, Png R-Q, Seah W-L, Zhuo J-M. 25.  et al. 2013. A general method for transferring graphene onto soft surfaces. Nat. Nanotechnol. 8:356–62 [Google Scholar]
  26. Wang L, Meric I, Huang PY, Gao Q, Gao Y. 26.  et al. 2013. One-dimensional electrical contact to a two-dimensional material. Science 342:614–17 [Google Scholar]
  27. Woods CR, Britnell L, Eckmann A, Ma RS, Lu JC. 27.  et al. 2014. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10:451–56 [Google Scholar]
  28. Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B. 28.  et al. 2014. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. PNAS 111:6198–202 [Google Scholar]
  29. Haigh SJ, Gholinia A, Jalil R, Romani S, Britnell L. 29.  et al. 2012. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11:764–67 [Google Scholar]
  30. Koma A, Sunouchi K, Miyajima T. 30.  1984. Fabrication and characterization of heterostructures with subnanometer thickness. Microelectron. Eng. 2:129–36 [Google Scholar]
  31. Koma A, Sunouchi K, Miyajima T. 31.  1985. Electronic structure of a monolayer NbSe2 film grown heteroepitaxially on the cleaved face of 2H-MoS2. Proc. 17th Int. Conf. Phys. Semicond.1465–68 New York: Springer [Google Scholar]
  32. Koma A. 32.  1999. Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth201–202236–41 [Google Scholar]
  33. Rümmeli H, Bachmatiuk A, Scott A, Börrnert F, Warner JH. 33.  et al. 2010. Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano 4:4206–10 [Google Scholar]
  34. Ji Q, Zhang Y, Gao T, Zhang Y, Ma D. 34.  et al. 2013. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 13:3870–77 [Google Scholar]
  35. Tang S, Wang H, Zhang Y, Li A, Xie H. 35.  et al. 2013. Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition. Sci. Rep. 3:2666 [Google Scholar]
  36. Yang W, Chen G, Shi Z, Liu C-C, Zhang L. 36.  et al. 2013. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12:792–97 [Google Scholar]
  37. Shi Y, Li H, Li L-J. 37.  2015. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. In press; doi: 10.1039/C4CS00256C [Google Scholar]
  38. Kim J, Bayram C, Park H, Cheng C-W, Dimitrakopoulos C. 38.  et al. 2014. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 5:4836 [Google Scholar]
  39. Zhan Y, Liu Z, Najmaei S, Ajayan PM, Lou J. 39.  2012. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8:966–71 [Google Scholar]
  40. Song J-G, Park J, Lee W, Choi T, Jung H. 40.  et al. 2013. Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. ACS Nano 7:11333–40 [Google Scholar]
  41. Lee Y-H, Zhang X-Q, Zhang W, Chang M-T, Lin C-T. 41.  et al. 2012. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24:2320–25 [Google Scholar]
  42. Lee Y-H, Yu L, Wang H, Fang W, Ling X. 42.  et al. 2013. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13:1852–57 [Google Scholar]
  43. Wu S, Huang C, Aivazian G, Ross JS, Cobden DH, Xu X. 43.  2013. Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 7:2768–72 [Google Scholar]
  44. Shi Y, Zhou W, Lu A-Y, Fang W, Lee Y-H. 44.  et al. 2012. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12:2784–91 [Google Scholar]
  45. Saidi WA. 45.  2014. Van der Waals epitaxial growth of transition metal dichalcogenides on pristine and N-doped graphene. Cryst. Growth Des. 14:4920–28 [Google Scholar]
  46. Shim GW, Yoo K, Seo S-B, Shin J, Jung DY. 46.  et al. 2010. Large-area single-layer MoSe2 and its van der Waals heterostructures. ACS Nano 8:6655–62 [Google Scholar]
  47. Lin Y-C, Lu N, Perea-Lopez N, Li J, Lin Z. 47.  et al. 2014. Direct synthesis of van der Waals solids. ACS Nano 8:3715–23 [Google Scholar]
  48. Ling X, Lee Y-H, Lin Y, Fang WJ, Yu L. 48.  et al. 2014. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 14:464–72 [Google Scholar]
  49. Bauer E, van der Merwe JH. 49.  1986. Structure and growth of crystalline superlattices: from monolayer to superlattice. Phys. Rev. B 33:3657–71 [Google Scholar]
  50. Noh M, Johnson CD, Hornbostel MD, Thiel J, Johnson DC. 50.  1996. Control of reaction pathway and the nanostructure of final products through the design of modulated elemental reactants.. Chem. Mater. 8:1625–35 [Google Scholar]
  51. Keller SW, Kim H-N, Mallouk TE. 51.  1994. Layer-by-layer assembly of intercalation compounds and heterostructures on surfaces: toward molecular “beaker” epitaxy. J. Am. Chem. Soc. 116:8817–18 [Google Scholar]
  52. Decher G, Hong J-D. 52.  1991. Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles. Makromol. Chem. Macromol. Symp. 46:321–27 [Google Scholar]
  53. Buck MR, Schaak RE. 53.  2013. Emerging strategies for the total synthesis of inorganic nanostructures. Angew. Chem. Int. Ed. 52:6154–78 [Google Scholar]
  54. Huang J, Ma R, Ebina Y, Fukuda K, Takada K, Sasaki T. 54.  2010. Layer-by-layer assembly of TaO3 nanosheet/polycation composite nanostructures: multilayer film, hollow sphere, and its photocatalytic activity for hydrogen evolution. Chem. Mater. 22:2582–87 [Google Scholar]
  55. Sakai N, Fukuda K, Omomo Y, Ebina Y, Takada K, Sasaki T. 55.  2008. Hetero-nanostructured films of titanium and manganese oxide nanosheets: photoinduced charge transfer and electrochemical properties. J. Phys. Chem. C 112:5197–202 [Google Scholar]
  56. Li B-W, Osada M, Akatsuka K, Ebina Y, Ozawa TC, Sasaki T. 56.  2011. Solution-based fabrication of perovskite multilayers and superlattices using nanosheet process. Jpn. J. Appl. Phys. 50:9S2 [Google Scholar]
  57. Sasaki T, Ebina Y, Tanaka T, Harada M, Watanabe M, Decher G. 57.  2001. Layer-by-layer assembly of titania nanosheet/polycation composite films. Chem. Mater. 13:4661–67 [Google Scholar]
  58. Osada M, Ebina Y, Takada K, Sasaki T. 58.  2006. Gigantic magneto–optical effects in multilayer assemblies of two-dimensional titania nanosheets. Adv. Mater. 18:295–99 [Google Scholar]
  59. Geng F, Ma R, Ebina Y, Yamauchi Y, Miyamoto N, Sasaki T. 59.  2014. Gigantic swelling of inorganic layered materials: a bridge to molecularly thin two-dimensional nanosheets. J. Am. Chem. Soc. 136:5491–500 [Google Scholar]
  60. Chalasani R, Gupta A, Vasudevan S. 60.  2013. Engineering new layered solids from exfoliated inorganics: a periodically alternating hydrotalcite–montmorillonite layered hybrid. Sci. Rep. 3:3498 [Google Scholar]
  61. Kohler H-H, Woelki S. 61.  2005. Surface charge and surface potential. Surfactant Science Series 126: Coagulation and Flocculation B Dobias, H Stechmesser Boca Raton, FL: CRC, 2nd ed.. [Google Scholar]
  62. Harper WR. 62.  1934. On the theory of the coagulation of colloids and of smokes. Trans. Faraday Soc. 30:636–43 [Google Scholar]
  63. Onoda M, Liu Z, Ebina Y, Takada K, Sasaki T. 63.  2011. X-ray diffraction study on restacked flocculates from binary colloidal nanosheet systems Ti0.91O2−MnO2, Ca2Nb3O10−Ti0.91O2, and Ca2Nb3O10−MnO2. J. Phys. Chem. C 115:8555–66 [Google Scholar]
  64. Li L, Ma R, Ebina Y, Fukuda K, Takada K, Sasaki T. 64.  2007. Layer-by-layer assembly and spontaneous flocculation of oppositely charged oxide and hydroxide nanosheets into inorganic sandwich layered materials. J. Am. Chem. Soc. 129:8000–7 [Google Scholar]
  65. Gunjakar JL, Kim TW, Kim HN, Kim IY, Hwang S-J. 65.  2011. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability. J. Am. Chem. Soc. 133:14998–5007 [Google Scholar]
  66. Coronado E, Martí-Gastaldo C, Navarro-Moratalla E, Ribera A, Blundell SJ, Baker PJ. 66.  2010. Coexistence of superconductivity and magnetism by chemical design. Nat. Chem. 2:1031–36 [Google Scholar]
  67. Iler RK. 67.  1966. Multilayers of colloidal particles. J. Colloid Interface Sci. 21:569–94 [Google Scholar]
  68. Fendler JH. 68.  1996. Self-assembled nanostructured materials. Chem. Mater. 8:1616–24 [Google Scholar]
  69. Lvov Y, Decher G, Möhwald H. 69.  1993. Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir 9:481–86 [Google Scholar]
  70. Srivastava S, Kotov NA. 70.  2008. Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc. Chem. Res. 41:1831–41 [Google Scholar]
  71. Schaak RE, Mallouk TE. 71.  2000. Self-assembly of tiled perovskite monolayer and multilayer. Thin Films Chem. Mater. 12:2513–16 [Google Scholar]
  72. Fang M, Kim CH, Saupe GB, Kim H-N, Waraksa CC. 72.  et al. 1999. Layer-by-layer growth and condensation reactions of niobate and titanoniobate thin films. Chem. Mater. 11:1526–32 [Google Scholar]
  73. Schaak RE, Mallouk TE. 73.  2002. Perovskites by design: a toolbox of solid-state reactions. Chem. Mater. 14:1455–71 [Google Scholar]
  74. Schaak RE, Mallouk TE. 74.  2000. Topochemical synthesis of three-dimensional perovskites from lamellar precursors. J. Am. Chem. Soc. 122:2798–803 [Google Scholar]
  75. Manga KK, Zhou Y, Yan Y, Loh KP. 75.  2009. Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties. Adv. Funct. Mater. 19:3638–43 [Google Scholar]
  76. Ida S, Sonoda Y, Ikeue K, Matsumoto Y. 76.  2010. Drastic changes in photoluminescence properties of multilayer films composed of europium hydroxide and titanium oxide nanosheets. Chem. Commun. 46:877–79 [Google Scholar]
  77. Akatsuka K, Haga M-A, Ebina Y, Osada M, Fukuda K, Sasaki T. 77.  2009. Construction of highly ordered lamellar nanostructures through Langmuir–Blodgett deposition of molecularly thin titania nanosheets tens of micrometers wide and their excellent dielectric properties. ACS Nano 3:1097–106 [Google Scholar]
  78. Sasaki T, Ebina Y, Watanabea M, Decher G. 78.  2000. Multilayer ultrathin films of molecular titania nanosheets showing highly efficient UV-light absorption. Chem. Commun. 2000:2163–64 [Google Scholar]
  79. Williamson GK, Hall WH. 79.  1953. X-ray line broadening from filed aluminum and wolfram. Acta Metall. 1:22–31 [Google Scholar]
  80. Ziegler C, Werner S, Bugnet M, Wörsching M, Duppel V. 80.  et al. 2013. Artificial solids by design: assembly and electron microscopy study of nanosheet-derived heterostructures. Chem. Mater. 25:4892–900 [Google Scholar]
  81. Kotov NA, Meldrum FC, Fendler JH, Tombácz E, Dèkány I. 81.  1994. Spreading of clay organocomplexes on aqueous solutions: construction of Langmuir-Blodgett clay organocomplex multilayer films. Langmuir 10:3797–804 [Google Scholar]
  82. Taguchi Y, Kimura R, Azumi R, Tachibana H, Koshizaki N. 82.  et al. 1998. Fabrication of hybrid layered films of MoS2 and an amphiphilic ammonium cation using the Langmuir–Blodgett technique. Langmuir 14:6550–55 [Google Scholar]
  83. Muramatsu M, Akatsuka K, Ebina Y, Wang K, Sasaki T. 83.  et al. 2005. Fabrication of densely packed titania nanosheet films on solid surface by use of Langmuir–Blodgett deposition method without amphiphilic additives. Langmuir 21:6590–95 [Google Scholar]
  84. Li B-W, Osada M, Ozawa TC, Ebina Y, Akatsuka K. 84.  et al. 2010. Engineered interfaces of artificial perovskite oxide superlattices via nanosheet deposition process. ACS Nano 4:6673–80 [Google Scholar]
  85. Britnell L, Gorbachev RV, Jalil R, Belle BD, Schedin F. 85.  et al. 2012. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335:947–50 [Google Scholar]
  86. Yu WJ, Li Z, Zhou H, Chen Y, Wang Y. 86.  et al. 2013. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12:246–52 [Google Scholar]
  87. Georgiou T, Jalil R, Belle BD, Britnell L, Gorbachev RV. 87.  et al. 2013. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8:100–3 [Google Scholar]
  88. Hong AJ, Song EB, Yu HS, Allen MJ, Kim J. 88.  et al. 2011. Graphene flash memory. ACS Nano 5:7812–17 [Google Scholar]
  89. Bertolazzi S, Krasnozhon D, Kis A. 89.  2013. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7:3246–52 [Google Scholar]
  90. Choi MS, Lee G-H, Yu Y-J, Lee D-Y, Lee SH. 90.  et al. 2012. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4:1624 [Google Scholar]
  91. Britnell L, Ribeiro RM, Eckmann A, Jalil R, Belle BD. 91.  et al. 2013. Strong light-matter interactions in heterostructures of atomically thin films. Science 340:1311–14 [Google Scholar]
  92. Yu WJ, Liu Y, Zhou H, Yin A, Li Z. 92.  et al. 2013. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8:952–58 [Google Scholar]
  93. Qiu DY. Jornada FH, Louie SG. 93. , da 2013. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111:216805 [Google Scholar]
  94. Hong X, Kim J, Shi S-F, Zhang Y, Jin C. 94.  et al. 2014. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9:682–86 [Google Scholar]
  95. Lin B, Sun P, Zhou Y, Jiang S, Gao B, Chen Y. 95.  2014. Interstratified nanohybrid assembled by alternating cationic layered double hydroxide nanosheets and anionic layered titanate nanosheets with superior photocatalytic activity. J. Hazard. Mater. 280:156–63 [Google Scholar]
  96. Tu W, Zhou Y, Liu Q, Tian Z, Gao J. 96.  et al. 2012. Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels. Adv. Funct. Mater. 22:1215–21 [Google Scholar]
  97. Wang C, Osada M, Ebina Y, Li B-W, Akatsuka K. 97.  et al. 2014. All-nanosheet ultrathin capacitors assembled layer-by-layer via solution-based processes. ACS Nano 8:2658–66 [Google Scholar]
  98. Yu G, Xie X, Pan L, Bao Z, Cui Y. 98.  2013. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2:213–14 [Google Scholar]
  99. Peng L, Peng X, Liu B, Wu C, Xie Y, Yu G. 99.  2013. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 13:2151–57 [Google Scholar]
  100. da Silveira Firmiano EG, Rabelo AC, Dalmaschio CJ, Pinheiro AN, Pereira EC. 100.  et al. 2014. Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv. Energy Mater. 4:1301380 [Google Scholar]
  101. Wang L, Wang D, Dong XY, Zhang ZJ, Pei XF. 101.  et al. 2011. Layered assembly of graphene oxide and Co–Al layered double hydroxide nanosheets as electrode materials for supercapacitors. Chem. Commun. 47:3556–58 [Google Scholar]
  102. Yang C, Dong L, Chen Z, Lu H. 102.  2014. High-performance all-solid-state supercapacitor based on the assembly of graphene and manganese(II) phosphate nanosheets. J. Phys. Chem. C 118:18884–91 [Google Scholar]
  103. Loan PTK, Zhang W, Lin C-T, Wei K-H, Li L-J, Chen C-H. 103.  2014. Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridization. Adv. Mater. 26:4838–44 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error