1932

Abstract

The synthesis of robust coatings that provide protection against environmental attack at ultrahigh temperatures is a difficult challenge. To achieve this goal for Mo-base alloys, the fundamental concepts of reactive diffusion pathway analysis and kinetic biasing are used to design a multilayer Mo-Si-B-base coating with a phase sequencing that allows for structural and thermodynamic compatibility and an underlying diffusion barrier to maintain coating integrity. The coating design concepts have a general applicability. The coating structure evolution during high-temperature exposure facilitates a prolonged lifetime as well as self-healing capability. The borosilicide coatings that can be synthesized by a pack cementation process yield superior environmental resistance for Mo-base systems at temperatures up to at least 1,700°C and can be adapted to apply to other refractory metal and ceramic systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070214-020959
2015-07-01
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/matsci/45/1/annurev-matsci-070214-020959.html?itemId=/content/journals/10.1146/annurev-matsci-070214-020959&mimeType=html&fmt=ahah

Literature Cited

  1. Perepezko JH. 1.  2009. The hotter the engine, the better. Science 326:1068–69 [Google Scholar]
  2. Dimiduk DM, Perepezko JH. 2.  2003. Mo-Si-B alloys: developing a revolutionary turbine-engine material. MRS Bull. 28:9639–45 [Google Scholar]
  3. Ross ER, Sims CT. 3.  1987. Nickel-base alloys. See Ref. 148 97–133
  4. Stoloff NA. 4.  1987. Fundamentals of strengthening. See Ref. 148 61–96
  5. Dyson BF, Lean MM. 5.  1990. Creep deformation of engineering alloys—developments from physical modeling. JISI Int. 30:802–11 [Google Scholar]
  6. Dimiduk DM, Miracle DB, Ward CH. 6.  1992. Development of intermetallic materials for aerospace systems. Mater. Sci. Technol. 8:367–75 [Google Scholar]
  7. Birks N, Meier GH. 7.  1983. Introduction to High Temperature Oxidation of Metals London: Edward Arnold [Google Scholar]
  8. Boettinger WJ, Perepezko JH, Frankwicz PS. 8.  1992. Application of ternary phase diagrams to the development of MoSi2 based materials. Mater. Sci. Eng. A 155:33–44 [Google Scholar]
  9. Shah DM, Berczik D, Anton DL, Hecht R. 9.  1992. Appraisal of other silicides as structural materials. Mater. Sci. Eng. A 155:45–57 [Google Scholar]
  10. Vasudevan AK, Petrovic JJ. 10.  1992. Comparative overview of molybdenum disilicide composites. Mater. Sci. Eng. A 155:1–17 [Google Scholar]
  11. Brewer L, Lamoreaux RH. 11.  1990. Mo-O (molybdenum-oxygen). Binary Alloy Phase Diagrams II 3 TB Massalski 2639–41 Materials Park, OH: ASM Int. [Google Scholar]
  12. Northcott L. 12.  1956. Molybdenum London: Butterworth Sci. [Google Scholar]
  13. Harwood JJ. 13.  1958. The protection of molybdenum against high-temperature oxidation. The Metal Molybdenum JJ Harwood 420–59 Cleveland, OH: Am. Soc. Met. [Google Scholar]
  14. Wadsworth J. 14.  1988. Recent advances in aerospace alloys. Int. Mater. Rev. 33:370–83 [Google Scholar]
  15. Mitra R. 15.  2006. Mechanical behaviour and oxidation resistance of structural silicides. Int. Mater. Rev. 51:13–64 [Google Scholar]
  16. Couch DE. 16.  1958. Protection of molybdenum from oxidation at elevated temperatures. J. Electrochem. Soc. 105:450–56 [Google Scholar]
  17. Yanagihara AK. 17.  1994. Dip coating of Mo(Si,Al)2 on molybdenum with an Al-Si melt. J. Iron Steel Inst. Jpn. 80:178–82 [Google Scholar]
  18. Lazarev EM. 18.  1991. Silicide coatings on high melting metal alloys for high temperature gas corrosion protection. Prakt. Metall. 28:3–14 [Google Scholar]
  19. Martinz HP, Rieger M. 19.  1997. High temperature oxidation resistant coatings on molybdenum. Mater. Sci. Forum 251–254:761–68 [Google Scholar]
  20. Martinz HP, Nigg B, Matej M, Larcher H, Hoffman A. 20.  2006. Properties of the SIBOR oxidation protective coating on refractory metal alloys. Int. J. Refract. Metals Hard Mater. 24:283–91 [Google Scholar]
  21. Park JS, Kim JM, Cho SH, Son Y, Kim D. 21.  2013. Oxidation of MoSi2-coated and uncoated TZM (Mo-0.5Ti-0.1Zr-0.02C) alloys under high temperature plasma flame. Mater. Trans. 54:1517–23 [Google Scholar]
  22. Paul B, Majumbar S, Suri AK. 22.  2013. Microstructure and mechanical properties of hot pressed Mo-Cr-Si-Ti in-situ composite and oxidation behavior with silicide coatings. Int. J. Refract. Metals Hard Mater. 38:26–34 [Google Scholar]
  23. Ito K, Murakami T, Adachi K, Yamaguchi. 23.  2003. Oxidation behavior of Mo-9Si-18B alloy pack-cemented in a Si-base pack mixture. Intermetallics 11:763–72 [Google Scholar]
  24. Tian X, Guo X, Sun Z, Yin Z, Wang L. 24.  2014. Formation of B-modified MoSi2 coating on pure Mo prepared through HAPC process. Int. J. Refract. Metals Hard Mater. 45:8–14 [Google Scholar]
  25. Tang Z, Thom AJ, Kramer MJ, Akinc M. 25.  2008. Characterization and oxidation behavior of silicide coating on multiphase Mo-Si-B alloy. Intermetallics 16:1125–33 [Google Scholar]
  26. Kircher TA, Courtright EJ. 26.  1992. Engineering limitations of MoSi2 coatings. Mater. Sci. Eng. A 155:67–74 [Google Scholar]
  27. Mueller AG, Wang G, Rapp RA, Courtright EL, Kircher TA. 27.  1992. Oxidation behavior of tungsten and germanium-alloyed molybdenum disilicide coatings. Mater. Sci. Eng. A 155:199–207 [Google Scholar]
  28. Lange A, Braun R, Heilmaier M. 28.  2014. Oxidation behavior of magnetron sputtered double layer coatings containing molybdenum, silicon and boron. Intermetallics 48:19–27 [Google Scholar]
  29. Ito K, Hayashi T, Yokobayashi M, Numakura H. 29.  2004. Evolution kinetics and microstructure of MoSi2 and Mo5Si3 surface layers on two-phase Mo-9Si-18B alloy during pack-cementation and high-temperature oxidation. Intermetallics 12:407–15 [Google Scholar]
  30. Majumdar S, Sharma IG. 30.  2011. Oxidation behavior of MoSi2 and Mo(Si, Al)2 coated Mo–0.5Ti–0.1Zr–0.02C alloy. Intermetallics 19:541–45 [Google Scholar]
  31. Lange A, Braun R. 31.  2014. Magnetron-sputtered oxidation protection coatings for Mo–Si–B alloys. Corros. Sci. 84:74–84 [Google Scholar]
  32. Nomura N, Suzuki T, Yoshimi K, Hanada S. 32.  2003. Microstructure and oxidation resistance of a plasma sprayed Mo–Si–B multiphase alloy coating. Intermetallics 11:735–42 [Google Scholar]
  33. Chakraborty SP, Banerjee S, Singh K, Sharma IG, Grover AK, Suri AK. 33.  2008. Studies on the development of protective coating on TZM alloy and its subsequent characterization. J. Mater. Process. Technol. 207:240–47 [Google Scholar]
  34. Chakraborty SP, Banerjee S, Sharma IG, Suri AK. 34.  2010. Development of silicide coating over molybdenum based refractory alloy and its characterization. J. Nucl. Mater. 403:152–59 [Google Scholar]
  35. Mujumdar S. 35.  2012. Formation of MoSi2 and Al doped MoSi2 coatings on molybdenum base TZM (Mo-0.5Ti-0.1Zr-0.02C) alloy. Surf. Coat. Technol. 206:3393–98 [Google Scholar]
  36. Ito K, Yokobayashi M, Murakami T, Numakura H. 36.  2005. Oxidation protective silicide coating on Mo-Si-B alloys. Metall. Mater. Trans. A 36:3627–36 [Google Scholar]
  37. Berczik DM. 37.  1997. Method for enhancing the oxidation resistance of a molybdenum alloy, and a method of making a molybdenum alloy US Patent No. 5595616 [Google Scholar]
  38. Berczik DM. 38.  1997. Oxidation resistant molybdenum alloys US Patent No. 569315646 [Google Scholar]
  39. Woodward SR, Raban R, Myers JF, Berzcik DM. 39.  2003. Oxidation resistant molybdenum US Patent No. 6652674 [Google Scholar]
  40. Mendiratta MG, Parthasarathy TA, Dimiduk DM. 40.  2002. Oxidation behavior of alpha Mo-Mo3Si-Mo5SiB2 (T2) three phase system. Intermetallics 10:225–32 [Google Scholar]
  41. Parthasarathy TA, Mendiratta MG, Dimiduk DM. 41.  2002. Oxidation mechanisms in Mo-reinforced Mo5SiB2 (T2)-Mo3Si alloys. Acta Mater. 50:1857–68 [Google Scholar]
  42. Paswan S, Mitra R, Roy SK. 42.  2007. Oxidation behaviour of the Mo-Si-B and Mo-Si-B-Al alloys in the temperature range of 700–1300°C. Intermetallics 15:1217–27 [Google Scholar]
  43. Yoshimi K, Nakatani S, Nomura N, Hanada S. 43.  2003. Thermal expansion, strength and oxidation resistance of Mo/Mo5SiB2 in-situ composites at elevated temperatures. Intermetallics 11:8787–94 [Google Scholar]
  44. Meyer MK, Thom AJ, Akinc M. 44.  1999. Oxide scale formation and isothermal oxidation behavior of Mo–Si–B intermetallics at 600–1000°C. Intermetallics 7:2153–62 [Google Scholar]
  45. Yoshimi K, Nakatani S, Suda T, Hanada S, Habazaki H. 45.  2002. Oxidation behavior of Mo5SiB2-based alloy at elevated temperatures. Intermetallics 10:5407–14 [Google Scholar]
  46. Gorr B, Wang L, Burk S, Azim M, Majumdar S. 46.  et al. 2014. High-temperature oxidation behavior of Mo–Si–B-based and Co–Re–Cr-based alloys. Intermetallics 48:34–43 [Google Scholar]
  47. Wang F, Shan A, Dong X, Wu J. 47.  2007. Microstructure and oxidation resistance of laser-remelted Mo-Si-B alloy. Scr. Mater. 56:737–40 [Google Scholar]
  48. Meier GH, Pettit FS. 48.  1992. The oxidation behavior of intermetallic compounds. Mater. Sci. Eng. A 153:548–60 [Google Scholar]
  49. Natesan K, Deevi SC. 49.  2000. Oxidation behavior of molybdenum silicides and their composites. Intermetallics 8:1147–58 [Google Scholar]
  50. Helmick DA, Meier GH, Pettit FS. 50.  2005. The development of protective borosilicate layers on a Mo-3Si-1B (weight percent) alloy. Metall. Mater. Trans. A 36:3371–83 [Google Scholar]
  51. Meyer MK, Akinc M. 51.  1996. Oxidation behavior of boron-modified Mo5Si3 at 800–1300°C. J. Am. Ceram. Soc. 79:4938–44 [Google Scholar]
  52. Thom AJ, Summers E, Akinc M. 52.  2002. Oxidation behavior of extruded Mo5Si3Bx-MoSi2-MoB intermetallics from 600–1600°C. Intermetallics 10:555–70 [Google Scholar]
  53. Meyer MK, Thom AJ, Akinc M. 53.  1999. Oxide scale formation and isothermal oxidation behavior of Mo-Si-B intermetallics at 600–1000°C. Intermetallics 7:153–62 [Google Scholar]
  54. Majumdar S, Burk S, Schliephake D, Kruger M, Christ HJ, Heilmaier M. 54.  2013. A study on effect of reactive and rare earth element additions on the oxidation behavior of Mo-Si-B system. Oxid. Met. 80:3–4219–30 [Google Scholar]
  55. Azim MA, Burk S, Gorr B, Christ HJ, Schliephake D. 55.  et al. 2013. Effect of Ti (macro-) alloying on the high-temperature oxidation behavior of ternary Mo-Si-B alloys at 820–1,300°C. Oxid. Met. 80:231–42 [Google Scholar]
  56. Nunes CA, Sakidja R, Perepezko JH. 56.  1997. Phase stability in high temperature Mo-rich Mo-B-Si alloys. Structural Intermetallics 1997 MV Nathal, R Darolia, CT Liu, PL Martin, R Wagner, M Yamaguchi 831–41 Warrendale, PA: TMS [Google Scholar]
  57. Perepezko JH, Sakidja R, Kim S, Sekido N. 57.  2008. Phase stability and structural defects in high-temperature Mo-Si-B alloys. Acta Mater. 56:5223–44 [Google Scholar]
  58. Kim S, Perepezko JH. 58.  2006. Interdiffusion kinetics in the Mo5SiB2 (T2) phase. J. Phase Equilib. Diffus. 27:605–13 [Google Scholar]
  59. Perepezko JH, Sakidja R, Kumar KS. 59.  2006. Mo-Si-B alloys for ultrahigh temperature applications. Advanced Structural Materials: Properties, Design Optimization and Applications WO Soboyejo, TS Srivatsan 437–73 Boca Raton, FL: CRC [Google Scholar]
  60. Perepezko JH, Sakidja R, Kim S, Dong Z, Park JS. 60.  2001. Multiphase microstructures and stability in high temperature Mo-Si-B alloys. Structural Intermetallics 2001, Proceedings of the Third International Symposium on Structural Intermetallics (ISSI-3) KJ Hemker, DM Dimiduk 505–14 Warrendale, PA: TMS [Google Scholar]
  61. Sakidja R, Myers J, Kim S, Perepezko JH. 61.  2000. The effect of refractory metal substitution on the stability of Mo(ss) + T2 two-phase field in the Mo-Si-B system. Int. J. Refract. Metals Hard Mater. 18:4–5193–204 [Google Scholar]
  62. Maex K, Ghosh G, Delaey L, Probst V, Lippens P. 62.  et al. 1989. The effect of refractory metal substitution on the stability of Mo(ss) + T2 two-phase field in the Mo-Si-B system. J. Mater. Res. 4:51209–17 [Google Scholar]
  63. Rawn CJ, Schneibel JH, Hoffmann CM, Hubbard CR. 63.  2001. The crystal structure and thermal expansion of Mo5SiB2. Intermetallics 9:209–16 [Google Scholar]
  64. Fu CL, Wang X. 64.  2000. Thermal expansion coefficients of Mo-Si compounds by first-principles calculations. Philos. Mag. Lett. 80:10683–90 [Google Scholar]
  65. Schneibel JH, Liu CT, Easton DS, Carmichael CA. 65.  1999. Microstructure and mechanical properties of Mo-Mo3Si-Mo5SiB2 silicides. Mater. Sci. Eng. A 261:78–83 [Google Scholar]
  66. Kruzic J, Schneibel J, Ritchie RO. 66.  2004. Fracture and fatigue resistance of Mo-Si-B alloys for ultrahigh-temperature structural applications. Scr. Mater. 50:459–64 [Google Scholar]
  67. Yoshimi K, Yoo MH, Wereszczak AA, Borowicz SM, George EP, Zee RH. 67.  2001. Yielding and flow behavior of Mo5Si3 single crystals. Scr. Mater. 45:111321–26 [Google Scholar]
  68. Ito K, Ihara K, Tanaka K, Fujikura M, Yamaguchi M. 68.  2001. Physical and mechanical properties of single crystals of the T2 phase in the Mo-Si-B system. Intermetallics 9:591–602 [Google Scholar]
  69. Schneibel J, Kramer M, Easton DA. 69.  2002. Mo-Si-B intermetallic alloy with a continuous α-Mo matrix. Scr. Mater. 46:217–21 [Google Scholar]
  70. Mitra R, Srivastava AK, Eswara Prasad N, Kumari S. 70.  2006. Microstructure and mechanical behaviour of reaction hot pressed multiphase Mo-Si-B and Mo-Si-B-Al intermetallic alloys. Intermetallics 14:1461–71 [Google Scholar]
  71. Krüger M, Franz S, Saage H, Heilmaier M, Schneibel J, Jéhanno P. 71.  2008. Mechanically alloyed Mo-Si-B alloys with a continuous α-Mo matrix and improved mechanical properties. Intermetallics 16:933–41 [Google Scholar]
  72. Alur AP, Chollacoop N, Kumar KS. 72.  2004. High-temperature compression behavior of Mo-Si-B alloys. Acta Mater. 52:195571–87 [Google Scholar]
  73. Schneibel JH, Kramer MJ, Unal O, Wright RN. 73.  2001. Processing and mechanical properties of a molybdenum silicide with the composition Mo-12Si-8.5B (at.%). Intermetallics 9:125–31 [Google Scholar]
  74. Jain P, Alur AP, Kumar KS. 74.  2006. High temperature compressive flow behavior of a Mo-Si-B solid solution alloy. Scr. Mater. 54:13–17 [Google Scholar]
  75. Alur AP, Kumar KS. 75.  2006. Monotonic and cyclic crack growth response of a Mo-Si-B alloy. Acta Mater. 54:2385–400 [Google Scholar]
  76. Schneibel JH. 76.  2003. High temperature strength of Mo-Mo3Si-Mo5SiB2 molybdenum silicides. Intermetallics 11:7625–32 [Google Scholar]
  77. Nieh TG, Wang JG, Liu CT. 77.  2001. Deformation of a multiphase Mo-9.4Si-13.8B alloy at elevated temperatures. Intermetallics 9:173–79 [Google Scholar]
  78. Choe H, Schneibel JH, Ritchie RO. 78.  2003. On the fracture and fatigue properties of Mo-Mo3Si-Mo5SiB2 refractory intermetallic alloys at ambient to elevated temperatures (258°C to 1300°C). Metall. Mater. Trans. A 34:225–39 [Google Scholar]
  79. Hochmuth C, Schliephake D, Voelkl R, Heilmaier M, Glatzel U. 79.  2014. Influence of zirconium content on microstructure and creep properties of Mo-9Si-8B alloys. Intermetallics 48:3–9 [Google Scholar]
  80. Schliephake D, Azim M, Von Klinski–Wetzel K, Gorr B, Christ HJ. 80.  et al. 2014. High-temperature creep and oxidation behavior of Mo-Si-B alloys with high Ti contents. Metall. Mater. Trans. A 45:1102–11 [Google Scholar]
  81. Kruger M, Jain P, Kumar KS, Heilmaier M. 81.  2014. Correlation between microstructure and properties of fine grained Mo-Mo3Si-Mo5SiB2 alloys. Intermetallics 48:Suppl. 110–18 [Google Scholar]
  82. Majumdar S, Kumar A, Schliephake D, Christ HJ, Jiang X, Heilmaier M. 82.  2013. Microstructural and micro-mechanical properties of Mo-Si-B alloyed with Y and La. Mater. Sci. Eng. A 573:257–63 [Google Scholar]
  83. Heilmaier M, Rosler J, Mukherji D, Kruger M. 83.  2013. Development of novel metallic high temperature materials. Microstructural Design of Advanced Engineering Materials DA Molodov 467–93 Oxford, UK: Blackwell Sci. [Google Scholar]
  84. Hassomeris O, Schumacher G, Kruger M, Heilmaier M, Banhart J. 84.  2011. Phase continuity in high temperature Mo-Si-B alloys: a FIB-tomography study. Intermetallics 19:470–75 [Google Scholar]
  85. Jehanno P, Heilmaier M, Kestler H. 85.  2004. Characterization of an industrially processed Mo-based silicide alloy. Intermetallics 12:7–91005–9 [Google Scholar]
  86. Sakidja R, Wilde G, Sieber H, Perepezko JH. 86.  1999. Microstructural development of Mo(ss) + T2 two-phase alloys. Mater. Res. Symp. Proc. 545:6.3.1–6 [Google Scholar]
  87. Lemberg JA, Ritchie RO. 87.  2012. Mo-Si-B alloys for ultrahigh-temperature structural applications. Adv. Mater. 24:261–36 [Google Scholar]
  88. Perepezko JH. 88.  1993. Interfacial reactions and microstructure control in composite processing. Compos. Interfaces 1:463–73 [Google Scholar]
  89. Perepezko JH, da Silva Bassani MH, Park JS, Edelstein AS, Everett RK. 89.  1995. Diffusional reactions in composite synthesis. Mater. Sci. Eng. A 195:1–11 [Google Scholar]
  90. Edelstein AS, Everett RK, Richardson GR, Qadri SB, Foley JC, Perepezko JH. 90.  1995. Reactions kinetics and biasing in Al/Ni multilayers. Mater. Sci. Eng. A 195:13–19 [Google Scholar]
  91. Backhaus-Ricoult M. 91.  1986. Diffusion processes and interphase boundary morphology in ternary metal-ceramic systems. Ber. Bunsenges. Phys. Chem. 90:684–69 [Google Scholar]
  92. Rapp RA, Ezis A, Yurek GJ. 92.  1973. Displacement reactions in solid state. Metall. Trans. A 4:1283–92 [Google Scholar]
  93. Ravi VA. 93.  2005. Pack cementation coatings. ASM Handbook, Corrosion: Fundamentals, Testing and Protection 13A SD Cramer, BS Covino Jr 763–71 Materials Park, OH: ASM Int. [Google Scholar]
  94. Bianco R, Rapp RA. 94.  1996. Pack cementation diffusion coatings. Metallurgical and Ceramic Protective Coatings KH Stern 236–60 London: Chapman & Hall [Google Scholar]
  95. Kirkaldy JS, Young DJ. 95.  1987. Diffusion in the Condensed State London: Inst. Met. [Google Scholar]
  96. Park JS, Sakidja R, Perepezko JH. 96.  2002. Coating designs for oxidation control of Mo-Si-B alloys. Scr. Mater. 46:765–70 [Google Scholar]
  97. Sakidja R, Park JS, Hamann J, Perepezko JH. 97.  2005. Synthesis of oxidation resistant silicide coatings on Mo-Si-B alloys. Scr. Mater. 53:723–28 [Google Scholar]
  98. Perepezko JH, Hildal K, Rioult F, Sakidja R. 98.  2008. Enhanced oxidation resistance of high temperature Mo-Si-B alloys. Proc. 17th Int. Corros. Congr. 42537–58 Houston: NACE Int. [Google Scholar]
  99. Perepezko JH, Sakidja R. 99.  2009. Oxidation resistant coatings for ultra-high temperature refractory Mo-base alloys. Adv. Eng. Mater. 11:892–97 [Google Scholar]
  100. Perepezko JH, Sakidja R. 100.  2010. Oxidation-resistant coatings for ultra-high-temperature refractory Mo-based alloys. JOM 62:1013–19 [Google Scholar]
  101. Bansal NP, Doremus RH. 101.  1986. Handbook of Glass Properties Orlando, FL: Academic [Google Scholar]
  102. Gulbransen GA. 102.  1970. Thermochemistry and oxidation of refractory metals at high temperature. Corrosion 26:19–28 [Google Scholar]
  103. Singh M, Wiedemeier H. 103.  1991. Chemical interactions in diboride-reinforced oxide-matrix composites. J. Am. Ceram. Soc. 74:4724–27 [Google Scholar]
  104. Rioult FA, Imhoff SD, Sakidja R, Perepezko JH. 104.  2009. Transient oxidation of Mo–Si–B alloys: effect of the microstructure size scale. Acta Mater. 57:4600–13 [Google Scholar]
  105. Chou TC, Nieh TG. 105.  1993. Pesting of the high-temperature intermetallic MoSi2. JOM 45:1215–20 [Google Scholar]
  106. Lamkin MA, Riley FL, Fordham RJ. 106.  1992. Oxygen mobility in silicon dioxide and silicate glasses: a review. J. Eur. Ceram. Soc. 10:347–67 [Google Scholar]
  107. Gage PR, Bartlett RW. 107.  1965. Diffusion kinetics affecting formation of silicide coatings on molybdenum and tungsten. Trans. AIME 223:823–34 [Google Scholar]
  108. Tortorici PC, Dayananda MA. 108.  1999. Growth of silicides and interdiffusion in the Mo-Si system. Metall. Mater. Trans. A 30:3545–50 [Google Scholar]
  109. Yoon J-K, Byun J-Y, Kim G-H, Kim J-S, Choi C-S. 109.  2002. Growth kinetics of three Mo-silicide layers formed by chemical vapor deposition of Si on Mo substrate. Surf. Coat. Technol. 155:85–95 [Google Scholar]
  110. Prasad S, Paul A. 110.  2011. Growth mechanism of phases by interdiffusion and atomic mechanism of diffusion in the molybdenum–silicon system. Intermetallics 19:81191–200 [Google Scholar]
  111. Yoon J-K, Lee J-K, Lee KH, Byun J-Y, Kim GH, Hong K-T. 111.  2003. Microstructure and growth kinetics of the Mo5Si3 and Mo3Si layers in MoSi2/Mo diffusion couple. Intermetallics 11:7687–96 [Google Scholar]
  112. Perepezko JH, Sakidja R. 112.  2013. Extended functionality of environmentally-resistant Mo-Si-B-based coatings. JOM 65:307–17 [Google Scholar]
  113. Perepezko JH, Park JS, Sakidja R. 113.  2009. Oxidation resistant coatings for ultra high temperature transition metals and transition metal alloys US Patent No. 7560138 [Google Scholar]
  114. Perepezko JH, Park JS, Sakidja R. 114.  2006. Oxidation resistant coatings for ultra high temperature transition metals and transition metal alloys US Patent No. 7005191 B2 [Google Scholar]
  115. Perepezko JH, Park JS, Sakidja R. 115.  2012. Methods for producing multilayered oxidation-resistant structures on substrates. US Patent No. 8097303 B2 [Google Scholar]
  116. Perepezko JH, Sakidja R. 116.  2013. Environmental resistance of Mo-Si-B alloys and coatings. Oxid. Met. 80:3–4207–18 [Google Scholar]
  117. Sakidja R, Rioult F, Werner J, Perepezko JH. 117.  2006. Aluminum pack cementation of Mo–Si–B alloys. Scr. Mater. 55:903–6 [Google Scholar]
  118. Rioult F, Sekido N, Sakidja R, Perepezko JH. 118.  2007. Aluminum pack cementation on Mo–Si–B alloys—kinetics and lifetime prediction. J. Electrochem. Soc. 154:C692–701 [Google Scholar]
  119. Opila EJ, Hann RE Jr. 119.  1997. Paralinear oxidation of CVD SiC in water vapor. J. Am. Ceram. Soc. 80:197–205 [Google Scholar]
  120. Belton GR, Jordan AS. 120.  1965. The volatilization of molybdenum in the presence of water vapor. J. Phys. Chem. 69:2065–71 [Google Scholar]
  121. Young DJ. 121.  2008. Effects of water vapor on oxidation. High Temperature Oxidation and Corrosion of Metals DJ Young 455–95 Amsterdam: Elsevier [Google Scholar]
  122. Meschter PJ, Opila EJ, Jacobson NS. 122.  2013. Water vapor–mediated volatilization of high-temperature materials. Annu. Rev. Mater. Res. 43:559–88 [Google Scholar]
  123. Jacobson NS. 123.  1993. Corrosion of silicon-based ceramics in combustion environments. J. Am. Ceram. Soc. 76:13–28 [Google Scholar]
  124. Mandal P, Thom AJ, Kramer MJ, Behrani V, Akinc M. 124.  2004. Oxidation behavior of Mo-Si-B alloys in wet air. Mater. Sci. Eng. A 371:335–42 [Google Scholar]
  125. Wang YG, Sohn YH, Fan Y, Zhang LG, An LN. 125.  2006. Oxygen diffusion through Al-doped amorphous SiO2. J. Phase Equilib. Diffus. 27:6671–75 [Google Scholar]
  126. Monti R, Fumo MD, Savino R. 126.  2006. Thermal shielding of a reentry vehicle by ultra-high-temperature ceramic materials. J. Thermophys. Heat Transf. 20:3500–6 [Google Scholar]
  127. Jackson TA, Eklund DR, Fink AJ. 127.  2004. High speed propulsion: performance advantage of advanced materials. J. Mater. Sci. 39:195905–13 [Google Scholar]
  128. Fahrenholtz WG, Hilmas GE. 128.  2012. Oxidation of ultra-high temperature transition metal diboride ceramics. Int. Mater. Rev. 57:161–72 [Google Scholar]
  129. Sakraker I, Asma CO. 129.  2013. Experimental investigation of passive/active oxidation behavior of SiC based ceramic thermal protection materials exposed to high enthalpy plasma. J. Eur. Ceram. Soc. 33:2351–59 [Google Scholar]
  130. Ritt PJ, Williams PA, Splinter SC, Perepezko JH. 130.  2013. Arc jet testing and evaluation of Mo-Si-B coated Mo and SiC-ZrB2 ceramics. J. Eur. Ceram. Soc. 34:153521–33 [Google Scholar]
  131. Perepezko JH, Bero JM, Sakidja R, Talmy IG, Zaykoski J. 131.  2012. Oxidation resistant coatings for refractory metal cermets. Surf. Coat. Technol. 206:3816–22 [Google Scholar]
  132. Ritt P, Sakidja R, Perepezko JH. 132.  2012. Mo–Si–B based coating for oxidation protection of SiC–C composites. Surf. Coat. Technol. 206:4166–72 [Google Scholar]
  133. Lu-Steffes OJ, Sakidja R, Bero J, Perepezko JH. 133.  2012. Multicomponent coating for enhanced oxidation resistance of tungsten. Surf. Coat. Technol. 207:614–19 [Google Scholar]
  134. Ritt P, Lu-Steffes OJ, Sakidja R, Perepezko JH, Lenling W. 134.  et al. 2013. Application of plasma spraying as a precursor in the synthesis of oxidation-resistant coatings. J. Therm. Spray Technol. 22:6992–1001 [Google Scholar]
  135. Perepezko JH, Sakidja R, Ritt P. 135.  2013. Mo-Si-B-based coatings for ceramic base substrates. US Patent Appl. No. 2013/0157064 A1 [Google Scholar]
  136. Padture NP, Gell M, Jordan EH. 136.  2002. Thermal barrier coatings for gas-turbine engine applications. Science 296:280–84 [Google Scholar]
  137. Clarke DR. 137.  2003. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163:67–74 [Google Scholar]
  138. Evans AG, Hutchinson JW. 138.  2007. The mechanics of coating delamination in thermal gradients. Surf. Coat. Technol. 201:7905–16 [Google Scholar]
  139. Kramer S, Faulhaber S, Chambers M, Clarke DR, Levi CG. 139.  et al. 2008. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Mater. Sci. Eng. A 490:26–35 [Google Scholar]
  140. Harder BJ, Ramirez-Rico J, Almer JD, Lee KN, Faber KT. 140.  2011. Chemical and mechanical consequences of environmental barrier coating exposure to calcium–magnesium–aluminosilicate. J. Am. Ceram. Soc. 94:S178–85 [Google Scholar]
  141. Kramer S, Yang J, Levi CG, Johnson CA. 141.  2006. Thermochemical interaction of thermal barrier coatings with molten CaO–MgO–Al2O3–SiO2 (CMAS) deposits. J. Am. Ceram. Soc. 89:3167–75 [Google Scholar]
  142. Wellman R, Whitman G, Nicholls JR. 142.  2010. CMAS corrosion of EB PVD TBCs: identifying the minimum level to initiate damage. Int. J. Refract. Metal Hard Mater. 28:124–32 [Google Scholar]
  143. Grant KM, Kramer S, Lofvander JPA, Levi CG. 143.  2007. CMAS degradation of environmental barrier coatings. Surf. Coat. Technol. 202:653–57 [Google Scholar]
  144. Gledhill AD, Reddy KM, Drexler JM, Shinoda K, Sampath S, Padture NP. 144.  2011. Mitigation of damage from molten fly ash to air-plasma-sprayed thermal barrier coatings. Mater. Sci. Eng. A 528:7214–21 [Google Scholar]
  145. Kraemer S, Yang J, Levi CG. 145.  2008. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts. J. Am. Ceram. Soc. 91:576–83 [Google Scholar]
  146. Drexler JM, Shinoda K, Ortiz AL, Li D, Vasiliev AL. 146.  et al. 2010. Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater. 58:6835–44 [Google Scholar]
  147. Downs IP, Perepezko JH, Sakidja R, Choi SR. 147.  2014. Suppressing CMAS attack with a MoSiB-based coating. Surf. Coat. Technol. 239:138–46 [Google Scholar]
  148. Sims CT. 148.  1987. Superalloys II New York: John Wiley & Sons [Google Scholar]
/content/journals/10.1146/annurev-matsci-070214-020959
Loading
/content/journals/10.1146/annurev-matsci-070214-020959
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error