Polymer film capacitors are critical components in many high-power electrical systems. Because of the low energy density of conventional polymer dielectrics, these capacitors currently occupy significant volume in the entire electrical system. This article reviews recent progress made in the development of polymer dielectrics with high energy storage density, which can potentially lead to significant weight and volume reduction in polymer film capacitors. The increase in energy density is achieved through two approaches, namely () the development of novel polymers with high electric polarization and optimized dielectric responses and () the development of nanocomposites containing polymer matrixes with high breakdown strength and inorganic nanofillers with high polarization. Promising progress has been made through both strategies, resulting in a maximum energy density of >30 J/cm3, which is at least 5 times higher than those of conventional polymer dielectrics. The state-of-the-art manufacturing method for low-cost, high-throughput production of polymer films is also reviewed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Sarjeant WJ, Zirnheld J, MacDougall FW, Bowers JS, Clark N. 1.  et al. 1999. Capacitors—past, present, and future. Handbook of Low and High Dielectric Constant Materials and Their Applications 2 HS Nalwa 424–92 San Diego, CA: Academic [Google Scholar]
  2. 2. US Dep. Energy 2011. Funding opportunity number DE-FOA-0000508
  3. Landau LD, Lifshitz EM, Pitaevskii LP. 3.  1960. Electrodynamics of Continuous Media (Course of Theoretical Physics, Vol. 8) Singapore: Elsevier, 2nd ed.. [Google Scholar]
  4. Jackson JD. 4.  1998. Classical Electrodynamics New York: Wiley, 3rd ed..
  5. Reed CW, Cichanowski SW. 5.  1994. The fundamentals of aging in HV polymer-film capacitors. IEEE Trans. Dielectr. Electr. Insul. 1:5904–22 [Google Scholar]
  6. Laihonen SJ, Gäfvert U, Schütte T, Gedde UW. 6.  2007. DC breakdown strength of polypropylene films: area dependence and statistical behavior. IEEE Trans. Dielectr. Electr. Insul. 14:2275–86 [Google Scholar]
  7. Laihonen SJ. 7.  2005. Polypropylene: morphology, defects and electrical breakdown PhD Thesis, R. Inst. Technol., Stockholm
  8. Ho J, Ramprasad R, Boggs S. 8.  2007. Effect of alteration of antioxidant by UV treatment on the dielectric strength of BOPP capacitor film. IEEE Trans. Dielectr. Electr. Insul. 14:51295–301 [Google Scholar]
  9. Picci M, Rabuffi G. 9.  2002. Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans. Plasma Sci. 30:51939–42 [Google Scholar]
  10. Nalwa HS. 10.  1999. Handbook of Low and High Dielectric Constant Materials and Their Applications San Diego, CA: Academic
  11. Chu B, Zhou X, Ren K, Neese B, Lin M. 11.  et al. 2006. A dielectric polymer with high electric energy density and fast discharge speed. Science 313:5785334–36 [Google Scholar]
  12. Nalwa HS. 12.  1995. Ferroelectric Polymers: Chemistry: Physics, and Applications New York: Marcel Dekker
  13. Hikita M, Nagao M, Sawa G, Ieda M. 13.  1980. Dielectric breakdown and electrical conduction of poly(vinylidene-fluoride) in high temperature region. J. Phys. D 13:4661–66 [Google Scholar]
  14. Kawai H. 14.  1969. The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8:7975–76 [Google Scholar]
  15. Lovinger AJ. 15.  1983. Ferroelectric polymers. Science 220:46021115–21 [Google Scholar]
  16. Furukawa T. 16.  1989. Ferroelectric properties of vinylidene fluoride copolymers. Phase Trans. 18:3–4143–211 [Google Scholar]
  17. Lines ME, Glass AM. 17.  2001. Principles and Applications of Ferroelectrics and Related Materials Oxford, UK: Oxford Univ. Press
  18. Zhou X, Chu B, Zhang QM. 18.  2006. Complex notation for the dielectric response of ferroelectric materials beyond the small sinusoidal fields. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53:81540–43 [Google Scholar]
  19. Cross LE. 19.  1987. Relaxor ferroelectrics. Ferroelectrics 76:1241–67 [Google Scholar]
  20. Zhang QM, Bharti V, Zhao X. 20.  1998. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride–trifluoroethylene) copolymer. Science 280:53722101–4 [Google Scholar]
  21. Cheng ZY, Zhang QM, Bateman FB. 21.  2002. Dielectric relaxation behavior and its relation to microstructure in relaxor ferroelectric polymers: high-energy electron irradiated poly(vinylidene fluoride–trifluoroethylene) copolymers. J. Appl. Phys. 92:116749–55 [Google Scholar]
  22. Xu HS, Cheng ZY, Olson D, Mai T, Zhang QM, Kavarnos G. 22.  2001. Ferroelectric and electromechanical properties of poly(vinylidene-fluoride–trifluoroethylene–chlorotrifluoroethylene) terpolymer. Appl. Phys. Lett. 78:162360–62 [Google Scholar]
  23. Xia F, Cheng ZY, Xu HS, Li HF, Zhang QM. 23.  et al. 2002. High electromechanical responses in a poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) terpolymer. Adv. Mater. 14:211574–77 [Google Scholar]
  24. Chu B, Zhou X, Neese B, Zhang QM, Bauer F. 24.  2006. Relaxor ferroelectric poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) terpolymer for high energy density storage capacitors. IEEE Trans. Dielectr. Electr. Insul. 13:51162–69 [Google Scholar]
  25. Zhang S, Chu B, Neese B, Ren K, Zhou X, Zhang QM. 25.  2006. Direct spectroscopic evidence of field-induced solid-state chain conformation transformation in a ferroelectric relaxor polymer. J. Appl. Phys. 99:4044107 [Google Scholar]
  26. Klein RJ, Runt J, Zhang QM. 26.  2003. Influence of crystallization conditions on the microstructure and electromechanical properties of poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) terpolymers. Macromolecules 36:197220–26 [Google Scholar]
  27. Wu S, Shao M, Burlingame Q, Chen X, Lin M. 27.  et al. 2013. A high-K ferroelectric relaxor terpolymer as a gate dielectric for organic thin film transistors. Appl. Phys. Lett. 102:1013301 [Google Scholar]
  28. Chen Q, Chu B, Zhou X, Zhang QM. 28.  2007. Effect of metal-polymer interface on the breakdown electric field of poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) terpolymer. Appl. Phys. Lett. 91:62907 [Google Scholar]
  29. Zhou X, Chu B, Neese B, Lin M, Zhang QM. 29.  2007. Electrical energy density and discharge characteristics of a poly(vinylidene fluoride–chlorotrifluoroethylene)copolymer. IEEE Trans. Dielectr. Electr. Insul. 14:51133–38 [Google Scholar]
  30. Zhou X, Zhao XH, Suo Z, Zou C, Runt J, Liu S. 30.  2009. Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride–hexafluoropropylene) copolymer. Appl. Phys. Lett. 94:16162901 [Google Scholar]
  31. Yang L, Li X, Allahyarov E, Taylor PL, Zhang QM, Zhu L. 31.  2013. Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect. Polymer 54:71709–28 [Google Scholar]
  32. Zhang S, Zou C, Kushner DI, Zhou X, Orchard RJ. 32.  et al. 2012. Semicrystalline polymers with high dielectric constant, melting temperature, and charge-discharge efficiency. IEEE Trans. Dielectr. Electr. Insul. 19:41158–66 [Google Scholar]
  33. Wu S, Lin M, Lu SG, Zhu L, Zhang QM. 33.  2011. Polar-fluoropolymer blends with tailored nanostructures for high energy density low loss capacitor applications. Appl. Phys. Lett. 99:13132901 [Google Scholar]
  34. Schrenk WJ, Alfrey Jr T. 34.  1978. Coextruded multilayer polymer films and sheets. Polymer Blends 2 DR Paul, S Newman 129–67 New York: Academic [Google Scholar]
  35. Mackey M, Schuele DE, Zhu L, Flandin L, Wolak WA. 35.  et al. 2012. Reduction of dielectric hysteresis in multilayered films via nanoconfinement. Macromolecules 45:41954–62 [Google Scholar]
  36. Wolak WA, Pan MJ, Wan A, Shirk JS, Mackey M. 36.  et al. 2008. Dielectric response of structured multilayered polymer films fabricated by forced assembly. Appl. Phys. Lett. 92:11113301 [Google Scholar]
  37. Liu RYF, Jin Y, Hiltner A, Baer E. 37.  2003. Probing nanoscale polymer interactions by forced-assembly. Macromol. Rapid Commun. 24:16943–48 [Google Scholar]
  38. Nazarenko S, Dennison M, Schuman T, Stepanov EV, Hiltner A, Baer E. 38.  1999. Creating layers of concentrated inorganic particles by interdiffusion of polyethylenes in microlayers. J. Appl. Polym. Sci. 73:142877–85 [Google Scholar]
  39. Ebeling T, Hiltner A, Baer E. 39.  1998. Delamination failure mechanisms in microlayers of polycarbonate and poly(styrene-co-acrylonitrile). J. Appl. Polym. Sci. 68:5793–805 [Google Scholar]
  40. Schuman T, Nazarenko S, Stepanov EV, Magonov SN, Hiltner A, Baer E. 40.  1999. Solid state structure and melting behavior of interdiffused polyethylenes in microlayers. Polymer 40:267373–85 [Google Scholar]
  41. Zhou X, Chen Q, Zhang QM, Zhang S. 41.  2011. Dielectric behavior of bilayer films of P(VDF-CTFE) and low temperature PECVD fabricated Si3N4. IEEE Trans. Dielectr. Electr. Insul. 18:2463–70 [Google Scholar]
  42. Yoon MH, Fachetti A, Marks TJ. 42.  2005. σ-π molecular dielectric multilayers for low-voltage organic thin-film transistors. PNAS 102:134678–82 [Google Scholar]
  43. Ranjan V, Yu L, Nardelli MB, Bernholc J. 43.  2007. Phase equilibria in high energy density PVDF-based polymers. Phys. Rev. Lett. 99:4047801 [Google Scholar]
  44. Furukawa T, Date M, Fukada E. 44.  1980. Hysteresis phenomena in polyvinylidene fluoride under high electric field. J. Appl. Phys. 51:21135–41 [Google Scholar]
  45. Furukawa T, Johnson GE. 45.  1981. Measurements of ferroelectric switching characteristics in polyvinylidene fluoride. Appl. Phys. Lett. 38:121207–9 [Google Scholar]
  46. Fukada E, Furukawa T. 46.  1981. Piezoelectricity and ferroelectricity in polyvinylidene fluoride. Ultrasonics 19:131–39 [Google Scholar]
  47. Furukawa T, Date M, Johnson GE. 47.  1983. Polarization reversal associated with rotation of chain molecules in β-phase polyvinylidene fluoride. J. Appl. Phys. 54:31540–46 [Google Scholar]
  48. Zhang QM, Bharti V, Kavarnos G. 48.  2002. PVDF and its copolymer with TrFE. Encyclopedia of Smart Materials 2 M Schwartz 807–25 New York: John Wiley & Sons [Google Scholar]
  49. Zhang QM, Huang C, Xia F, Su J. 49.  2004. Electric EAP. Electroactive Polymer Actuators as Artificial Muscles Y Bar-Cohen 95–148 Bellingham: WA: SPIE [Google Scholar]
  50. Takahashi Y, Iijima M, Fukada E. 50.  1989. Pyroelectricity in poled thin films of aromatic polyurea prepared by vapor deposition polymerization. Jpn. J. Appl. Phys. 28:12L2245–47 [Google Scholar]
  51. Takahashi Y, Ukishima S, Iijima M, Fukada E. 51.  1991. Piezoelectric properties of thin films of aromatic polyurea prepared by vapor deposition polymerization. J. Appl. Phys. 70:116983–87 [Google Scholar]
  52. Wang XS, Takahashi Y, Iijima M, Fukada E. 52.  1994. Dielectric relaxation in polyurea thin films prepared by vapor deposition polymerization. Jpn. J. Appl. Phys. 33:105842–47 [Google Scholar]
  53. Wang Y, Zhou X, Lin M, Zhang QM. 53.  2009. High-energy density in aromatic polyurea thin films. Appl. Phys. Lett. 94:20202905 [Google Scholar]
  54. Wang Y, Zhou X, Chen Q, Chu B, Zhang QM. 54.  2010. Recent development of high energy density polymers for dielectric capacitors. IEEE Trans. Dielectr. Electr. Insul. 17:41036–42 [Google Scholar]
  55. Wu S, Li W, Lin M, Burlingame Q, Chen Q. 55.  et al. 2013. Aromatic polythiourea dielectrics with ultrahigh breakdown field strength, low dielectric loss, and high electric energy density. Adv. Mater. 25:121734–38 [Google Scholar]
  56. Burlingame Q, Wu S, Lin M, Zhang QM. 56.  2013. Conduction mechanisms and structure–property relationships in high energy density aromatic polythiourea dielectric films. Adv. Energy Mater. 3:81051–55 [Google Scholar]
  57. Wu S, Lin M, Burlingame Q, Zhang QM. 57.  2014. Meta-aromatic polyurea with high dipole moment and dipole density for energy storage capacitors. Appl. Phys. Lett. 104:7072903 [Google Scholar]
  58. Bendler JT, Takekoshi T. 58.  1992. Molecular modeling of polymers for high energy storage capacitor applications. IEEE Int. Power Sources Symp. 35th, Cherry Hill, NJ
  59. Yen SP, Lewis CR, Cygan PJ, Jow TR. 59.  1992. High dielectric constant material development. IEEE Int. Power Sources Symp. 35th, Cherry Hill, NJ
  60. Wang Y, Zhou X, Lin M, Lu SG, Furman E, Zhang QM. 60.  2010. Nonlinear conduction in aromatic polyurea thin films and its influence on dielectric applications over a broad temperature range. IEEE Trans. Dielectr. Electr. Insul. 17:128–33 [Google Scholar]
  61. Dang ZM, Yuan JK, Yao SH, Liao RJ. 61.  2013. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25:446335–65 [Google Scholar]
  62. Li JY. 62.  2003. Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction. Phys. Rev. Lett. 90:21217601 [Google Scholar]
  63. Javadi A, Xiao YL, Xu WJ, Gong SQ. 63.  2012. Chemically modified graphene/P(VDF-TrFE-CFE) electroactive polymer nanocomposites with superior electromechanical performance. J. Mater. Chem. 22:830–34 [Google Scholar]
  64. Lewis TJ. 64.  2005. Interfaces: nanometric dielectrics. J. Phys. D 38:2202–12 [Google Scholar]
  65. Hanemann T, Vinga Szabo D. 65.  2010. Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3:63468–517 [Google Scholar]
  66. Tanaka T, Kozako M, Fuse N, Ohki Y. 66.  2005. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12:4669–81 [Google Scholar]
  67. Lewis TJ. 67.  2004. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans. Dielectr. Electr. Insul. 11:5739–53 [Google Scholar]
  68. Wong CP, Rao Y. 68.  2004. Material characterization of a high-dielectric-constant polymer-ceramic composite for embedded capacitor for RF applications. J. Appl. Polym. Sci. 92:42228–31 [Google Scholar]
  69. Kim P, Doss NM, Tillotson JP, Hotchkiss PJ, Marder SR. 69.  et al. 2009. High energy-density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3:92581–92 [Google Scholar]
  70. Kim P, Jones SC, Hotchkiss PJ, Haddock JN, Kippelen B. 70.  et al. 2007. Phosphonic acid modified barium titanate–polymer nanocomposites with high permittivity and dielectric strength. Adv. Mater. 19:71001–5 [Google Scholar]
  71. Zhou T, Zha JW, Cui RY, Fan BH, Yuan JK, Dang ZM. 71.  2011. Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl. Mater. Interfaces 3:72184–88 [Google Scholar]
  72. Liu S, Zhai J, Wang J, Xue S, Zhang W. 72.  2014. Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of surface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers. ACS Appl. Mater. Interfaces 6:31533–40 [Google Scholar]
  73. Lee HS, Dellatore SM, Miller WM, Messersmith PB. 73.  2007. Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–30 [Google Scholar]
  74. Song Y, Shen Y, Liu HY, Lin YH, Li M, Nan CW. 74.  2012. Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J. Mater. Chem. 22:16491–98 [Google Scholar]
  75. Xie L, Huang XY, Jiang PK, Wu C. 75.  2011. Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer. J. Mater. Chem. 21:5897–906 [Google Scholar]
  76. Yang K, Huang XY, Huang YH, Xie L, Jiang PK. 76.  2013. Fluoro-polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chem. Mater. 25:2327–38 [Google Scholar]
  77. Li JJ, Khanchaitit P, Han K, Wang Q. 77.  2010. New route toward high-energy-density nanocomposites based on chain-end functionalized ferroelectric polymers. Chem. Mater. 22:5350–57 [Google Scholar]
  78. Jung HM, Kang JH, Yang SY, Won JC, Kim YS. 78.  2010. Barium titanate nanoparticles with diblock copolymer shielding layers for high-energy density nanocomposites. Chem. Mater. 22:450–56 [Google Scholar]
  79. Siddabattuni S, Schuman TP, Dogan F. 79.  2013. Dielectric properties of polymer–particle nanocomposites influenced by electronic nature of filler surfaces. ACS Appl. Mater. Interfaces 5:61917–27 [Google Scholar]
  80. Li Z, Fredin LA, Tewari P, DiBenedetto SA, Lanagan MT. 80.  et al. 2010. In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites. Chem. Mater. 22:185154–64 [Google Scholar]
  81. Guo N, DiBenedetto SA, Tewari P, Lanagan MT, Ratner MA, Marks TJ. 81.  2010. Nanoparticle, size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide-polyolefin nanocomposites: experiment and theory. Chem. Mater. 22:41567–78 [Google Scholar]
  82. Fredin LA, Li Z, Ratner MA, Lanagan MT, Marks TJ. 82.  2013. Substantial recoverable energy storage in percolative metallic aluminum-polypropylene nanocomposites. Adv. Funct. Mater. 23:2650–69 [Google Scholar]
  83. Fredin LA, Li Z, Ratner MA, Lanagan MT, Marks TJ. 83.  2012. Enhanced energy storage and suppressed dielectric loss in oxide core–shell–polyolefin nanocomposites by moderating internal surface area and increasing shell thickness. Adv. Mater. 22:445946–53 [Google Scholar]
  84. Tomer V, Randall CA, Polizos G, Kostelnick J, Manias E. 84.  2008. High- and low-field dielectric characteristics of dielectrophoretically aligned ceramic/polymer nanocomposites. J. Appl. Phys. 103:034115 [Google Scholar]
  85. Nan CW. 85.  1993. Physics of inhomogeneous inorganic materials. Progr. Mater. Sci. 37:1–116 [Google Scholar]
  86. Tang HX, Lin YR, Sodano HA. 86.  2012. Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv. Energy Mater. 2:469–76 [Google Scholar]
  87. Wang Y, Tan DQ. 87.  2011. Computational study of filler microstructure and effective property relations in dielectric composites. J. Appl. Phys. 109:10104102 [Google Scholar]
  88. Wang Y, Tan DQ, Krahn J. 88.  2011. Computational study of dielectric composites with core-shell filler particles. J. Appl. Phys. 110:4044103 [Google Scholar]
  89. Tomer V, Randall CA. 89.  2008. High field dielectric properties of anisotropic polymer-ceramic composites. J. Appl. Phys. 104:7074106 [Google Scholar]
  90. Tomer V, Polizos G, Randall CA, Manias E. 90.  2011. Polyethylene nanocomposite dielectrics: implications of nanofiller orientation on high field properties and energy storage. J. Appl. Phys. 109:074113 [Google Scholar]
  91. Fillery SP, Koerner H, Drummy L, Dunkerley E, Durstock MF. 91.  2012. Nanolaminates: increasing dielectric breakdown strength of composites. ACS Appl. Mater. Interfaces 4:1388–96 [Google Scholar]
  92. Tang HX, Sodano HA. 92.  2013. Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett. 13:1373–79 [Google Scholar]
  93. Li WJ, Meng QJ, Zheng YS, Zhang ZC, Xia WM. 93.  2010. Electric energy storage properties of poly(vinylidene fluoride). Appl. Phys. Lett. 96:192905 [Google Scholar]
  94. Bai Y, Cheng ZY, Bhatti V, Xu HS, Zhang QM. 94.  2000. High-dielectric-constant ceramic-powder polymer composites. Appl. Phys. Lett. 76:253804–6 [Google Scholar]
  95. Tomer V, Manias E, Randall CA. 95.  2011. High field properties and energy storage in nanocomposite dielectrics of poly(vinylidene fluoride–hexafluoropropylene). J. Appl. Phys. 110:044107 [Google Scholar]
  96. Chu B, Lin M, Neese B, Zhang QM. 96.  2009. Interfaces in poly(vinylidene fluoride) terpolymer/ZrO2 nanocomposites and their effect on dielectric properties. J. Appl. Phys. 105:1014103 [Google Scholar]
  97. Chu B, Lin M, Neese B, Zhou X, Chen Q, Zhang QM. 97.  2007. Large enhancement in polarization response and energy density of poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) by interface effect in nanocomposites. Appl. Phys. Lett. 91:12122909 [Google Scholar]
  98. Li J, Seok SI, Chu B, Dogan F, Zhang QM, Wang Q. 98.  2008. Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Adv. Mater. 21:2217–21 [Google Scholar]
  99. Chu B, Neese B, Lin M, Lu SG, Zhang QM. 99.  2008. Enhancement of dielectric energy density in the poly(vinylidene fluoride)-based terpolymer/copolymer blends. Appl. Phys. Lett. 93:15152903 [Google Scholar]
  100. Polizos G, Tomer V, Manias E, Randall CA. 100.  2010. Epoxy-based nanocomposites for electrical energy storage. II. Nanocomposites with nanofillers of reactive montmorillonite covalently-bonded with barium titanate. J. Appl. Phys. 108:074117 [Google Scholar]
  101. Li Q, Han K, Gadinski MR, Zhang GZ, Wang Q. 101.  2014. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv. Mater. 26:366244–49 [Google Scholar]
  102. Hu PH, Shen Y, Guan YH, Zhang XH, Lin YH. 102.  2014. Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density. Adv. Funct. Mater. 24:3172–78 [Google Scholar]
  103. Kim P, Zhang XH, Domercq B, Jones SC, Hotchkiss PJ. 103.  et al. 2008. Solution-processible high-permittivity nanocomposite gate insulators for organic field-effect transistors. Appl. Phys. Lett. 93:1013302 [Google Scholar]
  104. Rao Y, Ogitani S, Kohl P, Wong CP. 104.  2002. Novel polymer–ceramic nanocomposite based on high dielectric constant epoxy formula for embedded capacitor application. J. Appl. Polym. Sci. 83:51084–90 [Google Scholar]
  105. Lu J, Moon K-S, Xu J, Wong CP. 105.  2006. Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications. J. Mater. Chem. 16:1543–48 [Google Scholar]
  106. Lu J, Wong CP. 106.  2008. Recent advances in high-k nanocomposite materials for embedded capacitor applications. IEEE Trans. Dielectr. Electr. Insul. 15:51322–28 [Google Scholar]
  107. Cao Y, Irwin PC, Younsi K. 107.  2004. The future of nanodielectrics in the electrical power industry. IEEE Trans. Dielectr. Electr. Insul. 11:5797–807 [Google Scholar]
  108. Siddabattuni S, Schuman TP, Dogan F. 108.  2011. Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control. Mater. Sci. Eng. B 176:181422–29 [Google Scholar]
  109. Shen Y, Lin YH, Nan CW. 109.  2007. Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Adv. Funct. Mater. 17:142405–10 [Google Scholar]
  110. Zhang QM, Li H, Poh M, Xia F, Cheng ZY. 110.  et al. 2002. An all-organic composite actuator material with a high dielectric constant. Nature 419:284–87 [Google Scholar]
  111. Huang C, Zhang QM, Su J. 111.  2003. High-dielectric-constant all-polymer percolative composites. Appl. Phys. Lett. 82:203502–4 [Google Scholar]
  112. Huang C, Zhang QM. 112.  2004. Enhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites. Adv. Funct. Mater. 14:5501–6 [Google Scholar]
  113. Huang C, Zhang QM. 113.  2005. Fully functionalized high-dielectric-constant nanophase polymers with high electromechanical response. Adv. Mater. 17:91153–58 [Google Scholar]
  114. Huang C, Zhang QM, Li JY, Rabeony M. 114.  2005. Colossal dielectric and electromechanical responses in self-assembled polymeric nanocomposites. Appl. Phys. Lett. 87:18182901 [Google Scholar]
  115. Calebrese C, Hui L, Schadler LS, Nelson JK. 115.  2011. A review on the importance of nanocomposite processing to enhance electrical insulation. IEEE Trans. Dielectr. Electr. Insul. 18:4938–45 [Google Scholar]
  116. Roy M, Nelson JK, MacCrone RK, Schadler LS, Reed CW, Keefe R. 116.  2005. Polymer nanocomposite dielectrics—the role of the interface. IEEE Trans. Dielectr. Electr. Insul. 12:4629–43 [Google Scholar]
  117. An L, Boggs SA, Calame JP. 117.  2008. Energy storage in polymer films with high dielectric constant fillers. IEEE Electr. Insul. Mag. 24:35–10 [Google Scholar]
  118. Guo N, DiBenedetto SA, Kwon DK, Wang L, Russell MT. 118.  et al. 2007. Supported metallocene catalysis for in situ synthesis of high energy density metal oxide nanocomposites. J. Am. Chem. Soc. 129:4766–67 [Google Scholar]
  119. Boggs S. 119.  2005. Very high field phenomena in dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12:5929–38 [Google Scholar]
  120. Boggs S, Kuang J. 120.  1998. High field effects in solid dielectrics. IEEE Electr. Insul. Mag. 14:65–12 [Google Scholar]
  121. Chen Q, Wang Y, Zhou X, Zhang QM, Zhang S. 121.  2008. High field tunneling as a limiting factor of maximum energy density in dielectric energy storage capacitors. Appl. Phys. Lett. 92:14142909 [Google Scholar]
  122. Dissado LA, Fothergill JC, Stevens GC. 122.  1992. Electrical Degradation and Breakdown in Polymers London: Inst. Eng. Technol.
  123. McCrum NG, Read BE, Williams G. 123.  1991. Anelastic and Dielectric Effects in Polymeric Solids New York: Dover
  124. MacDougall FW, Ennis JB, Cooper RA, Bates J, Seal K. 124.  2003. High energy density pulsed power capacitors. IEEE International Pulsed Power Conference Digest of Technical Papers, 14th, Dallas, TX 1513–17
  125. Fröhlich H. 125.  1958. Theory of Dielectrics: Dielectric Constant and Dielectric Loss Oxford, UK: Oxford Univ. Press, 2nd ed..
  126. Kumler WD, Fohlen GM. 126.  1942. The dipole moment and structure of urea and thiourea. J. Am. Chem. Soc. 64:81944–48 [Google Scholar]
  127. Nelson RD Jr, Lide DR Jr, Maryott AA. 127.  1967. Selected Values of Electric Dipole Moments for Molecules in the Gas Phase (National Standard Reference Data Series—National Bureau of Standards 10) Washington, DC: Natl. Bur. Stand. [Google Scholar]
  128. Boggs S. 128.  2004. Analytical approach to breakdown under impulse conditions. IEEE Trans. Dielectr. Electr. Insul. 11:190–97 [Google Scholar]
  129. Vogelsang R, Farr T, Fröhlich K. 129.  2006. The effect of barriers on electrical tree propagation in composite insulation materials. IEEE Trans. Dielectr. Electr. Insul. 13:2373–82 [Google Scholar]
  130. Lebedev SM, Gefle OS, Pokholkov YP. 130.  2005. The barrier effect in dielectrics: the role of interfaces in the breakdown of inhomogeneous dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12:3537–55 [Google Scholar]
  131. 131. ANSI (Am. Natl. Stand. Inst.) 2007. Specification for plastic films for electrical purposes. Part 2. Methods of test. IEC 60674-2 Ed. 1.0 b:1988, ANSI
  132. Breil J. 132.  1998. S-BOPP—film enhancement by LISIM® technology Presented at Specialty Plastic Films, Oct. 19–21, Düsseldorf, Ger. [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error