The discovery of the γ′-Co(Al,W) phase with an L1 structure provided Co-base alloys with a new strengthening mechanism, enabling a new class of high-temperature material: Co-base superalloys. This review discusses the current understanding of the phase stability, deformation, and oxidation behaviors of γ′ single-phase and γ + γ′ two-phase alloys in comparison with Ni-base γ′-L1 phase and γ + γ′ superalloys. Relatively low stacking fault energies and phase stability of the γ′ phase compared with those in Ni-base alloys are responsible for the unique deformation behaviors observed in Co-base γ′ and γ + γ′ alloys. Controlling energies of planar defects, such as stacking faults and antiphase boundaries, by alloying is critical for alloy development. Experimental and density functional theory studies indicate that additions of Ta, Ti, Nb, Hf, and Ni are effective in simultaneously increasing the phase stability and stacking fault energy of γ′-Co(Al,W), thus improving the high-temperature strength of Co-base γ′ phase and γ + γ′ two-phase superalloys.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Sato J, Omori T, Oikawa K, Kainuma R, Ishida K. 1.  2006. Cobalt-base high temperature alloys. Science 312:90–91 [Google Scholar]
  2. Suzuki A, DeNolf GC, Pollock TM. 2.  2007. Flow stress anomalies in γ/γ′ two-phase Co-Al-W-base alloys. Scr. Mater. 56:385–88 [Google Scholar]
  3. Suzuki A, Pollock TM. 3.  2008. High-temperature strength and deformation of γ/γ′ two-phase Co-Al-W-base alloys. Acta Mater. 56:1288–97 [Google Scholar]
  4. Sims CT, Stoloff NS, Hagel WC. 4.  1987. Superalloys II New York: Wiley [Google Scholar]
  5. Reed RC. 5.  2008. The Superalloys, Fundamentals and Applications Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  6. Pollock TM, Tin S. 6.  2006. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. J. Propul. Power 22:361–74 [Google Scholar]
  7. Beltran AM. 7.  1987. Cobalt-base alloys. See Ref. 4 135–63
  8. Sullivan CP, Donachie MJ Jr, Morral FR. 8.  1970. Cobalt-Base Superalloys—1970. Brussels: Cent. Inf. Cobalt [Google Scholar]
  9. Tien JK. 9.  1972. On the celestial limit of nickel-base superalloys. Proc. Superalloys 2012W1–16 Columbus, OH: Met. Ceram. Inf. Cent. [Google Scholar]
  10. Huron ES, Reed RC, Hardy MC, Mills MJ, Montero RE. 10.  2012. Superalloys 2012 Hoboken, NJ: Wiley [Google Scholar]
  11. Gabb TP, Dreshfield RL. 11.  1987. Superalloy data. Superalloys II CT Sims, NS Stoloff, WC Hagel 575–97 New York: Wiley [Google Scholar]
  12. Pollock TM, Dibbern J, Tsunekane M, Zhu J, Suzuki A. 12.  2010. New Co-based γ−γ′ high-temperature alloys. JOM 62:58–63 [Google Scholar]
  13. Encinas-Oropesa A, Drew GL, Hardy MC, Leggett AJ, Nicholls JR, Simms NJ. 13.  2008. Effects of oxidation and hot corrosion in a nickel disc alloy. Proc. Superalloys 2008609–18 Warrendale, PA: Miner. Met. Mater. Soc. [Google Scholar]
  14. Gabb TP, Telesman J, Kantzos PT, Smith JW, Browning PF. 14.  2004. Effects of high temperature exposures on fatigue life of disk superalloys. Proc. Superalloys 2004269–74 Warrendale, PA: Miner. Met. Mater. Soc. [Google Scholar]
  15. Guédou JY, Augustins-Lecallier I, Nazé L, Caron P, Locq D. 15.  2008. Development of a new fatigue and creep resistant pm nickel-base superalloy for disk applications. Proc. Superalloys 200821–30 Warrendale, PA: Miner. Met. Mater. Soc. [Google Scholar]
  16. Kobayashi S, Tsukamoto Y, Takasugi T, Chinen H, Omori T. 16.  et al. 2009. Determination of phase equilibria in the Co-rich Co-Al-W ternary system with a diffusion-couple technique. Intermetallics 17:1085–89 [Google Scholar]
  17. Omori T, Oikawa K, Sato J, Ohnuma I, Kattner UR. 17.  et al. 2013. Partition behavior of alloying elements and phase transformation temperatures in Co-Al-W-base quaternary systems. Intermetallics 32:274–83 [Google Scholar]
  18. Lass E, Williams ME, Campbell CE, Moon K-W, Kattner UR. 18.  2014. γ′ phase stability and phase equilibrium in ternary Co-Al-W at 900°C. J. Phase Equilib. Diffus. 35:711–23 [Google Scholar]
  19. Lass E. 19.  2014. Phase equilibria in the ternary Co-W-Al alloy system Presented at TMS Annu. Meet., 143rd, San Diego, CA [Google Scholar]
  20. Jiang C. 20.  2008. First-principles study of Co3(Al,W) alloys using special quasi-random structures. Scr. Mater. 59:1075–78 [Google Scholar]
  21. Saal JE, Wolverton C. 21.  2013. Thermodynamic stability of Co-Al-W L12 γ′. Acta Mater. 61:2330–38 [Google Scholar]
  22. Rhein R, Dodge P, Pollock TM, Van der Ven A. 22.  2014. The stability of the L12 phase in the Co3(Al,W) system. Acta Mater. Submitted [Google Scholar]
  23. Moroni EG, Kresse G, Hafner J, Furthmuller J. 23.  1997. Ultrasoft pseudopotentials applied to magnetic Fe, Co, and Ni: from atoms to solids. Phy. Rev. B 56:15629 [Google Scholar]
  24. Mottura A, Janotti A, Pollock TM. 24.  2012. A first principles study of the effect of Ta on the superlattice intrinsic stacking fault energy in L12-Co3(Al,W). Intermetallics 28:138–43 [Google Scholar]
  25. Mottura A, Janotti A, Pollock TM. 25.  2012. Alloying effects in the γ′ phase of Co-based superalloys. Proc. Superalloys 2012685–93 Hoboken, NJ: Wiley [Google Scholar]
  26. Kobayashi S, Tsukamoto Y, Takasugi T. 26.  2011. Phase equilibria in the Co-rich Co-Al-W-Ti quaternary system. Intermetallics 19:1908–12 [Google Scholar]
  27. Kobayashi S, Tsukamoto Y, Takasugi T. 27.  2012. The effects of alloying elements (Ta, Hf) on the thermodynamic stability of γ′-Co3(Al,W) phase. Intermetallics 31:94–98 [Google Scholar]
  28. Ooshima M, Tanaka K, Okamoto NL, Kishida K, Inui H. 28.  2010. Effects of quaternary alloying elements on the γ′ solvus temperature of Co-Al-W based alloys with fcc/L12 two-phase microstructures. J. Alloys Compd. 508:71–78 [Google Scholar]
  29. Xue F, Wang M, Feng Q. 29.  2012. Alloying effects on heat-treated microstructure in Co-Al-W-base superalloys at 1300°C and 900°C. Proc. Superalloys 2012813–21 Hoboken, NJ: Wiley [Google Scholar]
  30. Bauer A, Neumeier S, Pyczak F, Göken M. 30.  2010. Microstructure and creep strength of different γ/γ′-strengthened Co-base superalloy variants. Scr. Mater. 63:1197–200 [Google Scholar]
  31. Bauer A, Neumeier S, Pyczak F, Göken M. 31.  2012. Creep strength and microstructure of polycrystalline γ′ strengthened cobalt-base superalloys. Proc. Superalloys 2012695–703 Hoboken, NJ: Wiley [Google Scholar]
  32. Shinagawa K, Omori T, Sato J, Oikawa K, Ohnuma I. 32.  et al. 2008. Phase equilibria and microstructure on γ′ phase in Co-Ni-Al-W system. Mater. Trans. 49:1474–79 [Google Scholar]
  33. Yan HY, Vorontsov VA, Dye D. 33.  2014. Alloying effects in polycrystalline γ′ strengthened Co-Al-W base alloys. Intermetallics 48:44–53 [Google Scholar]
  34. Zhu J, Titus MS, Pollock TM. 34.  2014. Experimental investigation and thermodynamic modeling of the Co-rich region in the Co-Al-Ni-W quaternary system. J. Phase Equilib. Diffus. 35:595–611 [Google Scholar]
  35. Tanaka K, Ohashi T, Kishida K, Inui H. 35.  2007. Single-crystal elastic constants of Co3(Al,W) with the L12 structure. Appl. Phys. Lett. 91:181907 [Google Scholar]
  36. Yao Q, Xing H, Sun J. 36.  2006. Structural stability and elastic property of the L12 ordered Co3(Al,W) precipitate. Appl. Phys. Lett. 89:161906 [Google Scholar]
  37. Wang YJ, Wang CY. 37.  2009. Comparison of the ideal strength between L12 Co3(Al,W) and Ni3Al under tension and shear from first-principles calculations. Appl. Phys. Lett. 94:261909 [Google Scholar]
  38. Pettifor DG. 38.  1992. Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8:345–49 [Google Scholar]
  39. Pugh SF. 39.  1954. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45:823–43 [Google Scholar]
  40. Inui H, Oohashi T, Okamoto NL, Kishida K, Tanaka K. 40.  2011. Mechanical properties of the ternary L12 compound Co3(Al,W) in single and polycrystalline forms. Key Eng. Mater. 465:9–14 [Google Scholar]
  41. Liu CT, Pope DP. 41.  1995. Ni3Al and its alloys. Intermetallic Compounds Principles and Practice 2 JH Westbrook, RL Fleischer 17–51 Chichester, UK: John Wiley & Sons [Google Scholar]
  42. Yamaguchi M, Umakoshi Y. 42.  1990. The deformation behaviour of intermetallic superlattice compounds. Prog. Mater. Sci. 34:1–148 [Google Scholar]
  43. Okamoto NL, Oohashi T, Adachi H, Kishida K, Inui H, Veyssiere P. 43.  2011. Plastic deformation of polycrystals of Co3(Al,W) with the L12 structure. Philos. Mag. 91:3667–84 [Google Scholar]
  44. Takasugi T, Hirakawa S, Izumi O, Ono S, Watanabe S. 44.  1987. Plastic flow of Co3Ti single crystals. Acta Metall. 35:2015–26 [Google Scholar]
  45. Miura S, Ohkubo K, Mohri T. 45.  2007. Mechanical properties of Co-based L12 intermetallic compound Co3(Al,W). Mater. Trans. 48:2403–8 [Google Scholar]
  46. Wee DM, Pope DP, Vitek V. 46.  1984. Plastic flow of Pt3Al single crystals. Acta Metall. 32:829–36 [Google Scholar]
  47. Vitek V, Paidar V. 47.  2008. Non-planar dislocation cores: a ubiquitous phenomenon affecting mechanical properties of crystalline materials. Dislocations in Solids 14 JP Hirth 439–514 Amsterdam: Elsevier [Google Scholar]
  48. Mulford RA, Pope DP. 48.  1973. The yield stress of Ni3(Al,W). Acta Metall. 21:1375–80 [Google Scholar]
  49. Oya-Semiya Y, Shinoda T, Suzuki T. 49.  1996. Low-temperature strength anomaly of L12 type intermetallic compounds Co3Ti and Pt3Al. Mater. Trans. 37:1464–70 [Google Scholar]
  50. Titus MS, Suzuki A, Pollock TM. 50.  2012. Creep and directional coarsening in single crystals of new γ−γ′ cobalt-base alloys. Scr. Mater. 66:574–77 [Google Scholar]
  51. Tanaka K, Ooshima M, Tsuno N, Sato A, Inui H. 51.  2012. Creep deformation of single crystals of new Co-Al-W based alloys with fcc/L12 two-phase microstructures. Philos. Mag. 92:1–17 [Google Scholar]
  52. Pollock TM, Field RD. 52.  2002. Dislocations and high temperature plastic deformation of superalloy single crystals. Dislocations in Solids 11 FRN Nabarro, MS Duesbery 547–618 Amsterdam: Elsevier [Google Scholar]
  53. Bauer A, Neumeier S, Pyczak F, Singer R, Göken M. 53.  2012. Creep properties of different γ′-strengthened Co-base superalloys. Mater. Sci. Eng. A 550:333–241 [Google Scholar]
  54. Bauer A, Neumeier S, Pyczak D, Göken M. 54.  2014. Influence of iridium on the properties of γ′ strengthened Co-base superalloys. Adv. Eng. Mater. In press; doi: 10.1002/adem.201400266 [Google Scholar]
  55. Zenk CH, Neumeier S, Stone HJ, Göken M. 55.  2014. Mechanical properties and lattice misfit of γ/γ′ strengthened Co-base superalloys in the Co-W-Al-Ti quaternary system. Intermetallics 55:28–39 [Google Scholar]
  56. Pyczak F, Bauer A, Göken M, Neumeier S, Lorenz U. 56.  et al. 2013. Plastic deformation mechanisms in a crept L12 hardened Co-base superalloy. Mater. Sci. Eng. A 571:13–18 [Google Scholar]
  57. Titus MS, Suzuki A, Pollock TM. 57.  2012. High temperature creep of new L12-containing cobalt-base superalloys. Proc. Superalloys 2012823–32 Hoboken, NJ: Wiley [Google Scholar]
  58. Xue F, Zhou H, Chen X, Shi Q, Chang H. 58.  et al. 2014. Creep behavior of a novel Co-Al-W-base single crystal alloy containing Ta and Ti at 982°C. MATEC Web Conf. 14:15002 [Google Scholar]
  59. Cui Y-W, Jiang M, Ohnuma I, Kainuma R, Ishida K. 59.  2008. Computational study of atomic mobility for fcc phase of Co-Fe and Co-Ni binaries. J. Phase Equilib. Diffus. 29:1–10 [Google Scholar]
  60. Paris O, Fahrmann M, Fahrmann W, Pollock TM, Fratzl P. 60.  1997. Early stages of precipitate rafting in a single crystal Ni-Al-Mo model alloy investigated by small angle X-ray scattering and TEM. Acta Mater. 45:1085–97 [Google Scholar]
  61. Mughrabi H. 61.  2014. The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys—with special reference to the new γ′-hardened cobalt-base superalloys. Acta Mater. 81:21–29 [Google Scholar]
  62. Titus MS, Eggeler YM, Suzuki A, Pollock TM. 62.  2014. Creep-induced planar defects in L12-containing Co- and CoNi-base single crystal superalloys. Acta Mater. 77:352–59 [Google Scholar]
  63. Titus MS, Mottura A, Viswanathan GB, Suzuki A, Mills MJ, Pollock TM. 63.  2015. High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys. Acta Mater. 89423–37 [Google Scholar]
  64. Fu CL, Yoo MH. 64.  1988. All-electron total-energy theory of crystal elasticity—L12-ordered alloys. Philos. Mag. Lett. 58:199–204 [Google Scholar]
  65. Rosengaard NM, Skriver HL. 65.  1994. Ab initio study of antiphase boundaries and stacking faults in L12 and D022 compounds. Phys. Rev. B 50:4848–58 [Google Scholar]
  66. Schoeck G, Kohlhammer S, Fahnle M. 66.  1999. Planar dissociations and recombination energy of [110] superdislocations in Ni3Al: generalized Peierls model in combination with ab initio electron theory. Philos. Mag. Lett. 79:849–57 [Google Scholar]
  67. Srimannarayana P, Vamsi KV, Karthikeyan S. 67.  2014. Multi-scale modelling of Suzuki segregation in γ′ precipitates in Ni and Co-base superalloys. MATEC Web Conf. 14:15003 [Google Scholar]
  68. Vamsi KV, Karthikeyan S. 68.  2012. Effect of off-stoichiometry and ternary additions on planar fault energies in Ni3Al. Proc. Superalloys 2012521–30 Hoboken, NJ: Wiley [Google Scholar]
  69. Pineau A, Antolovich SD. 69.  2009. High temperature fatigue of nickel-base superalloys—a review with special emphasis on deformation modes and oxidation. Eng. Fail. Anal. 16:2668–97 [Google Scholar]
  70. Li P, Li QQ, Jin T, Zhou YZ, Li JG. 70.  et al. 2014. Comparison of low-cycle fatigue behaviors between two nickel-based single-crystal superalloys. Int. J. Fatigue 63:137–44 [Google Scholar]
  71. Milligan WW, Antolovich SD. 71.  1987. Yielding and deformation behavior of the single crystal superalloy PWA 1480. Metall. Mater. Trans. A 18:85–95 [Google Scholar]
  72. Yi JZ, Torbet CJ, Feng Q, Pollock TM, Jones JW. 72.  2007. Ultrasonic fatigue of a single crystal superalloy at 1000°C. Mater. Sci. Eng. A 443:142–49 [Google Scholar]
  73. Yan HY, Vorontsov VA, Dye D. 73.  2014. Effect of alloying on the oxidation behavior of Co-Al-W superalloys. Corros. Sci. 83:382–95 [Google Scholar]
  74. Klein L, Shen Y, Killian MS, Virtanen S. 74.  2011. Effect of B and Cr on the high temperature oxidation behavior of novel γ/γ′-strengthened Co-base superalloys. Corros. Sci. 53:2713–20 [Google Scholar]
  75. Klein L, Killian MS, Virtanen S. 75.  2013. The effect of nickel and silicon addition on some oxidation properties of novel Co-based high temperature alloys. Corros. Sci. 69:43–49 [Google Scholar]
  76. Adharapurapu A, Perez-Bergquist S, Dibbern J, Suzuki A, Pollock T. 76.  2011. Cyclic oxidation of Co-Al-W-based alloys Presented at TMS Annu. Meet., 140th, San Diego, CA [Google Scholar]
  77. Klein L, Bauer A, Neumeier S, Göken M, Virtanen S. 77.  2011. High temperature oxidation of γ/γ′-strengthened Co-base superalloys. Corros. Sci. 53:2027–34 [Google Scholar]
  78. Klein L, Zendegani A, Palumbo M, Fries SG, Virtanen S. 78.  2014. First approach for thermodynamic modelling of the high temperature oxidation behaviour of ternary γ′-strengthened Co–Al–W superalloys. Corros. Sci. 89:1–5 [Google Scholar]
  79. Vermaak N, Mottura A, Pollock TM. 79.  2013. Cyclic oxidation of high temperature coatings on new γ′ strengthened cobalt-based alloys. Corros. Sci. 75:300–8 [Google Scholar]
  80. Tsunekane M, Suzuki A, Pollock TM. 80.  2011. Single-crystal solidification of new Co-Al-W-base alloys. Intermetallics 19:636–43 [Google Scholar]
  81. Tin S, Pollock TM. 81.  2003. Stabilization of thermosolutal convective instabilities in Ni-based single-crystal superalloys: carbide precipitation and Rayleigh numbers. Metall. Mater. Trans. A 34:1953–67 [Google Scholar]
  82. Tin S, Pollock TM, Murphy W. 82.  2001. Stabilization of thermosolutal convective instabilities in Ni-based single crystal superalloys: carbon additions and freckle formation. Metall. Mater. Trans. A 32:1743–53 [Google Scholar]
  83. McDevitt E. 83.  2014. Vacuum induction melting and vacuum arc remelting of Co-Al-W-X γ′ superalloys. MATEC Web Conf. 14:02001 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error