The structure of organic semiconductors can be complex because features from the molecular level (such as molecular conformation) to the micrometer scale (such as the volume fraction and composition of phases, phase distribution, and domain size) contribute to the definition of the optoelectronic landscape of the final architectures and, hence, to device performance. As a consequence, a detailed understanding of how to manipulate molecular ordering, e.g., through knowledge of relevant phase transitions, of the solidification process, of relevant solidification mechanisms, and of kinetic factors, is required to induce the desired optoelectronic response. In this review, we discuss relevant structural features of single-component and multicomponent systems; provide a case study of the multifaceted structure that polymer:fullerene systems can adopt; and highlight relevant solidification mechanisms such as nucleation and growth, liquid-liquid phase separation, and spinodal decomposition. In addition, cocrystal formation, solid solutions, and eutectic systems are treated and their relevance within the optoelectronic area emphasized.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Horowitz G, Fichou D, Peng XZ, Xu ZG, Garnier F. 1.  1989. A field-effect transistor based on conjugated alpha-sexithienyl. Solid State Commun. 72:381–84 [Google Scholar]
  2. Garnier F, Hajlaoui R, Yassar A, Srivastava P. 2.  1994. All-polymer field-effect transistor realized by printing techniques. Science 265:1684–86 [Google Scholar]
  3. Sirringhaus H, Tessler N, Friend RH. 3.  1998. Integrated optoelectronic devices based on conjugated polymers. Science 280:1741–74 [Google Scholar]
  4. Katz HE, Bao ZN, Gilat SL. 4.  2001. Synthetic chemistry for ultrapure, processable, and high-mobility organic transistor semiconductors. Acc. Chem. Res. 34:359–69 [Google Scholar]
  5. Scott JC, Bozano LD. 5.  2007. Nonvolatile memory elements based on organic materials. Adv. Mater. 19:1452–63 [Google Scholar]
  6. Asadi K, de Boer TG, Blom PWM, de Leeuw DM. 6.  2009. Tunable injection barrier in organic resistive switches based on phase-separated ferroelectric-semiconductor blends. Adv. Funct. Mater. 19:3173–78 [Google Scholar]
  7. Asadi K, De Leeuw DM, De Boer B, Blom PWM. 7.  2008. Organic non-volatile memories from ferroelectric phase-separated blends. Nat. Mater. 7:547–50 [Google Scholar]
  8. Tang CW. 8.  1986. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48:183–85 [Google Scholar]
  9. Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH. 9.  et al. 1995. Efficient photodiodes from interpenetrating polymer networks. Nature 376:498–500 [Google Scholar]
  10. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. 10.  1995. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–91 [Google Scholar]
  11. Granstrom M, Petritsch K, Arias AC, Lux A, Andersson MR, Friend RH. 11.  1998. Laminated fabrication of polymeric photovoltaic diodes. Nature 395:257–60 [Google Scholar]
  12. Hagfeldt A, Gratzel M. 12.  2000. Molecular photovoltaics. Acc. Chem. Res. 33:269–77 [Google Scholar]
  13. Brabec CJ. 13.  2004. Organic photovoltaics: technology and market. Solar Energy Mater. Solar Cells 83:273–92 [Google Scholar]
  14. Li G, Shrotriya V, Huang JS, Yao Y, Moriarty T. 14.  et al. 2005. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4:864–68 [Google Scholar]
  15. Lo S-C, Burn PL. 15.  2007. Development of dendrimers: macromolecules for use in organic light-emitting diodes and solar cells. Chem. Rev. 107:1097–116 [Google Scholar]
  16. Tang CW, Vanslyke SA. 16.  1987. Organic electroluminescent diodes. Appl. Phys. Lett. 51:913–15 [Google Scholar]
  17. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K. 17.  et al. 1990. Light-emitting diodes based on conjugated polymers. Nature 347:539–41 [Google Scholar]
  18. Furuta P, Brooks J, Thompson ME, Frechet JMJ. 18.  2003. Simultaneous light emission from a mixture of dendrimer encapsulated chromophores: a model for single-layer multichromophoric organic light-emitting diodes. J. Am. Chem. Soc. 125:13165–72 [Google Scholar]
  19. Kulkarni AP, Tonzola CJ, Babel A, Jenekhe SA. 19.  2004. Electron transport materials for organic light-emitting diodes. Chem. Mater. 16:4556–73 [Google Scholar]
  20. Burn PL, Lo S-C, Samuel IDW. 20.  2007. The development of light-emitting dendrimers for displays. Adv. Mater. 19:1675–88 [Google Scholar]
  21. Bartlett PN, Lingchung SK. 21.  1989. Conducting polymer gas sensors. III. Results for four different polymers and five different vapors. Sens. Actuators 20:287–92 [Google Scholar]
  22. Crone B, Dodabalapur A, Gelperin A, Torsi L, Katz HE. 22.  et al. 2001. Electronic sensing of vapors with organic transistors. Appl. Phys. Lett. 78:2229–31 [Google Scholar]
  23. Someya T, Katz HE, Gelperin A, Lovinger AJ, Dodabalapur A. 23.  2002. Vapor sensing with α,ω-dihexylquarterthiophene field-effect transistors: the role of grain boundaries. Appl. Phys. Lett. 81:3079–81 [Google Scholar]
  24. Cavaye H, Smith ARG, James M, Nelson A, Burn PL. 24.  et al. 2009. Solid-state dendrimer sensors: probing the diffusion of an explosive analogue using neutron reflectometry. Langmuir 25:12800–5 [Google Scholar]
  25. Han Y, Pacheco K, Bastiaansen CWM, Broer DJ, Sijbesma RP. 25.  2010. Optical monitoring of gases with cholesteric liquid crystals. J. Am. Chem. Soc. 132:2961–67 [Google Scholar]
  26. Peet J, Kim JY, Coates NE, Ma WL, Moses D. 26.  et al. 2007. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6:497–500 [Google Scholar]
  27. Shin N, Richter LJ, Herzing AA, Kline RJ, DeLongchamp DM. 27.  2013. Effect of processing additives on the solidification of blade-coated polymer/fullerene blend films via in-situ structure measurements. Adv. Energy Mater. 3:938–48 [Google Scholar]
  28. Rogers JT, Schmidt K, Toney MF, Bazan GC, Kramer EJ. 28.  2012. Time-resolved structural evolution of additive-processed bulk heterojunction solar cells. J. Am. Chem. Soc. 134:2884–87 [Google Scholar]
  29. Treat ND, Nekuda Malik JA, Reid O, Yu L, Shuttle CG. 29.  et al. 2013. Microstructure formation in molecular and polymer semiconductors assisted by nucleation agents. Nat. Mater. 12:628–33 [Google Scholar]
  30. Lindqvist C, Bergqvist J, Feng C-C, Gustafsson S, Bäcke O. 30.  et al. 2014. Fullerene nucleating agents: a route towards thermally stable photovoltaic blends. Adv. Energy Mater. 4:1301437 [Google Scholar]
  31. Sharenko A, Treat ND, Love JA, Toney MF, Stingelin N, Nguyen T-Q. 31.  2014. Use of a commercially available nucleating agent to control the morphological development of solution-processed small molecule bulk heterojunction organic solar cells. J. Mater. Chem. A 2:15717–21 [Google Scholar]
  32. Sundar VC, Zaumseil J, Podzorov V, Menard E, Willett RL. 32.  et al. 2004. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303:1644–46 [Google Scholar]
  33. Yu L, Li X, Pavlica E, Koch F, Portale F. 33.  et al. 2013. Influence of solid-state microstructure on the electronic performance of 5,11-bis(triethyl silylethynyl)anthradithiophene. Chem. Mater. 25:1823–28 [Google Scholar]
  34. Predel B, Hoch M, Pool MJ. 34.  2004. Phase Diagrams and Heterogeneous Equilibria: A Practical Introduction Berlin/Heidelberg, Ger: Springer
  35. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L. 35.  2007. Charge transport in organic semiconductors. Chem. Rev. 107:926–52 [Google Scholar]
  36. Giri G, Verploegen E, Mannsfeld SCB, Atahan-Evrenk S, Kim DH. 36.  et al. 2011. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480:504–8 [Google Scholar]
  37. Yu L, Li X, Smith J, Tierney S, Sweeney R. 37.  et al. 2012. Solution-processed small molecule transistors with low operating voltages and high grain-boundary anisotropy. J. Mater. Chem. 22:9458–61 [Google Scholar]
  38. Brédas J-L, Marder S. 38.  2015. Organic Semiconductors Hackensack, NJ: World Sci.
  39. Payne MM, Parkin SR, Anthony JE, Kuo C-C, Jackson TN. 39.  2005. Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/V·s. J. Am. Chem. Soc. 127:4986–87 [Google Scholar]
  40. Dickey KC, Anthony JE, Loo Y-L. 40.  2006. Improving organic thin-film transistor performance through solvent-vapor annealing of solution-processable triethylsilylethynyl anthradithiophene. Adv. Mater. 18:1721–26 [Google Scholar]
  41. Lim JA, Lee WH, Lee HS, Lee JH, Park YD, Cho K. 41.  2008. Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet. Adv. Funct. Mater. 18:229–34 [Google Scholar]
  42. Yu L, Li X, Pavlica E, Loth MA, Anthony JE. 42.  et al. 2011. Single-step solution processing of small-molecule organic semiconductor field-effect transistors at high yield. Appl. Phys. Lett. 99:263304 [Google Scholar]
  43. Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N. 43.  et al. 2013. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12:1037–43 [Google Scholar]
  44. Rahimi K, Botiz I, Stingelin N, Kayunkid N, Sommer M. 44.  et al. 2012. Controllable processes for generating large single crystals of poly(3-hexylthiophene). Angew. Chem. Int. Ed. 51:11131–35 [Google Scholar]
  45. Rahimi K, Botiz I, Agumba JO, Motamen S, Stingelin N, Reiter G. 45.  2014. Light absorption of poly(3-hexylthiophene) single crystals. RSC Adv. 4:11121–23 [Google Scholar]
  46. Flory PJ. 46.  1953. Principles of Polymer Chemistry Ithaca, NY: Cornell Univ. Press
  47. Rivnay J, Noriega R, Kline RJ, Salleo A, Toney MF. 47.  2011. Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Phys. Rev. B 84:045203 [Google Scholar]
  48. Koch FPV, Rivnay J, Foster S, Mueller C, Downing JM. 48.  et al. 2013. The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductorspoly(3-hexylthiophene), a model study. Prog. Polym. Sci. 38:1978–89 [Google Scholar]
  49. Gibbs JW, Bumstead HA. Name RG, Longley WR. 49. , Van 1902. The Collected Works of J. Willard Gibbs Madison, WI: Longmans, Green and Co.
  50. Thomson JJ. 50.  2005. Applications of Dynamics to Physics and Chemistry Boston: Adamant Media
  51. Wunderlich B, Czornyj G. 51.  1977. Study of equilibrium melting of polyethylene. Macromolecules 10:906–13 [Google Scholar]
  52. Canetti M, Bertini F, Scavia G, Porzio W. 52.  2009. Structural investigation on bulk poly(3-hexylthiophene): combined SAXS, WAXD, and AFM studies. Eur. Polym. J. 45:2572–79 [Google Scholar]
  53. Mueller C, Zhigadlo ND, Kumar A, Baklar MA, Karpinski J. 53.  et al. 2011. Enhanced charge-carrier mobility in high-pressure-crystallized poly(3-hexylthiophene). Macromolecules 44:1221–25 [Google Scholar]
  54. Zhang R, Li B, Iovu MC, Jeffries-El M, Sauve G. 54.  et al. 2006. Nanostructure dependence of field-effect mobility in regioregular poly(3-hexylthiophene) thin film field effect transistors. J. Am. Chem. Soc. 128:3480–81 [Google Scholar]
  55. McCulloch I, Heeney M, Chabinyc ML, DeLongchamp D, Kline RJ. 55.  et al. 2009. Semiconducting thienothiophene copolymers: design, synthesis, morphology, and performance in thin-film organic transistors. Adv. Mater. 21:1091–109 [Google Scholar]
  56. Veres J, Ogier S, Lloyd G, de Leeuw D. 56.  2004. Gate insulators in organic field-effect transistors. Chem. Mater. 16:4543–55 [Google Scholar]
  57. Verilhac J-M, Benwadih M, Seiler A-L, Jacob S, Bory C. 57.  et al. 2010. Step toward robust and reliable amorphous polymer field-effect transistors and logic functions made by the use of roll to roll compatible printing processes. Org. Electron. 11:456–62 [Google Scholar]
  58. Zhang W, Smith J, Hamilton R, Heeney M, Kirkpatrick J. 58.  et al. 2009. Systematic improvement in charge carrier mobility of air stable triarylamine copolymers. J. Am. Chem. Soc. 131:10814–15 [Google Scholar]
  59. Heeney M, Bailey C, Giles M, Shkunov M, Sparrowe D. 59.  et al. 2004. Alkylidene fluorene liquid crystalline semiconducting polymers for organic field effect transistor devices. Macromolecules 37:5250–56 [Google Scholar]
  60. Shkunov M, Zhang WM, Graham D, Sparrowe D, Heeney M. 60.  et al. 2003. New liquid crystalline solution processable organic semiconductors and their performance in field effect transistors. Proc. Conf. Org. Field Effect Transistors II, San Diego, CA 5217181–92 Bellingham, WA: Int. Soc. Opt. Photonics [Google Scholar]
  61. Bernius MT, Inbasekaran M, O'Brien J, Wu WS. 61.  2000. Progress with light-emitting polymers. Adv. Mater. 12:1737–50 [Google Scholar]
  62. Kinder L, Kanicki J, Swensen J, Petroff P. 62.  2003. Structural ordering in F8T2 polyfluorene thin-film transistors. Proc. Conf. Org. Field Effect Transistors II, San Diego, CA 521735–42 Bellingham, WA: Int. Soc. Opt. Photonics [Google Scholar]
  63. Watts B, Schuettfort T, McNeill CR. 63.  2011. Mapping of domain orientation and molecular order in polycrystalline semiconducting polymer films with soft X-ray microscopy. Adv. Funct. Mater. 21:1122–31 [Google Scholar]
  64. Takacs CJ, Treat ND, Krämer S, Chen Z, Facchetti A. 64.  et al. 2013. Remarkable order of a high-performance polymer. Nano Lett. 13:2522–27 [Google Scholar]
  65. Blasini DR, Rivnay J, Smilgies D-M, Slinker JD, Flores-Torres S. 65.  et al. 2007. Observation of intermediate-range order in a nominally amorphous molecular semiconductor film. J. Mater. Chem. 17:1458–61 [Google Scholar]
  66. Collins BA, Cochran JE, Yan H, Gann E, Hub C. 66.  et al. 2012. Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. Nat. Mater. 11:536–43 [Google Scholar]
  67. Rivnay J, Toney MF, Zheng Y, Kauvar IV, Chen Z. 67.  et al. 2010. Unconventional face-on texture and exceptional in-plane order of a high mobility n-type polymer. Adv. Mater. 22:4359–63 [Google Scholar]
  68. Clark J, Chang J-F, Spano FC, Friend RH, Silva C. 68.  2009. Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Appl. Phys. Lett. 94:163306 [Google Scholar]
  69. Spano FC. 69.  2005. Modeling disorder in polymer aggregates: the optical spectroscopy of regioregular poly(3-hexylthiophene) thin films. J. Chem. Phys. 122:234701 [Google Scholar]
  70. Clark J, Silva C, Friend RH, Spano FC. 70.  2007. Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. Phys. Rev. Lett. 98:206406 [Google Scholar]
  71. Hellmann C, Paquin F, Treat ND, Bruno A, Reynolds LX. 71.  et al. 2013. Controlling the interaction of light with polymer semiconductors. Adv. Mater. 25:4906–11 [Google Scholar]
  72. Reid OG, Malik JAN, Latini G, Dayal S, Kopidakis N. 72.  et al. 2012. The influence of solid-state microstructure on the origin and yield of long-lived photogenerated charge in neat semiconducting polymers. J. Polym. Sci. B 50:27–37 [Google Scholar]
  73. Westenhoff S, Beenken WJD, Yartsev A, Greenham NC. 73.  2006. Conformational disorder of conjugated polymers. J. Chem. Phys. 125:154903 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error