1932

Abstract

Modern first-principles calculations based on density functional theory and related techniques enable the predictive modeling of the linear and nonlinear optical properties of materials without adjustable or empirical parameters. Today, atomistic calculations are an indispensable tool by which to understand the interrelationship between the underlying structure and the measured optical properties and are particularly suited for the design of new materials with desirable optical responses and performance. In this article, we discuss the first-principles design methodology, and we review recent results from the literature that exemplify the predictive power of the method for numerous inorganic materials and nanostructures. We also discuss topics of active research and future opportunities that will enable the wider adoption of atomistic simulation techniques for predictive materials design.

[Erratum, Closure]

An erratum has been published for this article:
Predicting and Designing Optical Properties of Inorganic Materials
Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070214-021150
2015-07-01
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/matsci/45/1/annurev-matsci-070214-021150.html?itemId=/content/journals/10.1146/annurev-matsci-070214-021150&mimeType=html&fmt=ahah

Literature Cited

  1. 1. UN Educational, Scientific, and Cultural Organization 2014. Fact sheet: 2015 International Year of Light and Light-Based Technologies [Google Scholar]
  2. Nakamura S, Senoh M, Mukai T. 2.  1993. P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes. Jpn. J. Appl. Phys. 32L8 [Google Scholar]
  3. Nakamura S, Pearton S, Fasol G. 3.  2000. The Blue Laser Diode: The Complete Story Berlin: Springer-Verlag [Google Scholar]
  4. 4. Natl. Res. Counc. (Committee on Harnessing Light: Capitalizing on Optical Science Trends and Challenges for Future Research, National Materials and Manufacturing Board, Division on Engineering and Physical Sciences) 2013. Optics and Photonics: Essential Technologies for Our Nation Washington, DC: Natl. Acad. Press [Google Scholar]
  5. 5. Natl. Photonics Initiat 2013. Lighting the path to a competitive, secure future. Rep., Natl. Photonics Initiat. [Google Scholar]
  6. Round HJ. 6.  1907. A note on carborundum. Electr. World 19:309–10 [Google Scholar]
  7. Holonyak N Jr, Bevacqua SF. 7.  1962. Coherent (visible) light emission from Ga(As1−xPx) junctions. Appl. Phys. Lett. 1:82 [Google Scholar]
  8. 8. Natl. Res. Counc. (Ad Hoc Committee on Societal Benefits from Condensed Matter and Materials Research, Board on Physics and Astronomy, Division on Engineering and Physical Sciences) 2014. Harvesting the Fruits of Inquiry: How Materials Discoveries Improve Our Lives Washington, DC: Natl. Acad. Press [Google Scholar]
  9. Martin R. 9.  2004. Electronic Structure: Basic Theory and Practical Methods Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  10. Ceperley DM, Alder BJ. 10.  1980. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45:566 [Google Scholar]
  11. Perdew JP, Burke K, Ernzerhof M. 11.  1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77:3865–68 [Google Scholar]
  12. Heyd J, Scuseria GE, Ernzerhof M. 12.  2003. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118:8207 [Google Scholar]
  13. Tkatchenko A, Scheffler M. 13.  2009. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102:073005 [Google Scholar]
  14. Hafner J. 14.  2008. Ab initio simulations of materials using VASP: density functional theory and beyond. J. Comput. Chem. 29:2044–78 [Google Scholar]
  15. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R. 15.  et al. 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21:395502 [Google Scholar]
  16. Gonze X, Beuken JM, Caracas R, Detraux F, Fuchs M. 16.  et al. 2002. First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25:478–92 [Google Scholar]
  17. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ. 17.  et al. 2002. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14:2717–44 [Google Scholar]
  18. Tiago ML, Ismail-Beigi S, Louie SG. 18.  2004. Effect of semicore orbitals on the electronic band gaps of Si, Ge, and GaAs within the GW approximation. Phys. Rev. B 69:125212 [Google Scholar]
  19. Rinke P, Winkelnkemper M, Qteish A, Bimberg D, Neugebauer J, Scheffler M. 19.  2008. Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN. Phys. Rev. B 77:075202 [Google Scholar]
  20. Hybertsen MS, Louie SG. 20.  1986. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34:5390–413 [Google Scholar]
  21. Deslippe J, Samsonidze G, Strubbe D, Jain M, Cohen ML, Louie SG. 21.  2012. BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183:1269 [Google Scholar]
  22. Marini A, Hogan C, Grüning M, Varsano D. 22.  2009. yambo: an ab initio tool for excited state calculations. Comput. Phys. Commun. 180:1392–403 [Google Scholar]
  23. Heyd J, Scuseria GE, Ernzerhof M. 23.  2006. Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 124:219906 [Google Scholar]
  24. Rohlfing M, Louie SG. 24.  2000. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62:4927–44 [Google Scholar]
  25. Ullrich CA. 25.  2012. Time-Dependent Density-Functional Theory: Concepts and Applications Oxford, UK: Oxford Univ. Press [Google Scholar]
  26. Sharma S, Ambrosch-Draxl C. 26.  2004. Second-harmonic optical response from first principles. Phys. Scr. 2004:128 [Google Scholar]
  27. Hughes JLP, Sipe JE. 27.  1996. Calculation of second-order optical response in semiconductors. Phys. Rev. B 53:10751–63 [Google Scholar]
  28. Sipe JE, Ghahramani E. 28.  1993. Nonlinear optical response of semiconductors in the independent-particle approximation. Phys. Rev. B 48:11705–22 [Google Scholar]
  29. Sipe JE, Shkrebtii AI. 29.  2000. Second-order optical response in semiconductors. Phys. Rev. B 61:5337–52 [Google Scholar]
  30. Rashkeev SN, Lambrecht WRL, Segall B. 30.  1998. Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors. Phys. Rev. B 57:3905–19 [Google Scholar]
  31. Sharma S, Dewhurst JK, Ambrosch-Draxl C. 31.  2003. Linear and second-order optical response of III–V monolayer superlattices. Phys. Rev. B 67:165332 [Google Scholar]
  32. King-Smith RD, Vanderbilt D. 32.  1993. Theory of polarization of crystalline solids. Phys. Rev. B 47:1651–54 [Google Scholar]
  33. Corso AD, Mauri F, Rubio A. 33.  1996. Density-functional theory of the nonlinear optical susceptibility: application to cubic semiconductors. Phys. Rev. B 53:15638–42 [Google Scholar]
  34. Dal Corso A, Mauri F. 34.  1994. Wannier and Bloch orbital computation of the nonlinear susceptibility. Phys. Rev. B 50:5756–59 [Google Scholar]
  35. Veithen M, Gonze X, Ghosez P. 35.  2005. Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory. Phys. Rev. B 71:125107 [Google Scholar]
  36. Roman E, Yates JR, Veithen M, Vanderbilt D, Souza I. 36.  2006. Ab initio study of the nonlinear optics of III-V semiconductors in the terahertz regime. Phys. Rev. B 74:245204 [Google Scholar]
  37. Baroni S, de Gironcoli S, Corso AD. 37.  2001. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73:515–62 [Google Scholar]
  38. Luppi E, Hübener H, Véniard V. 38.  2010. Ab initio second-order nonlinear optics in solids: second-harmonic generation spectroscopy from time-dependent density-functional theory. Phys. Rev. B 82:235201 [Google Scholar]
  39. Goncharov VA. 39.  2013. Nonlinear optical response in solids from time-dependent density-functional theory simulations. J. Chem. Phys. 139:084104 [Google Scholar]
  40. Levine ZH, Allan DC. 40.  1991. Optical second-harmonic generation in III–V semiconductors: detailed formulation and computational results. Phys. Rev. B 44:12781–93 [Google Scholar]
  41. Aversa C, Sipe JE. 41.  1995. Nonlinear optical susceptibilities of semiconductors: results with a length-gauge analysis. Phys. Rev. B 52:14636–45 [Google Scholar]
  42. Lin J, Lee MH, Liu ZP, Chen C, Pickard CJ. 42.  1999. Mechanism for linear and nonlinear optical effects in β-BaB2O4 crystals. Phys. Rev. B 60:13380–89 [Google Scholar]
  43. Lin Z, Kang L, Zheng T, He R, Huang H, Chen C. 43.  2012. Strategy for the optical property studies in ultraviolet nonlinear optical crystals from density functional theory. Comput. Mater. Sci. 60:99–104 [Google Scholar]
  44. Levine ZH, Allan DC. 44.  1989. Linear optical response in silicon and germanium including self-energy effects. Phys. Rev. Lett. 63:1719–22 [Google Scholar]
  45. Asahi R, Mannstadt W, Freeman AJ. 45.  1999. Optical properties and electronic structures of semiconductors with screened-exchange LDA. Phys. Rev. B 59:7486–92 [Google Scholar]
  46. Perdew JP, Ernzerhof M, Burke K. 46.  1996. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105:9982 [Google Scholar]
  47. Becke AD. 47.  1993. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98:5648–52 [Google Scholar]
  48. Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Angyan JG. 48.  2006. Screened hybrid density functionals applied to solids. J. Chem. Phys. 124:154709–21 [Google Scholar]
  49. Kang L, Luo S, Huang H, Ye N, Lin Z. 49.  et al. 2013. Prospects for fluoride carbonate nonlinear optical crystals in the UV and deep-UV regions. J. Phys. Chem. C 117:25684–92 [Google Scholar]
  50. Malone BD, Cohen ML. 50.  2013. Quasiparticle semiconductor band structures including spin-orbit interactions. J. Phys. Condens. Matter 25:105503 [Google Scholar]
  51. Oshikiri M, Aryasetiawan F. 51.  1999. Band gaps and quasiparticle energy calculations on ZnO, ZnS, and ZnSe in the zinc-blende structure by the GW approximation. Phys. Rev. B 60:10754–57 [Google Scholar]
  52. Svane A, Christensen NE, Cardona M, Chantis AN, van Schilfgaarde M, Kotani T. 52.  2010. Quasiparticle self-consistent GW calculations for PbS, PbSe, and PbTe: band structure and pressure coefficients. Phys. Rev. B 81:245120 [Google Scholar]
  53. Rohlfing M, Krüger P, Pollmann J. 53.  1998. Role of semicore d electrons in quasiparticle band-structure calculations. Phys. Rev. B 57:6485–92 [Google Scholar]
  54. Rinke P, Qteish A, Neugebauer J, Freysoldt C, Scheffler M. 54.  2005. Combining GW calculations with exact-exchange density-functional theory: an analysis of valence-band photoemission for compound semiconductors. New J. Phys. 7:126 [Google Scholar]
  55. de Carvalho LC, Schleife A, Bechstedt F. 55.  2011. Influence of exchange and correlation on structural and electronic properties of AlN, GaN, and InN polytypes. Phys. Rev. B 84:195105 [Google Scholar]
  56. Svane A, Christensen NE, Gorczyca I, van Schilfgaarde M, Chantis AN, Kotani T. 56.  2010b. Quasiparticle self-consistent GW theory of III–V nitride semiconductors: bands, gap bowing, and effective masses. Phys. Rev. B 82:115102 [Google Scholar]
  57. Bayerl D, Kioupakis E. 57.  2014. Visible-wavelength polarized-light emission with small-diameter inn nanowires. Nano Lett. 14:3709–14 [Google Scholar]
  58. Yan Q, Rinke P, Winkelnkemper M, Qteish A, Bimberg D. 58.  et al. 2011. Band parameters and strain effects in ZnO and group-III nitrides. Semicond. Sci. Technol. 26:014037 [Google Scholar]
  59. Schleife A, Fuchs F, Rödl C, Furthmüller J, Bechstedt F. 59.  2009. Band-structure and optical-transition parameters of wurtzite MgO, ZnO, and CdO from quasiparticle calculations. Phys. Status Solid. B 246:2150–53 [Google Scholar]
  60. Kang W, Hybertsen M. 60.  2010. Quasiparticle and optical properties of rutile and anatase TiO2. Phys. Rev. B 82:085203 [Google Scholar]
  61. Schleife A, Bechstedt F. 61.  2012. Ab initio description of quasiparticle band structures and optical near-edge absorption of transparent conducting oxides. J. Mater. Res. 27:2180–89 [Google Scholar]
  62. Peelaers H, Kioupakis E, Van de Walle CG. 62.  2012. Fundamental limits on optical transparency of transparent conducting oxides: free-carrier absorption in SnO2. Appl. Phys. Lett. 100:011914 [Google Scholar]
  63. Peng H, Zakutayev A, Lany S, Paudel TR, D'Avezac M. 63.  et al. 2013. Li-doped Cr2MnO4: a new p-type transparent conducting oxide by computational materials design. Adv. Funct. Mater. 23:5267–76 [Google Scholar]
  64. Kumagai Y, Soda Y, Oba F, Seko A, Tanaka I. 64.  2012. First-principles calculations of the phase diagrams and band gaps in CuInSe2-CuGaSe2 and CuInSe2-CuAlSe2 pseudobinary systems. Phys. Rev. B 85:033203 [Google Scholar]
  65. Vidal J, Botti S, Olsson P, Guillemoles JF, Reining L. 65.  2010. Strong interplay between structure and electronic properties in CuIn(S,Se)2: a first-principles study. Phys. Rev. Lett. 104:056401 [Google Scholar]
  66. Zhao H, Persson C. 66.  2011. Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4. Thin Solid Films 519:7508–12 [Google Scholar]
  67. Punya A, Lambrecht WRL, van Schilfgaarde M. 67.  2011. Quasiparticle band structure of Zn-IV-N2 compounds. Phys. Rev. B 84:165204 [Google Scholar]
  68. Scanlon DO, Walsh A. 68.  2012. Bandgap engineering of ZnSnP2 for high-efficiency solar cells. Appl. Phys. Lett. 100:251911 [Google Scholar]
  69. Brivio F, Walker AB, Walsh A. 69.  2013. Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1:042111 [Google Scholar]
  70. Huang Ly, Lambrecht WRL. 70.  2013. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSNi3. Phys. Rev. B 88:165203 [Google Scholar]
  71. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ. 71.  et al. 2008. Fine structure constant defines visual transparency of graphene. Science 320:2008 [Google Scholar]
  72. Yang L, Park CH, Son YW, Cohen ML, Louie SG. 72.  2007. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99:186801 [Google Scholar]
  73. Dvorak M, Oswald W, Wu Z. 73.  2013. Bandgap opening by patterning graphene. Sci. Rep. 3:2289 [Google Scholar]
  74. Splendiani A, Sun L, Zhang Y, Li T, Kim J. 74.  et al. 2010. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10:1271–75 [Google Scholar]
  75. Cheiwchanchamnangij T, Lambrecht WRL. 75.  2012. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 85:205302 [Google Scholar]
  76. Qiu DY, da Jornada FH, Louie SG. 76.  2013. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111:216805 [Google Scholar]
  77. Bernardi M, Palummo M, Grossman JC. 77.  2013. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13:3664–70 [Google Scholar]
  78. Pulci O, Gori P, Marsili M, Garbuio V, Del Sole R, Bechstedt F. 78.  2012. Strong excitons in novel two-dimensional crystals: silicane and germanane. EPL 98:37004 [Google Scholar]
  79. Tritsaris GA, Malone BD, Kaxiras E. 79.  2013. Optoelectronic properties of single-layer, double-layer, and bulk tin sulfide: a theoretical study. J. Appl. Phys. 113:233507 [Google Scholar]
  80. Tran V, Soklaski R, Liang Y, Yang L. 80.  2014. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89:235319 [Google Scholar]
  81. Wu Z, Neaton JB, Grossman JC. 81.  2009. Charge separation via strain in silicon nanowires. Nano Lett. 9:2418–22 [Google Scholar]
  82. Spataru CD, Ismail-Beigi S, Benedict LX, Louie SG. 82.  2004. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 92:077402 [Google Scholar]
  83. Kuykendall T, Ulrich P, Aloni S, Yang P. 83.  2007. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater. 6:951–56 [Google Scholar]
  84. Tian B, Zheng X, Kempa TJ, Fang Y, Yu N. 84.  et al. 2007. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–89 [Google Scholar]
  85. Guo W, Zhang M, Banerjee A, Bhattacharya P. 85.  2010. Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Nano Lett. 10:3355–59 [Google Scholar]
  86. Bruno M, Palummo M, Marini A, Del Sole R, Ossicini S. 86.  2007. From Si nanowires to porous silicon: the role of excitonic effects. Phys. Rev. Lett. 98:036807 [Google Scholar]
  87. Yang L, Spataru C, Louie SG, Chou MY. 87.  2007. Enhanced electron-hole interaction and optical absorption in a silicon nanowire. Phys. Rev. B 75:201304 [Google Scholar]
  88. Wu Z, Neaton JB, Grossman JC. 88.  2008. Quantum confinement and electronic properties of tapered silicon nanowires. Phys. Rev. Lett. 100:246804 [Google Scholar]
  89. Iijima S. 89.  1991. Helical microtubules of graphitic carbon. Nature 354:56–58 [Google Scholar]
  90. Rubio A, Corkill JL, Cohen ML. 90.  1994. Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49:5081–84 [Google Scholar]
  91. Blase X, Rubio A, Louie SG, Cohen ML. 91.  1994. Stability and band gap constancy of boron nitride nanotubes. EPL 28:335 [Google Scholar]
  92. Rohlfing M, Louie SG. 92.  1998. Excitonic effects and the optical absorption spectrum of hydrogenated Si clusters. Phys. Rev. Lett. 80:3320–23 [Google Scholar]
  93. Wippermann S, Vörös M, Rocca D, Gali A, Zimanyi G, Galli G. 93.  2013. High-pressure core structures of Si nanoparticles for solar energy conversion. Phys. Rev. Lett. 110:046804 [Google Scholar]
  94. Li H, Wu Z, Zhou T, Sellinger A, Lusk MT. 94.  2014. Tailoring the optical gap of silicon quantum dots without changing their size. Phys. Chem. Chem. Phys. 16:19275–81 [Google Scholar]
  95. Lin Z, Li H, Franceschetti A, Lusk MT. 95.  2012. Efficient exciton transport between strongly quantum-confined silicon quantum dots. ACS Nano 6:4029–38 [Google Scholar]
  96. Wippermann S, Vörös M, Gali A, Gygi F, Zimanyi GT, Galli G. 96.  2014. Solar nanocomposites with complementary charge extraction pathways for electrons and holes: Si embedded in ZnS. Phys. Rev. Lett. 112:106801 [Google Scholar]
  97. Patrick CE, Giustino F. 97.  2013. Quantum nuclear dynamics in the photophysics of diamondoids. Nat. Commun. 4:2006 [Google Scholar]
  98. Marini A. 98.  2008. Ab initio finite-temperature excitons. Phys. Rev. Lett. 101:106405 [Google Scholar]
  99. Noffsinger J, Kioupakis E, Van de Walle CG, Louie SG, Cohen ML. 99.  2012. Phonon-assisted optical absorption in silicon from first principles. Phys. Rev. Lett. 108:167402 [Google Scholar]
  100. Allen PB, Heine V. 100.  1976. Theory of the temperature dependence of electronic band structures. J. Phys. C 9:2305 [Google Scholar]
  101. Giustino F, Louie SG, Cohen ML. 101.  2010. Electron-phonon renormalization of the direct band gap of diamond. Phys. Rev. Lett. 105:265501 [Google Scholar]
  102. Gonze X, Boulanger P, Côté M. 102.  2011. Theoretical approaches to the temperature and zero-point motion effects on the electronic band structure. Ann. Phys. 523:168–78 [Google Scholar]
  103. Cannuccia E, Marini A. 103.  2011. Effect of the quantum zero-point atomic motion on the optical and electronic properties of diamond and trans-polyacetylene. Phys. Rev. Lett. 107:255501 [Google Scholar]
  104. Kawai H, Yamashita K, Cannuccia E, Marini A. 104.  2014. Electron-electron and electron-phonon correlation effects on the finite-temperature electronic and optical properties of zinc-blende GaN. Phys. Rev. B 89:085202 [Google Scholar]
  105. Kioupakis E, Rinke P, Schleife A, Bechstedt F, Van de Walle CG. 105.  2010. Free-carrier absorption in nitrides from first principles. Phys. Rev. B 81:241201 [Google Scholar]
  106. Kioupakis E, Rinke P, Van de Walle CG. 106.  2010. Determination of internal loss in nitride lasers from first principles. Appl. Phys. Expr. 3:082101 [Google Scholar]
  107. Kioupakis E, Rinke P, Delaney KT, Van de Walle CG. 107.  2011. Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl. Phys. Lett. 98:161107 [Google Scholar]
  108. Kioupakis E, Yan Q, Steiauf D, Van de Walle CG. 108.  2013. Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices. New J. Phys. 15:125006 [Google Scholar]
  109. Steiauf D, Kioupakis E, Van de Walle CG. 109.  2014. Auger recombination in GaAs from first principles. ACS Photonics 1:643–46 [Google Scholar]
  110. Boyd RW. 110.  2008. Nonlinear Optics San Diego, CA: Academic, 3rd ed.. [Google Scholar]
  111. Kleinman DA. 111.  1962. Nonlinear dielectric polarization in optical media. Phys. Rev. 126:1977–79 [Google Scholar]
  112. Miller RC. 112.  1964. Optical second harmonic generation in piezoelectric crystals. Appl. Phys. Lett. 5:17–19 [Google Scholar]
  113. Kurtz SK, Robinson FNH. 113.  1967. A physical model of the electro-optic effect. Appl. Phys. Lett. 10:62–65 [Google Scholar]
  114. Garrett C, Robinson F. 114.  1966. Miller's phenomenological rule for computing nonlinear susceptibilities. IEEE J. Quantum Electron. 2:328–29 [Google Scholar]
  115. Garrett C. 115.  1968. Nonlinear optics, anharmonic oscillators, and pyroelectricity. IEEE J. Quantum Electron. 4:70–84 [Google Scholar]
  116. Jeggo CR, Boyd GD. 116.  1970. Nonlinear optical polarizability of the niobium-oxygen bond. J. Appl. Phys. 41:2741–43 [Google Scholar]
  117. Bergman JG, Crane GR. 117.  1974. Structural aspects of nonlinear optics: optical properties of KIO2F2 and its related iodates. J. Chem. Phys. 60:2470–74 [Google Scholar]
  118. Levine BF. 118.  1973. Bond-charge calculation of nonlinear optical susceptibilities for various crystal structures. Phys. Rev. B 7:2600–26 [Google Scholar]
  119. Chen C. 119.  1979. A localized quantal theoretical treatment, based on an anionic coordination polyhedron model, for EO and SHG effects in crystals of the mixed-oxide type. Sci. China Math. 22:756–76 [Google Scholar]
  120. Ye N, Chen Q, Wu B, Chen C. 120.  1998. Searching for new nonlinear optical materials on the basis of the anionic group theory. J. Appl. Phys. 84:555–58 [Google Scholar]
  121. Hu CL, Xu X, Sun CF, Mao JG. 121.  2011. Electronic structures and optical properties of Ca5(BO3)3F: a systematical first-principles study. J. Phys. Condens. Matter 23:395501 [Google Scholar]
  122. Kang L, Luo S, Huang H, Zheng T, Lin ZS, Chen CT. 122.  2012. Ab initio studies on the optical effects in the deep ultraviolet nonlinear optical crystals of the KBe2BO3F2 family. J. Phys. Condens. Matter 24:335503 [Google Scholar]
  123. Lee MH, Yang CH, Jan JH. 123.  2004. Band-resolved analysis of nonlinear optical properties of crystalline and molecular materials. Phys. Rev. B 70:235110 [Google Scholar]
  124. He R, Lin ZS, Lee MH, Chen CT. 124.  2011. Ab initio studies on the mechanism for linear and nonlinear optical effects in YAl3(BO3)4. J. Appl. Phys. 109:103510 [Google Scholar]
  125. Perez-Mato JM, Orobengoa D, Aroyo MI. 125.  2010. Mode crystallography of distorted structures. Acta Crystallogr. A 66:558–90 [Google Scholar]
  126. Cammarata A, Rondinelli JM. 126.  2014. Contributions of correlated acentric atomic displacements to the nonlinear second harmonic generation and response. ACS Photonics 1:96–100 [Google Scholar]
  127. Wu H, Yu H, Yang Z, Hou X, Su X. 127.  et al. 2013. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. J. Am. Chem. Soc. 135:4215–18 [Google Scholar]
  128. Yu H, Wu H, Pan S, Yang Z, Hou X. 128.  et al. 2014. Cs3Zn6B9O21: a chemically benign member of the KBBF family exhibiting the largest second harmonic generation response. J. Am. Chem. Soc. 136:1264–67 [Google Scholar]
  129. Tran TT, Halasyamani PS, Rondinelli JM. 129.  2014. Role of acentric displacements on the crystal structure and second-harmonic generating properties of RbPbCO3F and CsPbCO3F. Inorg. Chem. 53:6241–51 [Google Scholar]
  130. Cammarata A, Zhang W, Halasyamani PS, Rondinelli JM. 130.  2014. Microscopic origins of optical second harmonic generation in noncentrosymmetric-nonpolar materials. Chem. Mater. 26:5773–81 [Google Scholar]
  131. Chung I, Kanatzidis MG. 131.  2014. Metal chalcogenides: a rich source of nonlinear optical materials. Chem. Mater. 26:849–69 [Google Scholar]
  132. Chung I, Malliakas CD, Jang JI, Canlas CG, Weliky DP, Kanatzidis MG. 132.  2007. Helical polymer 1/[P2Se2−6]: strong second harmonic generation response and phase-change properties of its K and Rb salts. J. Am. Chem. Soc. 129:14996–5006 [Google Scholar]
  133. Chung I, Jang JI, Malliakas CD, Ketterson JB, Kanatzidis MG. 133.  2010. Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials. J. Am. Chem. Soc. 132:384–89 [Google Scholar]
  134. Chung I, Do J, Canlas CG, Weliky DP, Kanatzidis MG. 134.  2004. APSe6 (A = K, Rb, and Cs): polymeric selenophosphates with reversible phase-change properties. Inorg. Chem. 43:2762–64 [Google Scholar]
  135. Bera TK, Jang JI, Song J-H, Malliakas CD, Freeman AJ. 135.  et al. 2010. Soluble semiconductors AAsSe2 (A = Li, Na) with a direct-band-gap and strong second harmonic generation: a combined experimental and theoretical study. J. Am. Chem. Soc. 132:3484–95 [Google Scholar]
  136. Song J-H, Freeman AJ, Bera TK, Chung I, Kanatzidis MG. 136.  2009. First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides. Phys. Rev. B 79:245203 [Google Scholar]
  137. Jackson A, Ohmer M, LeClair S. 137.  1997. Relationship of the second order nonlinear optical coefficient to energy gap in inorganic non-centrosymmetric crystals. Infrared Phys. Technol. 38:233–44 [Google Scholar]
  138. Chung I, Song J-H, Jang JI, Freeman AJ, Kanatzidis MG. 138.  2012. Na2Ge2Se5: a highly nonlinear optical material. J. Solid State Chem. 195:161–65 [Google Scholar]
  139. Mei L, Huang X, Wang Y, Wu Q, Wu B, Chen C. 139.  2010. Crystal structure of KBe2BO3F2. Z. Kristallogr. 210:93–95 [Google Scholar]
  140. Lin Z, Jiang X, Kang L, Gong P, Luo S, Lee MH. 140.  2014. First-principles materials applications and design of nonlinear optical crystals. J. Phys. D 47:253001 [Google Scholar]
  141. He R, Huang H, Kang L, Yao W, Jiang X. 141.  et al. 2013. Bandgaps in the deep ultraviolet borate crystals: prediction and improvement. Appl. Phys. Lett. 102:231904 [Google Scholar]
  142. He R, Lin ZS, Zheng T, Huang H, Chen CT. 142.  2012. Energy band gap engineering in borate ultraviolet nonlinear optical crystals: ab initio studies. J. Phys. Condens. Matter 24:145503 [Google Scholar]
  143. Zhao S, Gong P, Bai L, Xu X, Zhang S. 143.  et al. 2014. Beryllium-free Li4Sr(BO3)2 for deep-ultraviolet nonlinear optical applications. Nat. Commun. 5:4019 [Google Scholar]
  144. Yao W, He R, Wang X, Lin Z, Chen C. 144.  2014. Borates: analysis of deep-UV nonlinear optical borates: approaching the end. Adv. Opt. Mater. 2:410–10 [Google Scholar]
  145. Duan C-G, Li J, Gu Z-Q, Wang D-S. 145.  1999. Interpretation of the nonlinear optical susceptibility of borate crystals from first principles. Phys. Rev. B 59:369–72 [Google Scholar]
  146. Wu H, Yu H, Yang Z, Hou X, Su X. 146.  et al. 2013. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. J. Am. Chem. Soc. 135:4215–18 [ Erratum] [Google Scholar]
  147. 147. Natl. Sci. Technol. Counc 2011. Materials Genome Initiative for global competitiveness. White Pap., Natl. Sci. Technol. Counc., Washington, DC [Google Scholar]
  148. Lu H, Gautier R, Donakowski MD, Tran T, Edwards BW. 148.  et al. 2013. Nonlinear active materials: an illustration of controllable phase matchability. J. Am. Chem. Soc. 135:11942–50 [Google Scholar]
  149. Dalba G, Soldo Y, Rocca F, Fridkin VM, Sainctavit P. 149.  1995. Giant bulk photovoltaic effect under linearly polarized X-ray synchrotron radiation. Phys. Rev. Lett. 74:988–91 [Google Scholar]
  150. Young SM, Rappe AM. 150.  2012. First principles calculation of the shift current photovoltaic effect in ferroelectrics. Phys. Rev. Lett. 109:116601 [Google Scholar]
  151. Grinberg I, West DV, Torres M, Gou G, Stein DM. 151.  et al. 2013. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503:509–12 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070214-021150
Loading
/content/journals/10.1146/annurev-matsci-070214-021150
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error