This review covers some of the latest developments in the organization of artificial superlattice assemblies utilizing colloidal oxide or hydroxide nanosheets bearing a negative or positive charge, respectively. Various solution-based procedures, e.g., flocculation, electrostatic sequential adsorption, and Langmuir-Blodgett deposition, have been introduced for the self-assembly of 2D nanosheets. Superlattice composites or films integrated with different nanosheets may yield concerted or synergistic modulation, e.g., soft coupling or new electronic states at interfaces. This behavior offers an unprecedented opportunity for the exploration of high-performance devices, as well as advanced or novel functions that cannot be achieved with a single-component material.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV. 1.  et al. 2005. Two-dimensional atomic crystals. PNAS 102:10451–53 [Google Scholar]
  2. Sasaki T. 2.  2007. Fabrication of nanostructured functional materials using exfoliated nanosheets as a building block. J. Ceram. Soc. Jpn. 115:9–16 [Google Scholar]
  3. Ma R, Sasaki T. 3.  2010. Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Adv. Mater. 22:5082–104 [Google Scholar]
  4. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. 4.  2013. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5:263–75 [Google Scholar]
  5. Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F. 5.  2011. 2D materials: to graphene and beyond. Nanoscale 3:20–30 [Google Scholar]
  6. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA. 6.  et al. 2013. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–926 [Google Scholar]
  7. Xu MS, Liang T, Shi MM, Chen HZ. 7.  2013. Graphene-like two-dimensional materials. Chem. Rev. 113:3766–98 [Google Scholar]
  8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y. 8.  et al. 2004. Electric field effect in atomically thin carbon films. Science 306:666–69 [Google Scholar]
  9. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI. 9.  et al. 2005. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200 [Google Scholar]
  10. Geim AK. 10.  2009. Graphene: status and prospects. Science 324:1530–34 [Google Scholar]
  11. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. 11.  2011. Single-layer MoS2 transistors. Nat. Nanotechnol. 6:147–50 [Google Scholar]
  12. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. 12.  2012. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7:699–712 [Google Scholar]
  13. Huang X, Zeng ZY, Zhang H. 13.  2013. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42:1934–46 [Google Scholar]
  14. Wang L, Sasaki T. 14.  2014. Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chem. Rev. 114:9455–86 [Google Scholar]
  15. Ma R, Liu Z, Li L, Iyi N, Sasaki T. 15.  2006. Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets. J. Mater. Chem. 16:3809–13 [Google Scholar]
  16. Wang Q, O'Hare D. 16.  2012. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112:4124–55 [Google Scholar]
  17. Geng F, Ma R, Sasaki T. 17.  2010. Anion-exchangeable layered materials based on rare-earth phosphors: unique combination of rare-earth host and exchangeable anions. Acc. Chem. Res. 43:1177–85 [Google Scholar]
  18. Jacobson AJ. 18.  1994. Colloidal dispersions of compounds with layer and chain structures. Mater. Sci. Forum 152–153:1–12 [Google Scholar]
  19. Treacy MMJ, Rice SB, Jacobson AJ, Lewandowski JT. 19.  1990. Electron microscopy study of delamination in dispersions of the perovskite-related layered phases K[Ca2Nan−3NbnO3n+1]: evidence for single-layer formation. Chem. Mater. 2:279–86 [Google Scholar]
  20. Schaak RE, Mallouk TE. 20.  2000. Prying apart Ruddlesden-Popper phases: exfoliation into sheets and nanotubes for assembly of perovskite thin films. Chem. Mater. 14:3427–34 [Google Scholar]
  21. Schaak RE, Mallouk TE. 21.  2002. Perovskites by design: a toolbox of solid-state reactions. Chem. Mater. 12:1455–71 [Google Scholar]
  22. Sasaki T, Watanabe M, Hashizume H, Yamada H, Nakazawa H. 22.  1996. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it. J. Am. Chem. Soc. 118:8329–35 [Google Scholar]
  23. Omomo Y, Sasaki T, Wang L, Watanabe M. 23.  2003. Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J. Am. Chem. Soc. 125:3568–75 [Google Scholar]
  24. Adachi-Pagano M, Forano C, Besse JP. 24.  2000. Delamination of layered double hydroxides by use of surfactants. Chem. Commun. 2000:91–92 [Google Scholar]
  25. Leroux F, Adachi-Pagano M, Intissar M, Chauvière S, Forano C, Besse JP. 25.  2001. Delamination and restacking of layered double hydroxides. J. Mater. Chem. 11:105–12 [Google Scholar]
  26. Venugopal BR, Shivakumara C, Rajamathi M. 26.  2006. Effect of various factors influencing the delamination behavior of surfactant intercalated layered double hydroxides. J. Colloid Interface Sci. 294:234–39 [Google Scholar]
  27. Hibino T, Jones W. 27.  2001. New approach to the delamination of layered double hydroxides. J. Mater. Chem. 11:1321–23 [Google Scholar]
  28. Hibino T. 28.  2004. Delamination of layered double hydroxides containing amino acids. Chem. Mater. 16:5482–88 [Google Scholar]
  29. Osada M, Sasaki T. 29.  2009. Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem. 19:2503–11 [Google Scholar]
  30. Osada M, Sasaki T. 30.  2012. Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24:210–28 [Google Scholar]
  31. Sasaki T, Ebina Y, Watanabe M, Decher G. 31.  2000. Multilayer ultrathin films of molecular titania nanosheets showing highly efficient UV-light absorption. Chem. Commun. 2000:2163–64 [Google Scholar]
  32. Shibata T, Sakai N, Fukuda K, Ebina Y, Sasaki T. 32.  2007. Photocatalytic properties of titania nanostructured films fabricated from titania nanosheets. Phys. Chem. Chem. Phys. 9:2413–20 [Google Scholar]
  33. Sugimoto W, Iwata H, Yasunaga Y, Murakami Y, Takasu Y. 33.  2003. Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew. Chem. Int. Ed. 42:4092–96 [Google Scholar]
  34. Fukuda K, Saida T, Sato J, Yonezawa M, Takasu Y, Sugimoto W. 34.  2010. Synthesis of nanosheet crystallites of ruthenate with an α-NaFeO2-related structure and its electrochemical supercapacitor property. Inorg. Chem. 49:4391–93 [Google Scholar]
  35. Fukuda K, Akatsuka K, Ebina Y, Ma R, Takada K. 35.  et al. 2008. Exfoliated nanosheet crystallite of cesium tungstate with 2D pyrochlore structure: synthesis, characterization, and photochromic properties. ACS Nano 2:1689–95 [Google Scholar]
  36. Liu Z, Ma R, Osada M, Iyi N, Ebina Y. 36.  et al. 2006. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 128:4872–80 [Google Scholar]
  37. Shao MF, Han JB, Shi WY, Wei M, Duan X. 37.  2010. Layer-by-layer assembly of porphyrin/layered double hydroxide ultrathin film and its electrocatalytic behavior for H2O2. Electrochem. Commun. 12:1077–80 [Google Scholar]
  38. Dong XY, Wang L, Wang D, Li C, Jin J. 38.  2012. Layer-by-layer engineered Co-Al hydroxide nanosheets/graphene multilayer films as flexible electrode for supercapacitor. Langmuir 28:293–98 [Google Scholar]
  39. Yan DP, Lu J, Wei M, Evans DG, Duan X. 39.  2011. Recent advances in photofunctional guest/layered double hydroxide host composite systems and their applications: experimental and theoretical perspectives. J. Mater. Chem. 21:13128–39 [Google Scholar]
  40. Long X, Li J, Xiao S, Yan K, Wang Z. 40.  et al. 2014. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. Int. Ed. 53:7584–88 [Google Scholar]
  41. Song F, Hu X. 41.  2014. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5:4477 doi: 10.1038/ncomms5477 [Google Scholar]
  42. Osada M, Ebina Y, Funakubo H, Yokoyama S, Kiguchi T. 42.  et al. 2006. High-k dielectric nanofilms fabricated from titania nanosheets. Adv. Mater. 18:1023–27 [Google Scholar]
  43. Osada M, Akatsuka K, Ebina Y, Funakubo H, Ono K. 43.  et al. 2010. Robust high-k response in molecularly thin perovskite nanosheets. ACS Nano 4:5225–32 [Google Scholar]
  44. Yan DP, Lu J, Ma J, Wei M, Wang X. 44.  et al. 2010. Anionic poly(p-phenylenevinylene)/layered double hydroxide ordered ultrathin films with multiple quantum well structure: a combined experimental and theoretical study. Langmuir 26:7007–14 [Google Scholar]
  45. Gunjakar JL, Kim TW, Kim IY, Lee JM, Hwang S-J. 45.  2013. Highly efficient visible light-induced O2 generation by self-assembled nanohybrids of inorganic nanosheets and polyoxometalate nanoclusters. Sci. Rep. 3:2080 doi: 10.1038/srep02080 [Google Scholar]
  46. Geim AK, Grigorieva IV. 46.  2013. Van der Waals heterostructures. Nature 499:419–25 [Google Scholar]
  47. Dean CR, Young A F, Meric I, Lee C, Wang L. 47.  et al. 2010. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5:722–26 [Google Scholar]
  48. Britnell L, Gorbachev RV, Jalil R, Belle BD, Schedin F. 48.  et al. 2012. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335:947–50 [Google Scholar]
  49. Haigh SJ, Gholinia A, Jalil R, Romani S, Britnell L. 49.  et al. 2012. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11:764–67 [Google Scholar]
  50. Georgiou T, Jalil R, Belle BD, Britnell L, Gorbachev RV. 50.  et al. 2013. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8:100–3 [Google Scholar]
  51. Sakai N, Fukuda K, Omomo Y, Ebina Y, Takada K, Sasaki T. 51.  2008. Hetero-nanostructured films of titanium and manganese oxide nanosheets: photoinduced charge transfer and electrochemical properties. J. Phys. Chem. C 112:5197–202 [Google Scholar]
  52. Osada M, Ebina Y, Takada K, Sasaki T. 52.  2006. Gigantic magneto–optical effects in multilayer assemblies of two-dimensional titania nanosheets. Adv. Mater. 18:295–99 [Google Scholar]
  53. Tanaka T, Ebina Y, Takada K, Kurashima K, Sasaki T. 53.  2003. Oversized titania nanosheet crystallites derived from flux-grown layered titanate single crystals. Chem. Mater. 15:3564–68 [Google Scholar]
  54. Ozawa TC, Fukuda K, Akatsuka K, Ebina Y, Sasaki T. 54.  2007. Preparation and characterization of the Eu3+ doped perovskite nanosheet phosphor: La0.90Eu0.05Nb2O7. Chem. Mater. 19:6575–80 [Google Scholar]
  55. Ebina Y, Sasaki T, Watanabe M. 55.  2002. Study on exfoliation of layered perovskite-type niobates. Solid State Ionics 151:177–82 [Google Scholar]
  56. Ebina Y, Akatsuka K, Fukuda K, Sasaki T. 56.  2012. Synthesis and in situ X-ray diffraction characterization of two-dimensional perovskite-type oxide colloids with a controlled molecular thickness. Chem. Mater. 24:4201–8 [Google Scholar]
  57. Maluangnont T, Matsuba K, Geng F, Ma R, Yamauchi Y, Sasaki T. 57.  2013. Osmotic swelling of layered compounds as a route to producing high-quality two-dimensional materials. A comparative study of tetramethylammonium versus tetrabutylammonium cation in a lepidocrocite-type titanate. Chem. Mater. 25:3137–46 [Google Scholar]
  58. Geng F, Ma R, Ebina Y, Yamauchi Y, Miyamoto N, Sasaki T. 58.  2014. Gigantic swelling of inorganic layered materials: a bridge to molecularly thin two-dimensional nanosheets. J. Am. Chem. Soc. 136:5491–500 [Google Scholar]
  59. Braterman PS, Xu ZP, Yarberry F. 59.  2004. Layered double hydroxides (LDHs). Handbook of Layered Materials SM Auerbach, KA Carrado, PK Dutta 373–474 New York: Marcel Dekker [Google Scholar]
  60. Rives V. 60.  2001. Layered Double Hydroxides: Present and Future New York: Nova Sci.
  61. Duan X, Evans DG. 61.  2006. Layered Double Hydroxides Berlin/Heidelberg, Ger.: Springer-Verlag
  62. Guo Y, Zhang H, Zhao L, Li GD, Chen JS, Xu L. 62.  2005. Synthesis and characterization of Cd-Cr and Zn-Cd-Cr layered double hydroxides intercalated with dodecyl sulfate. J. Solid State Chem. 178:1830–36 [Google Scholar]
  63. Wu QL, Olafsen A, Vistad ØB, Roots J, Norby P. 63.  2005. Delamination and restacking of a layered double hydroxide with nitrate as counter anion. J. Mater. Chem. 15:4695–700 [Google Scholar]
  64. Cai H, Hillier AC, Franklin KR, Nunn CC, Ward MD. 64.  1994. Nanoscale imaging of molecular adsorption. Science 266:1551–55 [Google Scholar]
  65. Costantino U, Marmottini F, Nocchetti M, Vivani R. 65.  1998. New synthetic routes to hydrotalcite-like compounds: characterisation and properties of the obtained materials. Eur. J. Inorg. Chem. 10:1439–46 [Google Scholar]
  66. Ogawa M, Kaiho H. 66.  2002. Homogeneous precipitation of uniform hydrotalcite particles. Langmuir 18:4240–42 [Google Scholar]
  67. Adachi-Pagano M, Forano C, Besse JP. 67.  2003. Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction—control of size and morphology. J. Mater. Chem. 13:1988–93 [Google Scholar]
  68. Iyi N, Matsumoto T, Kaneko Y, Kitamura K. 68.  2004. A novel synthetic route to layered double hydroxides using hexamethylenetetramine. Chem. Lett. 33:1122–23 [Google Scholar]
  69. Li L, Ma R, Ebina Y, Iyi N, Sasaki T. 69.  2005. Positively charged nanosheets derived via total delamination of layered double hydroxides. Chem. Mater. 17:4386–91 [Google Scholar]
  70. Liu Z, Ma R, Ebina Y, Iyi N, Takada K, Sasaki T. 70.  2007. General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides. Langmuir 23:861–67 [Google Scholar]
  71. Ma R, Liu Z, Takada K, Iyi N, Bando Y, Sasaki T. 71.  2007. Synthesis and exfoliation of Co2+-Fe3+ layered double hydroxides: an innovative topochemical approach. J. Am. Chem. Soc. 129:5257–63 [Google Scholar]
  72. Ma R, Takada K, Fukuda K, Iyi N, Bando Y, Sasaki T. 72.  2008. Topochemical synthesis of monometallic (Co2+-Co3+) layered double hydroxide and its exfoliation into positively charged Co(OH)2 nanosheets. Angew. Chem. Int. Ed. 47:86–89 [Google Scholar]
  73. Liang J, Ma R, Iyi N, Ebina Y, Takada K, Sasaki T. 73.  2010. Topochemical synthesis, anion exchange, and exfoliation of Co-Ni layered double hydroxides: a route to positively charged Co-Ni hydroxide nanosheets with tunable composition. Chem. Mater. 22:371–78 [Google Scholar]
  74. Ma R, Liang J, Takada K, Sasaki T. 74.  2011. Topochemical synthesis of Co-Fe layered double hydroxides at varied Fe/Co ratios: unique intercalation of triiodide and its profound effect. J. Am. Chem. Soc. 133:613–20 [Google Scholar]
  75. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM. 75.  et al. 2009. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–10 [Google Scholar]
  76. Li X, Cai W, An J, Kim S, Nah J. 76.  et al. 2009. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–14 [Google Scholar]
  77. Park S, Ruoff RS. 77.  2009. Chemical methods for the production of graphenes. Nat. Nanotechnol. 4:217–24 [Google Scholar]
  78. Eda G, Chhowalla M. 78.  2010. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22:2392–415 [Google Scholar]
  79. Hummers W, Offeman R. 79.  1958. Preparation of graphitic oxide. J. Am. Chem. Soc. 80:1339 [Google Scholar]
  80. Kooli F, Sasaki T, Watanabe M. 80.  1999. A new pillared structure with double-layers of alumina. Chem. Commun. 1999:211–12 [Google Scholar]
  81. Wang LZ, Takada K, Kajiyama A, Onoda M, Michiue Y. 81.  et al. 2003. Synthesis of a Li-Mn-oxide with disordered layer stacking through flocculation of exfoliated MnO2 nanosheets, and its electrochemical properties. Chem. Mater. 15:4508–14 [Google Scholar]
  82. Wang LZ, Ebina Y, Takada K, Kurashima K, Sasaki T. 82.  2004. A new mesoporous manganese oxide pillared with double layers of alumina. Adv. Mater. 16:1412–16 [Google Scholar]
  83. Ebina Y, Sasaki T, Harada M, Watanabe M. 83.  2002. Restacked perovskite nanosheets and their Pt-loaded materials as photocatalysts. Chem. Mater. 14:4390–95 [Google Scholar]
  84. Ebina Y, Sakai N, Sasaki T. 84.  2005. Photocatalyst of lamellar aggregates of RuOx-loaded perovskite nanosheets for overall water splitting. J. Phys. Chem. B 109:17212–16 [Google Scholar]
  85. Li L, Ma R, Ebina Y, Fukuda K, Takada K, Sasaki T. 85.  2007. Layer-by-layer assembly and spontaneous flocculation of oppositely charged oxide and hydroxide nanosheets into inorganic sandwich layered materials. J. Am. Chem. Soc. 129:8000–7 [Google Scholar]
  86. Kleinfeld ER, Ferguson GS. 86.  1994. Stepwise formation of multilayered nanostructural films from macromolecular precursors. Science 265:370–73 [Google Scholar]
  87. Keller SW, Kim HN, Mallouk TE. 87.  1994. Layer-by-layer assembly of intercalation compounds and heterostructures on surfaces: toward molecular “beaker” epitaxy. J. Am. Chem. Soc. 116:8817–18 [Google Scholar]
  88. Fang M, Kim CH, Saupe GB, Kim HN, Waraksa CC. 88.  et al. 1999. Layer-by-layer growth and condensation reactions of niobate and titanoniobate thin films. Chem. Mater. 11:1526–32 [Google Scholar]
  89. Schaak RE, Mallouk TE. 89.  2000. Self-assembly of tiled perovskite monolayer and multilayer thin films. Chem. Mater. 12:2513–16 [Google Scholar]
  90. Sasaki T, Ebina Y, Tanaka T, Harada M, Watanabe M, Decher G. 90.  2001. Layer-by-layer assembly of titania nanosheet/polycation composite films. Chem. Mater. 13:4661–67 [Google Scholar]
  91. Wang LZ, Sasaki T, Ebina Y, Kurashima K, Watanabe M. 91.  2002. Fabrication of controllable ultrathin hollow shells by layer-by-layer assembly of exfoliated titania nanosheets on polymer templates. Chem. Mater. 14:4827–32 [Google Scholar]
  92. Wang LZ, Omomo Y, Sakai N, Fukuda K, Nakai I. 92.  et al. 2003. Fabrication and characterization of multilayer ultrathin films of exfoliated MnO2 nanosheets and polycations. Chem. Mater. 15:2873–78 [Google Scholar]
  93. Wang LZ, Ebina Y, Takada K, Sasaki T. 93.  2004. Ultrathin films and hollow shells with pillared architectures fabricated via layer-by-layer self-assembly of titania nanosheets and aluminum Keggin ions. J. Phys. Chem. B 108:4283–88 [Google Scholar]
  94. Wang LZ, Sakai N, Ebina Y, Takada K, Sasaki T. 94.  2005. Inorganic multilayer films of manganese oxide nanosheets and aluminum polyoxocations: fabrication, structure, and electrochemical behavior. Chem. Mater. 17:1352–57 [Google Scholar]
  95. Tanaka T, Fukuda K, Ebina Y, Takada K, Sasaki T. 95.  2004. Highly organized self-assembled monolayer and multilayer films of titania nanosheets. Adv. Mater. 16:872–75 [Google Scholar]
  96. Sakai N, Ebina Y, Takada K, Sasaki T. 96.  2005. Electrochromic films composed of MnO2 nanosheets with controlled optical density and high coloration efficiency. J. Electrochem. Soc. 152:E384–89 [Google Scholar]
  97. Akatsuka K, Ebina Y, Muramatsu M, Sato T, Hester H. 97.  et al. 2007. Photoelectrochemical properties of alternating multilayer films composed of titania nanosheets and Zn porphyrin. Langmuir 23:6730–36 [Google Scholar]
  98. Li L, Ma R, Iyi N, Ebina Y, Takada K, Sasaki T. 98.  2006. Hollow nanoshell of layered double hydroxide. Chem. Commun. 2006:3125–27 [Google Scholar]
  99. Lee H, Kepley LJ, Hong HG, Mallouk TE. 99.  1988. Inorganic analogs of Langmuir-Blodgett films: adsorption of ordered zirconium 1,10-decanebisphosphonate multilayers on silicon surfaces. J. Am. Chem. Soc. 110:618–20 [Google Scholar]
  100. Yamaki T, Asai K. 100.  2001. Alternate multilayer deposition from ammonium amphiphiles and titanium dioxide crystalline nanosheets using the Langmuir-Blodgett technique. Langmuir 17:2564–67 [Google Scholar]
  101. Takahashi S, Tanaka R, Wakabayashi N, Taniguchi M, Yamagishi A. 101.  2003. Design of a chiral surface by modifying an anionically charged single-layered inorganic compound with metal complexes. Langmuir 19:6122–25 [Google Scholar]
  102. Umemura Y, Shinohara E, Koura A, Nishioka T, Sasaki T. 102.  2006. Photocatalytic decomposition of an alkylammonium cation in a Langmuir-Blodgett film of a titania nanosheet. Langmuir 22:3870–77 [Google Scholar]
  103. Muramatsu M, Akatsuka K, Ebina Y, Wang K, Sasaki T. 103.  et al. 2005. Fabrication of densely packed titania nanosheet films on solid surface by use of Langmuir-Blodgett deposition method without amphiphilic additives. Langmuir 21:6590–95 [Google Scholar]
  104. Akatsuka K, Haga M, Ebina Y, Osada M, Fukuda K, Sasaki T. 104.  2009. Construction of highly ordered lamellar nanostructures through Langmuir–Blodgett deposition of molecularly thin titania nanosheets tens of micrometers wide and their excellent dielectric properties. ACS Nano 3:1097–106 [Google Scholar]
  105. Ma R, Liu X, Liang J, Bando Y, Sasaki T. 105.  2014. Molecular-scale heteroassembly of redoxable hydroxide nanosheets and conductive graphene into superlattice composites for high-performance supercapacitors. Adv. Mater. 26:4173–78 [Google Scholar]
  106. Li BW, Osada M, Ozawa TC, Ebina Y, Akatsuka K. 106.  et al. 2010. Engineered interfaces of artificial perovskite oxide superlattices via nanosheet deposition process. ACS Nano 4:6673–80 [Google Scholar]
  107. Randall CA. 107.  2001. Scientific and engineering issues of the state-of-the-art and future multilayer capacitors. J. Ceram. Soc. Jpn. 109:S2–6 [Google Scholar]
  108. Kishi H, Mizuno Y, Chazono H. 108.  2003. Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn. J. Appl. Phys. 42:1–15 [Google Scholar]
  109. Wang C, Osada M, Ebina Y, Li BW, Akatsuka K. 109.  et al. 2014. All-nanosheet ultrathin capacitors assembled layer-by-layer via solution-based processes. ACS Nano 8:2658–66 [Google Scholar]
  110. Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P. 110.  et al. 2008. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452:732–36 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error