1932

Abstract

Cold sintering is an unusually low-temperature process that uses a transient transport phase, which is most often liquid, and an applied uniaxial force to assist in densification of a powder compact. By using this approach, many ceramic powders can be transformed to high-density monoliths at temperatures far below the melting point. In this article, we present a summary of cold sintering accomplishments and the current working models that describe the operative mechanisms in the context of other strategies for low-temperature ceramic densification. Current observations in several systems suggest a multiple-stage densification process that bears similarity to models that describe liquid phase sintering. We find that grain growth trends are consistent with classical behavior, but with activation energy values that are lower than observed for thermally driven processes. Densification behavior in these low-temperature systems is rich, and there is much to be investigated regarding mass transport within and across the liquid-solid interfaces that populate these ceramics during densification. Irrespective of mechanisms, these low temperatures create a new opportunity spectrum to design grain boundaries and create new types of nanocomposites among material combinations that previously had incompatible processing windows. Future directions are discussed in terms of both the fundamental science and engineering of cold sintering.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070218-010041
2019-07-01
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/matsci/49/1/annurev-matsci-070218-010041.html?itemId=/content/journals/10.1146/annurev-matsci-070218-010041&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    German RM. 1996. Sintering Theory and Practice New York: Wiley
    [Google Scholar]
  2. 2.
    Vandiver PB, Soffer O, Klima B, Svoboda J 1989. The origins of ceramic technology at Dolni Věstonice, Czechoslovakia. Science 246:49331002–8
    [Google Scholar]
  3. 3.
    German RM. 2014. Sintering: From Empirical Observations to Scientific Principles Oxford, UK: Elsevier
    [Google Scholar]
  4. 4.
    Coble RL. 1961. Sintering crystalline solids. I. Intermediate and final state diffusion models. J. Appl. Phys. 32:5787–92
    [Google Scholar]
  5. 5.
    Coble RL. 1961. Sintering crystalline solids. II. Experimental test of diffusion models in powder compacts. J. Appl. Phys. 32:5793–99
    [Google Scholar]
  6. 6.
    Kingery WD, Berg M. 1955. Study of the initial stages of sintering solids by viscous flow, evaporation-condensation, and self-diffusion. J. Appl. Phys. 26:101205–12
    [Google Scholar]
  7. 7.
    Frenkel JJ. 1945. Viscous flow of crystalline bodies under the action of surface tension. J. Phys. 9:385
    [Google Scholar]
  8. 8.
    Lee SH, Kupp ER, Stevenson AJ, Anderson JM, Messing GL et al. 2009. Hot isostatic pressing of transparent Nd:YAG ceramics. J. Am. Ceram. Soc. 92:71456–63
    [Google Scholar]
  9. 9.
    Rossi RC, Fulrath RM. 1965. Final stage densification in vacuum hot-pressing of alumina. J. Am. Ceram. Soc. 48:11558–64
    [Google Scholar]
  10. 10.
    Wu WW, Zhang GJ, Kan YM, Wang PL 2006. Reactive hot pressing of ZrB2-SiC-ZrC ultra high-temperature ceramics at 1800°C. J. Am. Ceram. Soc. 89:92967–69
    [Google Scholar]
  11. 11.
    Wang W, Fu Z, Wang H, Yuan R 2002. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics. J. Eur. Ceram. Soc. 22:71045–49
    [Google Scholar]
  12. 12.
    Zhang G, Deng Z, Kondo N, Yang J, Ohji T 2000. Reactive hot pressing of ZrB2-SiC composites. J. Am. Ceram. Soc. 83:92330–32
    [Google Scholar]
  13. 13.
    Jaeger RE, Egerton L. 1962. Hot pressing of potassium-sodium niobates. J. Am. Ceram. Soc. 45:5209–13
    [Google Scholar]
  14. 14.
    Agrawal D. 2006. Microwave sintering of ceramics, composites, and metallic materials, and melting of glasses. Trans. Indian Ceram. Soc. 65:3129–44
    [Google Scholar]
  15. 15.
    Brosnan KH, Messing GL, Agrawal DK 2003. Microwave sintering of alumina at 2.45 GHz. J. Am. Ceram. Soc. 86:81307–12
    [Google Scholar]
  16. 16.
    Heuguet R, Marinel S, Thuault A, Badev A 2013. Effects of the susceptor dielectric properties on the microwave sintering of alumina. J. Am. Ceram. Soc. 96:123728–36
    [Google Scholar]
  17. 17.
    Breval E, Cheng JP, Agrawal DK, Gigl P, Dennis M et al. 2005. Comparison between microwave and conventional sintering of WC/Co composites. Mater. Sci. Eng. A 391:285–95
    [Google Scholar]
  18. 18.
    Shen Z, Johnsson M, Zhao Z, Nygren M 2002. Spark plasma sintering of alumina. J. Am. Ceram. Soc. 85:81921–27
    [Google Scholar]
  19. 19.
    Manière C, Durand L, Chevallier G, Estournès C 2018. A spark plasma sintering densification modeling approach: from polymer, metals to ceramics. J. Mater. Sci. 53:107869–76
    [Google Scholar]
  20. 20.
    Gonzalez-Julian J, Neuhaus K, Bernemann M, Pereira da Silva J, Laptev A et al. 2018. Unveiling the mechanisms of cold sintering of ZnO at 250°C by varying applied stress and characterizing grain boundaries by Kelvin Probe Force Microscopy. Acta Mater 144:116–28
    [Google Scholar]
  21. 21.
    Herisson de Beauvoir T, Sangregorio A, Cornu I, Elissalde C, Josse M 2018. Cool-SPS: an opportunity for low temperature sintering of thermodynamically fragile materials. J. Mater. Chem. C 6:92229–33
    [Google Scholar]
  22. 22.
    Herisson de Beauvoir T, Molinari F, Chung-Seu UC, Michau D, Denux D, Josse M 2018. Densification of MnSO4 ceramics by Cool-SPS: evidences for a complex sintering mechanism and magnetoelectric coupling. J. Eur. Ceram. Soc. 38:113867–74
    [Google Scholar]
  23. 23.
    Cologna M, Rashkova B, Raj R 2010. Flash sintering of nanograin zirconia in <5 s at 850°C. J. Am. Ceram. Soc. 93:113556–59
    [Google Scholar]
  24. 24.
    Cologna M, Francis JSC, Raj R 2011. Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. J. Eur. Ceram. Soc. 31:152827–37
    [Google Scholar]
  25. 25.
    Yanagisawa K, Nishioka M, Ioku K, Yamasaki N 1993. Densification of silica gels by hydrothermal hot-pressing. J. Mater. Sci. Lett. 12:1073–75
    [Google Scholar]
  26. 26.
    Yamasaki N, Kai T, Nishioka M, Yanagisawa K, Ioku K 1990. Porous hydroxyapatite ceramics prepared by hydrothermal hot-pressing. J. Mater. Sci. Lett. 9:1150–51
    [Google Scholar]
  27. 27.
    Yanagisawa K, Ioku K, Yamasaki N 1997. Formation of anatase porous ceramics by hydrothermal hot-pressing of amorphous titania spheres. J. Am. Ceram. Soc. 80:51303–6
    [Google Scholar]
  28. 28.
    Yamasaki N, Weiping T, Jiajun K 1992. Low-temperature sintering of calcium carbonate by a hydrothermal hot-pressing technique. J. Mater. Sci. Lett. 11:934–36
    [Google Scholar]
  29. 29.
    Ndayishimiye A, Largeteau A, Mornet S, Duttine M, Dourges M-A et al. 2018. Hydrothermal sintering for densification of silica. Evidence for the role of water. J. Eur. Ceram. Soc. 38:1860–70
    [Google Scholar]
  30. 30.
    Ndayishimiye A, Largeteau A, Prakasam M, Pechev S, Dourges MA, Goglio G 2018. Low temperature hydrothermal sintering process for the quasi-complete densification of nanometric α-quartz. Scr. Mater. 145:118–21
    [Google Scholar]
  31. 31.
    Brook RJ. 1982. Fabrication principles for the production of ceramics with superior mechanical properties. Proc. Br. Ceram. Soc. 32:7–15
    [Google Scholar]
  32. 32.
    Harmer MP, Brook RJ. 1981. Fast firing—microstructural benefits. Trans. J. Br. Ceram. Soc. 80:5147–48
    [Google Scholar]
  33. 33.
    Garcia DE, Klein AN, Hotza D 2012. Advanced ceramics with dense and fine-grained microstructures through fast firing. Rev. Adv. Mater. Sci. 30:273–81
    [Google Scholar]
  34. 34.
    Polotai AV, Fujii I, Shay DP, Yang G-Y, Dickey EC, Randall CA 2008. Effect of heating rates during sintering on the electrical properties of ultra-thin Ni-BaTiO3 multilayer ceramic capacitors. J. Am. Ceram. Soc. 91:82540–44
    [Google Scholar]
  35. 35.
    Polotai AV, Yang GY, Dickey EC, Randall CA 2007. Utilization of multiple-stage sintering to control Ni electrode continuity in ultrathin Ni-BaTiO3 multilayer capacitors. J. Am. Ceram. Soc. 90:123811–17
    [Google Scholar]
  36. 36.
    Xue LA, Chen Y, Gilbart E, Brook RJ 1990. The kinetics of hot-pressing for undoped and donor-doped BaTiO3 ceramics. J. Mater. Sci. 25:1423–28
    [Google Scholar]
  37. 37.
    Martirena H, Burfoot J. 1974. Grain-size and pressure effects on dielectric and piezoelectric properties of hot-pressed PZT-5. Ferroelectrics 7:1–4151–52
    [Google Scholar]
  38. 38.
    Katz JD. 1992. Microwave sintering. Annu. Rev. Mater. Sci. 22:153–70
    [Google Scholar]
  39. 39.
    McNeal MP, Jang SJ, Newnham RE 1998. The effect of grain and particle size on the microwave properties of barium titanate (BaTiO3). J. Appl. Phys. 83:63288–97
    [Google Scholar]
  40. 40.
    Takeuchi T, Suyama Y, Sinclair DC, Kageyama H 2001. Spark-plasma-sintering of fine BaTiO3 powder prepared by a sol-crystal method. J. Mater. Sci. 36:2329–34
    [Google Scholar]
  41. 41.
    Baraki R, Schwarz S, Guillon O 2012. Effect of electrical field/current on sintering of fully stabilized zirconia. J. Am. Ceram. Soc. 95:175–78
    [Google Scholar]
  42. 42.
    Olevsky EA, Rolfing SM, Maximenko AL 2016. Flash (ultra-rapid) spark-plasma sintering of silicon carbide. Sci. Rep. 6:133408
    [Google Scholar]
  43. 43.
    Omori M. 2000. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng. A 287:183–88
    [Google Scholar]
  44. 44.
    Karakuscu A, Cologna M, Yarotski D, Won J, Francis JSC et al. 2012. Defect structure of flash-sintered strontium titanate. J. Am. Ceram. Soc. 95:82531–36
    [Google Scholar]
  45. 45.
    Yanagisawa K, Ioku K, Yamasaki N 1995. Post-sintering of anatase compact prepared by hydrothermal hot-pressing. J. Mater. Sci. Lett. 14:3161–63
    [Google Scholar]
  46. 46.
    Somiya S. 1984. Hydrothermal preparation and sintering of fine ceramic powders. Mater. Res. Soc. Symp. Proc. 24:255–71
    [Google Scholar]
  47. 47.
    Vakifahmetoglu C, Anger JF, Atakan V, Quinn S, Gupta S et al. 2016. Reactive hydrothermal liquid-phase densification (rHLPD) of ceramics—a study of the BaTiO3[TiO2] composite system. J. Am. Ceram. Soc. 99:123893–901
    [Google Scholar]
  48. 48.
    Polotai A, Breece K, Dickey E, Randall C, Ragulya A 2005. A novel approach to sintering nanocrystalline barium titanate ceramics. J. Am. Ceram. Soc. 88:113008–12
    [Google Scholar]
  49. 49.
    Guo J, Guo H, Baker AL, Lanagan MT, Kupp ER et al. 2016. Cold sintering: a paradigm shift for processing and integration of ceramics. Angew. Chem. Int. Ed. 55:3811457–61
    [Google Scholar]
  50. 50.
    Maria JP, Kang X, Floyd RD, Dickey EC, Guo H et al. 2017. Cold sintering: current status and prospects. J. Mater. Res. 32:173205–18
    [Google Scholar]
  51. 51.
    Guo J, Baker AL, Guo H, Lanagan M, Randall CA 2017. Cold sintering process: a new era for ceramic packaging and microwave device development. J. Am. Ceram. Soc. 100:2669–77
    [Google Scholar]
  52. 52.
    Induja IJ, Sebastian MT. 2018. Microwave dielectric properties of cold sintered Al2O3-NaCl composite. Mater. Lett. 211:55–57
    [Google Scholar]
  53. 53.
    Wang D, Zhou D, Zhang S, Vardaxoglou Y, Whittow WG et al. 2018. Cold-sintered temperature stable Na0.5Bi0.5MoO4-Li2MoO4 microwave composite ceramics. ACS Sustain. Chem. Eng. 6:2438–44
    [Google Scholar]
  54. 54.
    Hong WB, Li L, Cao M, Chen XM 2018. Plastic deformation and effects of water in room-temperature cold sintering of NaCl microwave dielectric ceramics. J. Am. Ceram. Soc. 101:94038–43
    [Google Scholar]
  55. 55.
    Kahari H, Teirikangas M, Juuti J, Jantunen H 2016. Room-temperature fabrication of microwave dielectric Li2MoO4-TiO2 composite ceramics. Ceram. Int. 42:911442–46
    [Google Scholar]
  56. 56.
    Kahari H, Teirikangas M, Juuti J, Jantunen H 2014. Dielectric properties of lithium molybdate ceramic fabricated at room temperature. J. Am. Ceram. Soc. 97:113378–79
    [Google Scholar]
  57. 57.
    Guo H, Baker A, Guo J, Randall CA 2016. Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics. J. Am. Ceram. Soc. 99:113489–507
    [Google Scholar]
  58. 58.
    Guo H, Baker A, Guo J, Randall CA 2016. Protocol for ultralow-temperature ceramic sintering: an integration of nanotechnology and the cold sintering process. ACS Nano 10:1110606–14
    [Google Scholar]
  59. 59.
    Wang D, Guo H, Morandi CS, Randall CA, Trolier-McKinstry S 2018. Cold sintering and electrical characterization of lead zirconate titanate piezoelectric ceramics. APL Mater 6:016101
    [Google Scholar]
  60. 60.
    Bouville F, Studart AR. 2017. Geologically-inspired strong bulk ceramics made with water at room temperature. Nat. Commun. 8:14655
    [Google Scholar]
  61. 61.
    Seo JH, Guo J, Guo H, Verlinde K, Heidary DSB et al. 2017. Cold sintering of a Li-ion cathode: LiFePO4-composite with high volumetric capacity. Ceram. Int. 43:1715370–74
    [Google Scholar]
  62. 62.
    Berbano SS, Guo J, Guo H, Lanagan MT, Randall CA 2017. Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte. J. Am. Ceram. Soc. 100:52123–35
    [Google Scholar]
  63. 63.
    Leng H, Huang J, Nie J, Luo J 2018. Cold sintering and ionic conductivities of Na3.256Mg0.128Zr1.872Si2PO12 solid electrolytes. J. Power Sources 391:4170–79
    [Google Scholar]
  64. 64.
    Funahashi S, Guo J, Guo H, Wang K, Baker AL et al. 2017. Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics. J. Am. Ceram. Soc. 100:2546–53
    [Google Scholar]
  65. 65.
    Guo J, Guo H, Heidary DSB, Funahashi S, Randall CA 2017. Semiconducting properties of cold sintered V2O5 ceramics and Co-sintered V2O5-PEDOT:PSS composites. J. Eur. Ceram. Soc. 37:41529–34
    [Google Scholar]
  66. 66.
    Chen WT, Gurdal AE, Tuncdemir S, Guo J, Guo H, Randall CA 2017. Considering the possibility of bonding utilizing cold sintering for ceramic adhesives. J. Am. Ceram. Soc. 100:125421–32
    [Google Scholar]
  67. 67.
    Guo H, Bayer TJM, Guo J, Baker A, Randall CA 2017. Current progress and perspectives of applying cold sintering process to ZrO2-based ceramics. Scr. Mater. 136:141–48
    [Google Scholar]
  68. 68.
    Vaataja M, Kahari H, Juuti J, Jantunen H 2017. Li2MoO4-based composite ceramics fabricated from temperature- and atmosphere-sensitive MnZn ferrite at room temperature. J. Am. Ceram. Soc. 100:83626–35
    [Google Scholar]
  69. 69.
    Liu Y, Sun Q, Wang D, Adair K, Liang J, Sun X 2018. Development of the cold sintering process and its application in solid-state lithium batteries. J. Power Sources 393:3193–203
    [Google Scholar]
  70. 70.
    Kingery WD. 1959. Densification during sintering in the presence of a liquid phase. I. Theory. J. Appl. Phys. 30:3301–6
    [Google Scholar]
  71. 71.
    Kingery WD, Woulbroun JM, Charvat FR 1959. Densification during sintering in the presence of a liquid phase. II. Experimental. J. Appl. Phys. 30:3307–10
    [Google Scholar]
  72. 72.
    Kang X, Floyd R, Lowum S, Cabral M, Dickey E, Maria J-P 2019. Mechanism studies of hydrothermal cold sintering of zinc oxide at near room temperature. J. Am. Ceram. Soc In press. https://doi.org/10.1111/jace.16340
    [Crossref] [Google Scholar]
  73. 73.
    Du J, Rimsza JM. 2017. Atomistic computer simulations of water interactions and dissolution of inorganic glasses. NPJ Mater. Degrad. 1:116
    [Google Scholar]
  74. 74.
    Manzano H, Zhang W, Raju M, Dolado JS, López-Arbeloa I, Van Duin ACT 2018. Benchmark of ReaxFF force field for subcritical and supercritical water. J. Chem. Phys. 148:23234503
    [Google Scholar]
  75. 75.
    Kingery WD, Woulbroun JM, Charvat FR 1963. Effects of applied pressure on densification during sintering in the presence of a liquid phase. J. Am. Ceram. Soc. 46:8391–95
    [Google Scholar]
  76. 76.
    Coble RL. 1970. Diffusion models for hot pressing with surface energy and pressure effects as driving forces. J. Appl. Phys. 41:124798–807
    [Google Scholar]
  77. 77.
    Renard F, Bernard D, Thibault X, Boller E 2004. Synchrotron 3D microtomography of halite aggregates during experimental pressure solution creep and evolution of the permeability. Geophys. Res. Lett. 31:7L07607
    [Google Scholar]
  78. 78.
    Guo J, Pfeiffenberger N, Beese A, Rhoades AM, Gao L et al. 2018. Cold sintering Na2Mo2O7 ceramic with polyetherimide (PEI) polymer to realize high-performance composites and integrated multilayer circuits. ACS Appl. Nano Mater. 1:83837–44
    [Google Scholar]
  79. 79.
    Guo J, Berbano SS, Guo H, Baker AL, Lanagan MT, Randall CA 2016. Cold sintering process of composites: bridging the processing temperature gap of ceramic and polymer materials. Adv. Funct. Mater. 26:397115–21
    [Google Scholar]
  80. 80.
    Shin YK, Sengul MY, Jonayat A, Lee W, Gomez E et al. 2018. Development of a ReaxFF reactive force field for lithium ion conducting solid electrolyte Li1+xAlxTi2−x(PO4)3 (LATP). Phys. Chem. Chem Phys. 20:3422134–47
    [Google Scholar]
  81. 81.
    Clarke DR. 1987. On the equilibrium thickness of intergranular glass phases in ceramic materials. J. Am. Ceram. Soc. 70:115–22
    [Google Scholar]
  82. 82.
    Volz E, Roosen A, Wang S-C, Wei W-CJ 2004. Formation of intergranular amorphous films during the microstructural development of liquid phase sintered silicon carbide ceramics. J. Mater. Sci. 39:134095–101
    [Google Scholar]
  83. 83.
    Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP 2014. Grain boundary complexions. Acta Mater 62:11–48
    [Google Scholar]
  84. 84.
    Guo J, Zhao X, Herisson de Beauvoir T, Seo J-H, Berbano SS et al. 2018. Recent progress in applications of the cold sintering process for ceramic-polymer composites. Adv. Funct. Mater. 28:391801724
    [Google Scholar]
  85. 85.
    Zhao X, Guo J, Wang K, Herisson de Beauvoir T, Li B, Randall CA 2018. Introducing a ZnO-PTFE (polymer) nanocomposite varistor via the cold sintering process. Adv. Eng. Mater. 20:1700902
    [Google Scholar]
  86. 86.
    Zhao Y, Berbano SS, Gao L, Wang K, Guo J et al. 2019. Cold-sintered V2O5-PEDOT:PSS nanocomposites for negative temperature coefficient materials. J. Eur. Ceram. Soc 39(4):1257–62
    [Google Scholar]
  87. 87.
    Seo JH, Verlinde K, Guo J, Heidary DSB, Rajagopalan R et al. 2018. Cold sintering approach to fabrication of high rate performance binderless LiFePO4 cathode with high volumetric capacity. Scr. Mater. 146:267–71
    [Google Scholar]
  88. 88.
    Guo J, Legum B, Anasori B, Wang K, Lelyukh P et al. 2018. Cold sintered ceramic nanocomposites of 2D MXene and zinc oxide. Adv. Mater. 30:321801846
    [Google Scholar]
  89. 89.
    Heidary DSB, Guo J, Seo JH, Guo H, Rajagopalan R, Randall CA 2018. Microstructures and electrical properties of V2O5 and carbon-nanofiber composites fabricated by cold sintering process. Jpn. J. Appl. Phys. 57:4025702
    [Google Scholar]
  90. 90.
    Nie J, Zhang Y, Chan JM, Huang R, Luo J 2018. Water-assisted flash sintering: flashing ZnO at room temperature to achieve ∼98% density in seconds. Scr. Mater. 142:79–82
    [Google Scholar]
  91. 91.
    Castro RHR, Gouvêa D. 2016. Sintering and nanostability: the thermodynamic perspective. J. Am. Ceram. Soc. 99:41105–21
    [Google Scholar]
  92. 92.
    Tikare V, Braginsky M, Olevsky EA 2003. Numerical simulation of solid-state sintering. I. Sintering of three particles. J. Am. Ceram. Soc. 86:149–53
    [Google Scholar]
  93. 93.
    Sengul MY, Randall CA, Van Duin A 2018. ReaxFF molecular dynamics simulation of intermolecular structure formation in acetic acid–water mixtures at elevated temperatures and pressures. J. Chem. Phys. 148:16164506
    [Google Scholar]
  94. 94.
    Sengul MY, Randall CA, Van Duin A 2018. ReaxFF molecular dynamics study on the influence of temperature on adsorption, desorption and decomposition at the acetic acid/water/ZnO(100) interface enabling cold sintering. ACS Appl. Mater. Interfaces 10:4337717–24
    [Google Scholar]
  95. 95.
    Randall CA, Guo J, Baker A, Lanagan M, Guo H 2017. Cold sintering ceramics and composites US Patent Appl. 15/277,553
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070218-010041
Loading
/content/journals/10.1146/annurev-matsci-070218-010041
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error