1932

Abstract

Circular economy's (CE) noble aims maximize resource efficiency (RE) by, for example, extending product life cycles and using wastes as resources. Modern society's vast and increasing amounts of waste and consumer goods, their complexity, and functional material combinations are challenging the viability of the CE despite various alternative business models promising otherwise. The metallurgical processing of CE-enabling technologies requires a sophisticated and agile metallurgical infrastructure. The challenges of reaching a CE are highlighted in terms of, e.g., thermodynamics, transfer processes, technology platforms, digitalization of the processes of the CE stakeholders, and design for recycling (DfR) based on a product (mineral)-centric approach, highlighting the limitations of material-centric considerations. Integrating product-centric considerations into the water, energy, transport, heavy industry, and other smart grid systems will maximize the RE of future smart sustainable cities, providing the fundamental detail for realizing and innovating the United Nation's Sustainability Development Goals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070218-010057
2019-07-01
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/matsci/49/1/annurev-matsci-070218-010057.html?itemId=/content/journals/10.1146/annurev-matsci-070218-010057&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Beaulieu L, Van Durme G, Arpin M-L 2015.Circular economy: a critical literature review of concepts Rep., CIRAIG. http://www.ciraig.org/pdf/CIRAIG_Circular_Economy_Literature_Review_Oct2015.pdf
  2. 2.
    Jawahir IS, Bradley R. 2016. Technological elements of circular economy and the principles of 6R-based closed-loop material flow in sustainable manufacturing. Proc. CIRP 40:103–8
    [Google Scholar]
  3. 3.
    Lansink A. 2017. Challenging Changes: Connecting Waste Hierarchy and Circular Economy Nijmegen, Neth: LEA
    [Google Scholar]
  4. 4.
    Blomsma F, Brennan G. 2017. The emergence of circular economy. a new framing around prolonging resource productivity. J. Ind. Ecol. 21:3603–14
    [Google Scholar]
  5. 5.
    Homrich AS, Galvão G, Abadia LG, Carvalho MM 2018. The circular economy umbrella: trends and gaps on integrating pathways. J. Clean. Prod. 175:525–43
    [Google Scholar]
  6. 6.
    Lieder M, Rashid A. 2016. Towards circular economy implementation: a comprehensive review in context of manufacturing industry. J. Clean. Prod. 115:36–51
    [Google Scholar]
  7. 7.
    Nanz P, Renn O, Lawrence M 2017. Der transdisziplinäre Ansatz des Institute for Advanced Sustainability Studies (IASS): Konzept und Umsetzung. GAIA Ecol. Perspect. Sci. Soc. 26:3293–96
    [Google Scholar]
  8. 8.
    Ghisellini P, Cialani C, Ulgiati S 2016. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 114:11–32
    [Google Scholar]
  9. 9.
    Jackson M, Lederwasch A, Giurco D 2014. Transitions in theory and practice. Manag. Met. Circ. Econ. Resourc. 3:3516–43
    [Google Scholar]
  10. 10.
    Ekvall T, Andrae A. 2006. Attributional and consequential environmental assessment of the shift to lead-free solders. Int. J. Life Cycle Assess. 11:5344–53
    [Google Scholar]
  11. 11.
    Kirchherr J, Reike D, Hekkert M 2017. Conceptualizing the circular economy: an analysis of 114 definitions. Resour. Conserv. Recycl. 127:221–32
    [Google Scholar]
  12. 12.
    Reuter MA, Hudson C, Van Schaik A, Heiskanen K et al. 2013. Metal recycling: opportunities, limits, infrastructure Rep., U. N. Envir. Progr. Int. Resour. Panel. http://www.resourcepanel.org/reports/metal-recycling. Accessed Sept. 21, 2018
    [Google Scholar]
  13. 13.
    EU 2017. Critical raw materials List, EU. http://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en. Accessed July 1, 2018
    [Google Scholar]
  14. 14.
    Frenzel M, Kullik J, Reuter MA, Gutzmer J 2017. Raw material ‘criticality'—sense or nonsense?. J. Phys. D Appl. Phys. 50:12123002
    [Google Scholar]
  15. 15.
    Bourguignon D. 2018. Circular economy package: four legislative proposals on waste Briefing for European Parliamentary Research Service. http://www.europarl.europa.eu/RegData/etudes/BRIE/2018/614766/EPRS_BRI(2018)614766_EN.pdf. Accessed Sept. 21, 2018
    [Google Scholar]
  16. 16.
    Reuter MA. 2016. Digitalizing the circular economy. Metall. Mater. Trans. B 47:63194–220
    [Google Scholar]
  17. 17.
    Van Schalkwyk RF, Reuter MA, Gutzmer J, Stelter M 2018. Challenges of digitalizing the circular economy: assessment of the state-of-the-art of metallurgical carrier metal platform for lead and its associated technology elements. J. Clean. Prod. 186:585–601
    [Google Scholar]
  18. 18.
    Van Schaik A, Reuter MA 2014. Material-centric (aluminium and copper) and product-centric (cars, WEEE, TV, lamps, batteries, catalysts) recycling and DfR rules. Handbook of Recycling E Worrell, MA Reuter 307–78 Waltham, MA: Elsevier
    [Google Scholar]
  19. 19.
    Outotec 1974–2018. HSC chemistry Software, HSC Sim 9:7 https://www.outotec.com/products/digital-solutions/hsc-chemistry/. Accessed Sept. 21, 2018.
    [Google Scholar]
  20. 20.
    Thermfact/CRCT, GTT-Technologies 1976–2018. FactSage 7.2 Software. https://gtt-technologies.de/factsage. Accessed Sept. 21, 2018.
    [Google Scholar]
  21. 21.
    Van Schaik A, Reuter MA 2017. Fairphone's report on recyclability: Does modularity contribute to better recovery of materials? Rep. for Fairphone. https://www.fairphone.com/wp-content/uploads/2017/02/FairphoneRecyclabilityReport022017.pdf. Accessed Sept. 21, 2018
    [Google Scholar]
  22. 22.
    Fairphone 2017. Examining the environmental footprint of electronics recycling Blog post, Fairphone. https://www.fairphone.com/en/2017/08/08/examining-the-environmental-footprint-of-electronics-recycling/. Accessed Nov. 20, 2018
    [Google Scholar]
  23. 23.
    Reuter MA, Van Schaik A, Ballester M 2018. Limits of the circular economy: Fairphone modular design pushing the limits. World Metall 71:268–79
    [Google Scholar]
  24. 24.
    Greenpeace 2017. Guide to greener electronics Rep. http://www.greenpeace.org/usa/wp-content/uploads/2017/10/Guide-to-Greener-Electronics-2017.pdf. Accessed Sept. 21, 2018
    [Google Scholar]
  25. 25.
    Amini SH, Remmerswaal JAM, Castro MB, Reuter MA 2007. Quantifying the quality loss and resource efficiency of recycling by means of exergy analysis. J. Clean. Prod. 15:10907–13
    [Google Scholar]
  26. 26.
    Ignatenko O, Van Schaik A, Reuter MA 2007. Exergy as a tool for evaluation of the resource efficiency of recycling systems. Miner. Eng. 20:862–74
    [Google Scholar]
  27. 27.
    Abadías Llamas A, Valero Delgado A, Valero Capilla A, Torres Cuadra C, Hultgren M et al. 2018. Simulation-based exergy, thermo-economic and environmental footprint analysis of primary copper production. Miner. Eng 131:51–65
    [Google Scholar]
  28. 28.
    Reck BK, Graedel TE. 2012. Challenges in metal recycling. Science 337:6095690–95
    [Google Scholar]
  29. 29.
    Reuter MA, Kojo I. 2012. Challenges of metals recycling. Materia 2:/ 2012.50–57
    [Google Scholar]
  30. 30.
    Reuter MA, Van Schaik A 2012. Opportunities and limits of recycling: a dynamic-model-based analysis. MRS Bull 37:4339–47
    [Google Scholar]
  31. 31.
    Olivetti EA, Cullen JM. 2018. Toward a sustainable materials system. Science 360:63961396–98
    [Google Scholar]
  32. 32.
    Rammelt C, Crisp P. 2014. A systems and thermodynamics perspective on technology in the circular economy. Real World Econ. Rev. 68:25–40
    [Google Scholar]
  33. 33.
    Fellner J, Lederer J, Scharff C, Laner D 2017. Present potentials and limitations of a circular economy with respect to primary raw material demand. J. Ind. Ecol. 21:3494–96
    [Google Scholar]
  34. 34.
    Van Schaik A, Reuter MA 2016. Recycling indices visualizing the performance of the circular economy. World Metall 69:4201–16
    [Google Scholar]
  35. 35.
    iFixit 2018. Laptop repairability scores https://www.ifixit.com/laptop-repairability. Accessed Sept. 21, 2018
    [Google Scholar]
  36. 36.
    Van Schaik A, Reuter MA, Dalmijn WL, Boin U 2002. Dynamic modelling and optimisation of the resource cycle of passenger vehicles. Miner. Eng. 15:111001–16
    [Google Scholar]
  37. 37.
    Van Schaik A, Reuter MA 2012. Shredding, sorting and recovery of metals from WEEE: linking design to resource efficiency. Waste Electrical and Electronic Equipment (WEEE) Handbook V Goodship, A Stevels 163–211 Cambridge, UK: Woodhead
    [Google Scholar]
  38. 38.
    Valero A, Lozano M, Munoz M 1986. A general theory of exergy saving. I. On the exergetic cost. Am. Soc. Mech. Eng. Adv. Energy Syst. Div. 2:1–8
    [Google Scholar]
  39. 39.
    Valero A, Usón S, Torres C, Valero A, Agudelo A, Costa J 2013. Thermoeconomic tools for the analysis of eco-industrial parks. Energy 62:62–72
    [Google Scholar]
  40. 40.
    Verhoef EV, Dijkema GPJ, Reuter MA 2004. Process knowledge, system dynamics, and metal ecology. J. Ind. Ecol. 8:1–223–43
    [Google Scholar]
  41. 41.
    Nakajima K, Takeda O, Miki T, Matsubae K, Nagasaka T 2011. Thermodynamic analysis for the controllability of elements in the recycling process of metals. Environ. Sci. Technol. 45:114929–36
    [Google Scholar]
  42. 42.
    Hiraki T, Takeda O, Nakajima K, Matsubae K, Nakamura S, Nagasaka T 2011. Thermodynamic criteria for the removal of impurities from end-of-life magnesium alloys by evaporation and flux treatment. Sci. Technol. Adv. Mater. 12:035003
    [Google Scholar]
  43. 43.
    Reuter MA, Van Schaik A 2015. Product-centric simulation-based design for recycling: case of LED lamp recycling. J. Sustain. Metall. 1:14–28
    [Google Scholar]
  44. 44.
    Lazarevic D, Valve H. 2017. Narrating expectations for the circular economy: towards a common and contested European transition. Energy Res. Soc. Sci. 31:60–69
    [Google Scholar]
  45. 45.
    Goldberg T. 2017. What about the circularity of hazardous materials?. J. Ind. Ecol. 21:3491–93
    [Google Scholar]
  46. 46.
    Accenture 2015. Circular advantage: innovative business models and technologies to create value in a world without limits to growth Rep. https://www.accenture.com/t20150523T053139__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Strategy_6/Accenture-Circular-Advantage-Innovative-Business-Models-Technologies-Value-Growth.pdf. Accessed Sept. 21, 2018
    [Google Scholar]
  47. 47.
    Clift R. 2017. Why chemical engineers—not just economists—are key to a circular future GreenBiz, June 23 https://www.greenbiz.com/article/why-chemists-not-just-economists-are-key-circular-future. Accessed Sept. 21, 2018
    [Google Scholar]
  48. 48.
    U. N. Dep. Econ. Soc. Aff. Popul. Div 2017. World population prospects: the 2017 revision, key findings and advance tables Work. Pap. ESA/P/WP/248
    [Google Scholar]
  49. 49.
    Peattie K, Crane A. 2005. Green marketing: legend, myth, farce or prophesy?. Qual. Mark. Res. 8:4357–70
    [Google Scholar]
  50. 50.
    Seuring S, Müller M. 2008. From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 16:151699–710
    [Google Scholar]
  51. 51.
    Srivastava SK. 2007. Green supply-chain management: a state-of-the-art literature review. Int. J. Manag. Rev. 9:153–80
    [Google Scholar]
  52. 52.
    Young W, Hwang K, McDonald S, Oates CJ 2010. Sustainable consumption: green consumer behaviour when purchasing products. Sustain. Dev. 18:120–31
    [Google Scholar]
  53. 53.
    Cleveland M, Kalamas M, Laroche M 2005. Shades of green: linking environmental locus of control and pro‐environmental behaviors. J. Consum. Mark. 22:4198–212
    [Google Scholar]
  54. 54.
    Kalliath T, Brough P, O'Driscoll MP, Manimala MJ, Siu O-L, Parker SK 2014. Organisational Behaviour: A Psychological Perspective for the Asia-Pacific North Ryde, Aust: McGraw-Hill Educ. , 2nd ed..
    [Google Scholar]
  55. 55.
    Geyer R, Kuczenski B, Zink T, Henderson A 2015. Common misconceptions about recycling. J. Ind. Ecol. 20:51010–17
    [Google Scholar]
  56. 56.
    Schouwstra RP, Kinloch ED, Lee CA 2000. A short geological review of the Bushveld Complex. Platin. Met. Rev. 44:33–39
    [Google Scholar]
  57. 57.
    Cucchiella F, D'Adamo I, Lenny Koh SC, Rosa P 2015. Recycling of WEEEs: an economic assessment of present and future e-waste streams. Renew. Sustain. Energy Rev. 51:263–72
    [Google Scholar]
  58. 58.
    Van Schaik A, Reuter MA 2014. Product centric simulation based design for recycling (DfR) and design for resource efficiency (DfRE): 10 fundamental rules & general guidelines for design for recycling & resource efficiency Rep. for NVMP/Wecycle. https://www.nvmp.nl/uploads/pdf/research/MARAS_Design%20for%20Recycling%20E-waste_FINAL%20REPORT.pdf. Accessed Sept. 21, 2018
    [Google Scholar]
  59. 59.
    Bollinger LA, Davis C, Nikolić I, Dijkema GPJ 2012. Modeling metal flow systems. J. Ind. Ecol. 16:2176–90
    [Google Scholar]
  60. 60.
    Reuter MA. 1998. The simulation of industrial ecosystems. Miner. Eng. 11:10891–918
    [Google Scholar]
  61. 61.
    Castro B, Remmerswal JAM, Boin U, Reuter MA 2004. A thermodynamic approach to the compatibility of materials combinations for recycling. Resour. Conserv. Recycl. 43:11–19
    [Google Scholar]
  62. 62.
    Reuter MA, van Schaik A, Gediga J 2015. Simulation-based design for resource efficiency of metal production and recycling systems: cases—copper production and recycling, e-waste (LED lamps) and nickel pig iron. Int. J. Life Cycle Assess. 20:5671–93
    [Google Scholar]
  63. 63.
    Fandrich R, Moeller K. 2007. Modern SEM-based mineral liberation analysis. Int. J. Miner. Proc. 84:1–4310–20
    [Google Scholar]
  64. 64.
    Rincon J, Gaydardzhiev S, Stamenov L 2019. Coupling comminution indexes and mineralogical features as an approach to a geometallurgical characterization of a copper ore. Miner. Eng. 130:57–66
    [Google Scholar]
  65. 65.
    Huisman J, Leroy P, Tertre F, Ljunggren Söderman M, Chancerel P et al. 2017. Prospecting secondary raw materials in the urban mine and mining wastes Final Rep., ProSUM Dec. 21 Brussels:
    [Google Scholar]
  66. 66.
    Rechberger H, Brunner PH. 2002. A new, entropy based method to support waste and resource management decisions. Environ. Sci. Technol. 36:809–16
    [Google Scholar]
  67. 67.
    Gutowski TG, Sekulic DP. 2011. Thermodynamic analysis of resources used in manufacturing processes. Thermodynamics and the Destruction of Resources BR Bakshi, TG Gutowski, DP Sekulic 163–89 New York: Cambridge Univ. Press
    [Google Scholar]
  68. 68.
    U. N 2018. The Sustainable Development Goals report 2018 https://unstats.un.org/sdgs/files/report/2018/TheSustainableDevelopmentGoalsReport2018-EN.pdf. Accessed Sept. 21, 2018
    [Google Scholar]
  69. 69.
    World Econ. Forum 2018. Circular economy in cities: evolving the model for a sustainable urban future White Pap., World Econ. Forum, Cologny/Geneva, Switz. http://www3.weforum.org/docs/White_paper_Circular_Economy_in_Cities_report_2018.pdf. Accessed Sept. 21, 2018
    [Google Scholar]
  70. 70.
    European Institute of Innovation and Technology RawMaterials 2019. Lighthouses https://eitrawmaterials.eu/lighthouses/. Accessed April 3, 2019
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070218-010057
Loading
/content/journals/10.1146/annurev-matsci-070218-010057
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error