1932

Abstract

Reducing the weight of automobiles is a major contributor to increased fuel economy. The baseline materials for vehicle construction, low-carbon steel and cast iron, are being replaced by materials with higher specific strength and stiffness: advanced high-strength steels, aluminum, magnesium, and polymer composites. The key challenge is to reduce the cost of manufacturing structures with these new materials. Maximizing the weight reduction requires optimized designs utilizing multimaterials in various forms. This use of mixed materials presents additional challenges in joining and preventing galvanic corrosion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070218-010134
2019-07-01
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/matsci/49/1/annurev-matsci-070218-010134.html?itemId=/content/journals/10.1146/annurev-matsci-070218-010134&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    US Natl. Res. Counc 2003. Materials Research to Meet 21st Century Defense Needs Washington, DC: Natl. Acad. Press
    [Google Scholar]
  2. 2.
    Roeth M. 2015. Confidence report: lightweighting Rep., North American Council for Freight Efficiency. https://nacfe.org/technology/lightweighting-2/. Accessed Nov 20: 2017.
    [Google Scholar]
  3. 3.
    Taub AI, Krajewski PE, Luo AA, Owens JN 2007. The evolution of technology for materials processing over the last 50 years: the automotive example. JOM 59:248–57
    [Google Scholar]
  4. 4.
    Schutte C, Joost WJ. 2014. Lightweight materials for cars and trucks https://www.energy.gov/eere/vehicles/lightweight-materials-cars-and-trucks
    [Google Scholar]
  5. 5.
    Joost W. 2015. Energy, materials and vehicle weight reduction Rep., US Dep. Energy. http://www.nist.gov/mml/acmd/structural_materials/upload/Joost-W-DOE-VTP-NIST-ASP-AHSS-Workshop-R03.pdf
    [Google Scholar]
  6. 6.
    Picker L. 2017. Vehicle weight and automotive fatalities Digest, NBER. http://www.nber.org/digest/nov11/w17170.html. Accessed Dec 3: 2017.
    [Google Scholar]
  7. 7.
    Plumer B. 2014. Cars in the US are more fuel-efficient than ever. Here are 5 reasons why. Vox Sept. 4. https://www.vox.com/2014/9/4/6107203/cars-in-the-us-are-more-fuel-efficient-than-ever-here-are-5-reasons. Accessed Dec 3: 2017.
    [Google Scholar]
  8. 8.
    US Envir. Prot. Agency (EPA) 2015. Light-duty automotive technology, carbon dioxide emissions, and fuel economy trends: 1975 through 2015 Rep., US EPA
    [Google Scholar]
  9. 9.
    Baron JS, Modi S. 2016. Assessing the fleet-wide material technology and costs to lightweight vehicles Rep., Cent. Automot. Res .
    [Google Scholar]
  10. 10.
    Isenstadt A, German J, Bubna P, Wiseman M, Venkatakrishnan U et al. 2016. Lightweighting technology development and trends in U.S. passenger vehicles. Work. Pap., Int. Counc. Clean Transp .
    [Google Scholar]
  11. 11.
    US EPA 2016. Light-duty vehicle CO2 and fuel economy trends Rep. EPA-420-S-16-001, US EPA
    [Google Scholar]
  12. 12.
    Bullis K. 2013. Automakers shed the pounds to meet fuel efficiency standards. MIT Technol. Rev. Feb. 20
    [Google Scholar]
  13. 13.
    Kunkel GA, Hovanski Y. 2016. From the lab to your driveway: aluminum tailor-welded blanks. Weld. J. 95:836–39
    [Google Scholar]
  14. 14.
    Joost WJ, Krajewski PE. 2017. Towards magnesium alloys for high-volume automotive applications. Scr. Mater. 128:107–12
    [Google Scholar]
  15. 15.
    Winters J. 2014. Light vehicles’ lightweight future. Mech. Eng. CIME Aug. 1. Accessed Nov 28: 2017.
    [Google Scholar]
  16. 16.
    Hartfield-Wünsch SE, Hall JN. 2012. Manufacturing challenges for aluminum sheet in the automotive industry. ICAA13 H Weiland, AD Rollett, WA Cassada 885–90 Cham, Switz: Springer
    [Google Scholar]
  17. 17.
    Xia L. 2016. Multiscale Structural Topology Optimization London: Elsevier
    [Google Scholar]
  18. 18.
    Fiedler K, Rolfe BF, De Souza T 2017. Integrated shape and topology optimization: applications in automotive design and manufacturing. SAE Int. J. Mater. Manuf. 10:3385–94
    [Google Scholar]
  19. 19.
    Keough JR, Hayrynen KL. 2000. Automotive applications of austempered ductile iron (ADI): a critical review. SAE Trans 109:344–54
    [Google Scholar]
  20. 20.
    Horstemeyer MF. 2012. Integrated Computational Materials Engineering (ICME) for Metals: Using Multiscale Modeling to Invigorate Engineering Design with Science Hoboken, NJ: Wiley
    [Google Scholar]
  21. 21.
    Pollock DGB, Tresa M, Allison JE 2008. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security Washington, DC: Natl. Acad. Press
    [Google Scholar]
  22. 22.
    Allison J, Li M, Wolverton C, Su XM 2006. Virtual aluminum castings: an industrial application of ICME. JOM 58:1128–35
    [Google Scholar]
  23. 23.
    Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS 2016. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61:5315–60
    [Google Scholar]
  24. 24.
    Daehn G. 2017. Metamorphic manufacturing Abstract, LIFT. https://lift.technology/pillar/novel-agile-processing/. Accessed Nov 30: 2017.
    [Google Scholar]
  25. 25.
    Allwood JM, Utsunomiya H. 2006. A survey of flexible forming processes in Japan. Int. J. Mach. Tools Manuf. 46:151939–60
    [Google Scholar]
  26. 26.
    Allwood J, Houghton N, Jackson K 2005. The design of an incremental sheet forming machine. Adv. Mater. Res. 6–8:471–78
    [Google Scholar]
  27. 27.
    Cao J, Huang Y, Reddy NV, Malhotra R, Wang Y 2008. Incremental sheet metal forming: advances and challenges. Proceedings of International Conference on Technology of Plasticity (ICTP 2008) Gyeongju, Korea: Korean Soc. Technol. Plastic.
    [Google Scholar]
  28. 28.
    Taub AI, Babu SS. 2018. Opportunities and challenges for introducing new lightweight metals in transportation. Int. J. Powder Metall. 54:227–33
    [Google Scholar]
  29. 29.
    Taub AI, Luo AA. 2015. Advanced lightweight materials and manufacturing processes for automotive applications. MRS Bull 40:121045–54
    [Google Scholar]
  30. 30.
    Skszek T, Conklin J, Zaluzec M, Wagner D 2014. Multi-material lightweight vehicles: Mach-II design Rep. for US Dep. Energy. https://energy.gov/sites/prod/files/2014/07/f17/lm088_skszek_2014_o.pdf. Accessed Dec 1: 2017.
    [Google Scholar]
  31. 31.
    Skszek T. 2015. Demonstration project for a multi-material lightweight prototype vehicle as part of the clean energy dialogue with Canada Final Rep. for US Dep. Energy (award DE-EE0005574)
    [Google Scholar]
  32. 32.
    Henriksson F. 2016. An outlook on multi material body solutions in the automotive industry: possibilities and manufacturing challenges Tech. Pap. 2016-01-1332, SAE
    [Google Scholar]
  33. 33.
    US Dep. Energy 2010. 2010 annual progress report: lightweight material Rep., US Dep. Energy. https://www.energy.gov/sites/prod/files/2014/03/f8/2010_lightweighting_materials.pdf. Accessed Sept 1: 2015.
    [Google Scholar]
  34. 34.
    US EPA 2012. Light-duty vehicle mass reduction and cost analysis—midsize crossover utility vehicle Rep. EPA-420-R-12-026, US EPA. https://nepis.epa.gov/Exe/ZyPDF.cgi/P100EWVL.PDF?Dockey=P100EWVL.PDF
    [Google Scholar]
  35. 35.
    Gehm R. 2016. Multi-material structures move mpg upward. Automot. Eng. 2016. 3:18–21
    [Google Scholar]
  36. 36.
    Singh H. 2012. Mass reduction for light-duty vehicles for model years 2017–2025 Rep. DOT HS 811:666 US Dep. Transp .
    [Google Scholar]
  37. 37.
    US EPA 2015. Mass reduction and cost analysis: light duty pickup model years 2020–2025 Rep. EPA-420-R-15-006, US EPA
    [Google Scholar]
  38. 38.
    Vasalash GS. 2017. Light vehicles and how they got that way. Automotive Design and Production Oct. 11. https://www.adandp.media/articles/light-vehicles-and-how-they-got-that-way
    [Google Scholar]
  39. 39.
    Monaghan M. 2012. Light and mighty. Automot. Eng. 2012:720–24
    [Google Scholar]
  40. 40.
    Steven A. 2015. Mixing metals. Automot. Eng. 2015:27–29
    [Google Scholar]
  41. 41.
    Wagner DA, Zaluzec MJ. 2015. Mixed materials drive lightweight vehicle design. Adv. Mater. Process. 2015:318–23
    [Google Scholar]
  42. 42.
    Meschut G, Janzen V, Olfermann T 2014. Innovative and highly productive joining technologies for multi-material lightweight car body structures. J. Mater. Eng. Perform. 23:51515–23
    [Google Scholar]
  43. 43.
    Ghosh D, Pancholi L, Sathaye A 2014. Forming a strong bond. Automot. Eng. 2014:24–29
    [Google Scholar]
  44. 44.
    Gould JE. 2012. Joining aluminum sheet in the automotive industry—a 30 year history. Weld. J. 91:23–34
    [Google Scholar]
  45. 45.
    WorldAutoSteel 2017. Advanced high-strength steels application guidelines version 6.0 https://www.worldautosteel.org/projects/advanced-high-strength-steel-application-guidelines/. Accessed Oct 2018.
    [Google Scholar]
  46. 46.
    De Moor E, Gibbs PJ, Speer JG, Matlock DK, Schroth JG 2010. Strategies for third-generation advanced high-strength steel development. AIST Trans 7:3133–44
    [Google Scholar]
  47. 47.
    Matlock DK, Speer JG. 2009. Third generation of AHSS: microstructure design concepts. Microstructure and Texture in Steels and Other Materials A Haldar, S Suwas, D Bhattacharjee 185–205 New York: Springer
    [Google Scholar]
  48. 48.
    Matlock DK, Speer JG. 2006. Design considerations for the next generation of advanced high strength steels. Proceedings of the Third International Conference on Advanced Structural Steels HC Lee 774–81 Seoul, Korea: Korean Institute of Metals and Materials
    [Google Scholar]
  49. 49.
    Olson GB. 1984. Transformation plasticity and the stability of plastic flow. Deformation, Processing and Structure G Krauss 391–424 Materials Park, OH: ASM
    [Google Scholar]
  50. 50.
    Matlock DK, Speer JG, De Moor E, Gibbs PJ 2011. TRIP steels—historical perspectives and recent developments. Proceedings of the 1st International Conference on High Manganese Steels, HMnS2011 Seoul, Korea: Yonsei Univ. Press
    [Google Scholar]
  51. 51.
    De Cooman BC. 2004. Structure-properties relationship in TRIP steels containing carbide-free bainite. Curr. Opin. Solid State Mater. Sci. 8:3–4285–303
    [Google Scholar]
  52. 52.
    Sugimoto K, Murata M, Song SM 2010. Formability of A1-Nb bearing ultra high-strength TRIP-aided sheet steels with bainite ferrite and/or martensite matrix. ISIJ Int 50:1162–68
    [Google Scholar]
  53. 53.
    Rana R, De Moor E, Speer JG, Matlock DK 2018. On the importance of adiabatic heating on deformation behavior of medium-manganese sheet steels. JOM 70:5706–13
    [Google Scholar]
  54. 54.
    Lee S, De Cooman BC 2014. Tensile behavior of intercritically annealed 10 pct Mn multi-phase steel. Metall. Mater. Trans. A 45:2709–16
    [Google Scholar]
  55. 55.
    Merwin MJ. 2007. Low-carbon manganese TRIP steels. Mater. Sci. Forum 539–543:4327–32
    [Google Scholar]
  56. 56.
    Merwin MJ. 2007. Hot- and cold-rolled low-carbon manganese TRIPS steels Tech. Pap. 2007-01-0336, SAE
    [Google Scholar]
  57. 57.
    Bhadeshia HKDH. 2010. Nanostructured bainite. Proc. R. Soc. A 466:21133–18
    [Google Scholar]
  58. 58.
    Speer JG, De Moor E, Findley KO, Matlock DK, De Cooman BC, Edmonds DV 2011. Analysis of microstructure evolution in quenching and partitioning automotive sheet steel. Metall. Mater. Trans. A 42:123591–601
    [Google Scholar]
  59. 59.
    Wang L, Speer JG. 2013. Quenching and partitioning steel heat treatment. ASM Handbook, Volume 4A: Steel Heat Treating Fundamentals and Processes GE Dossett, J Totten 317–26 Materials Park, OH: ASM Int.
    [Google Scholar]
  60. 60.
    Sugimoto K, Iida T, Sakaguchi J, Kashima T 2000. Retained austenite characteristics and tensile properties in a TRIP type bainitic sheet steel. ISIJ Int 40:9902–8
    [Google Scholar]
  61. 61.
    Sugimoto K, Tsunezawa M, Hojo T, Ikeda S 2004. Ductility of 0.1-0.6C-1.5Si-1.5Mn ultra high-strength TRIP-aided sheet steels with bainitic ferrite matrix. ISIJ Int 44:91608–14
    [Google Scholar]
  62. 62.
    Speer JG, Matlock DK, De Cooman BC, Schroth JG 2003. Carbon partitioning into austenite after martensite transformation. Acta Mater 51:92611–22
    [Google Scholar]
  63. 63.
    Matlock DK, Bräutigam VE, Speer JG 2003. Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel. Mater. Sci. Forum 426–432:11089–94
    [Google Scholar]
  64. 64.
    Pierce DT, Coughlin DR, Williamson DL, Clarke KD, Clarke AJ et al. 2015. Characterization of transition carbides in quench and partitioned steel microstructures by Mössbauer spectroscopy and complementary techniques. Acta Mater 90:417–30
    [Google Scholar]
  65. 65.
    Speer JG, Striecher AM, Matlock DK, Rizzo F, Krauss G 2003. Quenching and partitioning a fundamentally new process to create high strength TRIP sheet microstructures. Austenite Deformation and Decomposition EB Damm, MJ Merwin 502–22 Warrendale, PA: ISS/TMS
    [Google Scholar]
  66. 66.
    Kahkonen MJ, De Moor E, Speer JG, Thomas GA 2015. Carbon and manganese effects on quenching and partitioning response of CMnSi-steels. SAE Int. J. Mater. Manuf. 8:2419–24
    [Google Scholar]
  67. 67.
    Wang L, Zhong Y, Feng W, Jin X, Speer JG 2013. Industrial application of Q&P sheet steels. Proceedings of the International Symposium on New Developments in Advanced High-Strength Steels E De Moor, HJ Jun, JG Speer, MJ Merwin 141–51 Warrendale, PA: AIST
    [Google Scholar]
  68. 68.
    Gibbs PJ, De Moor E, Merwin MJ, Clausen N, Speer JG, Matlock DK 2011. Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel. Metall. Mater. Trans. A 42:123691–702
    [Google Scholar]
  69. 69.
    De Moor E, Matlock DK, Speer JG, Merwin MJ 2011. Austenite stabilization through manganese enrichment. Scr. Mater. 64:185–88
    [Google Scholar]
  70. 70.
    Zhang Y, Wang L, Findley KO, Speer JG 2017. Influence of temperature and grain size on austenite stability in medium manganese steels. Metall. Mater. Trans. A 48:2140–49
    [Google Scholar]
  71. 71.
    Rana R, Lahaye C, Ray RK 2014. Overview of lightweight ferrous materials: strategies and promises. JOM 66:91734–46
    [Google Scholar]
  72. 72.
    Ghanbari ZN, Speer JG. 2016. Elevated- and room-temperature mechanical behaviour of Zn-coated steel sheet for hot stamping. AST Trans 13:4170–77
    [Google Scholar]
  73. 73.
    Matlock DK, Speer JG. 2009. Microalloying concepts and application in long products. Mater. Sci. Technol. 25:1118–25
    [Google Scholar]
  74. 74.
    Thompson RE, Matlock DK, Speer JG 2007. The fatigue performance of high temperature vacuum carburized Nb modified 8620 steel. SAE Trans. J. Mater. Manuf. 116:5392–407
    [Google Scholar]
  75. 75.
    Darragh CV. 2002. Engineered gear steels: a review. Gear Technol Nov.–Dec 33–40.
    [Google Scholar]
  76. 76.
    Gynther D. 2018. Ultrapremium™ and endurance steels Presented at Great Designs in Steel, Livonia, MI. https://www.autosteel.org/-/media/files/autosteel/great-designs-in-steel/gdis-2018/track-2—gynther—timkensteel.ashx. Accessed July 2018.
    [Google Scholar]
  77. 77.
    Findley KO, Cryderman RL, Nissan AB, Matlock DK 2013. The effects of inclusions on fatigue performance of steel alloys. AIST Trans 10:6234–44
    [Google Scholar]
  78. 78.
    Jhaveri K, Lewis GM, Sullivan JL, Keoleian GA 2018. Life cycle assessment of thin-wall ductile cast iron for automotive lightweighting applications. Sustain. Mater. Technol. 15:1–8
    [Google Scholar]
  79. 79.
    Labrecque C, Gagné M, Javaid A, Sahoo M 2003. Production and properties of thin-wall ductile iron castings. Int. J. Cast Met. Res. 16:313–17
    [Google Scholar]
  80. 80.
    Borrajo JM, Martínez RA, Boeri RE, Sikora JA 2002. Shape and count of free graphite particles in thin wall ductile iron castings. ISIJ Int 42:3257–63
    [Google Scholar]
  81. 81.
    Fraś E, Górny M, Lopez H 2014. Thin wall ductile iron castings as substitutes for aluminum alloy castings. Arch. Metall. Mater. 59:2459–65
    [Google Scholar]
  82. 82.
    Stefanescu DM, Dix LP, Ruxanda RE, Corbitt-Coburn C, Piwonka TS 2002. Tensile properties of thin-wall ductile iron. AFS Trans 2:1781149–61
    [Google Scholar]
  83. 83.
    Górny M, Tyrała E. 2013. Effect of cooling rate on microstructure and mechanical properties of thin-walled ductile iron castings. J. Mater. Eng. Perform. 22:1300–5
    [Google Scholar]
  84. 84.
    Krajewski P, Sachdev A, Luo A, Carsley J, Schroth J 2009. Automotive aluminum and magnesium: innovation and opportunities. Light Met. Age 67:56–13
    [Google Scholar]
  85. 85.
    Healey JR. 2014. 2015 Ford F-150 makes radical jump to aluminum body. USA Today Jan. 13. https://www.usatoday.com/story/money/cars/2014/01/13/redesigned-2015-ford-f-series-pickup-f-150-aluminum/4421041/
    [Google Scholar]
  86. 86.
    Ducker Worldwide 2017. Aluminum content in North American light vehicles 2016 to 2028: summary report Rep. for DriveAluminum
    [Google Scholar]
  87. 87.
    Krajewski PE, Schroth JG. 2007. Overview of quick plastic forming technology. Mater. Sci. Forum 3:551–52
    [Google Scholar]
  88. 88.
    Carter JT, Krajewski PE, Verma R 2008. The hot blow forming of AZ31 Mg sheet: formability assessment and application development. JOM 60:77
    [Google Scholar]
  89. 89.
    Shehata F, Painter MJ, Pearce R 1978. Warm forming of aluminium/magnesium alloy sheet. J. Mech. Work. Technol. 2:279–90
    [Google Scholar]
  90. 90.
    Ayres RA. 1977. Enhanced ductility in an aluminum–4 Pct magnesium alloy at elevated temperature. Metall. Trans. A 8:487–92
    [Google Scholar]
  91. 91.
    1978. Warmed-up aluminum could beat steel to the draw. Mater. Eng. 88:52–54
    [Google Scholar]
  92. 92.
    Luo AK, Sachdev AA. 2007. Development of light metals automotive structural subsystems. Proceedings of the Light Metals Technology Conference Ottawa, Can.: Nat. Resour. Can.
    [Google Scholar]
  93. 93.
    Luo AA, Fu PH, Yu YD, Jiang HY, Peng LM et al. 2008. Vacuum-assisted high pressure die casting of AZ91 magnesium alloy. North Am. Die Cast. Assoc. Trans. 2008.T08–83
    [Google Scholar]
  94. 94.
    Brown Z, Szymanowski B, Musser M, Saha D, Seaver S 2009. Development of super-vacuum die casting process for magnesium alloys. North Am. Die Cast. Assoc. Trans.
    [Google Scholar]
  95. 95.
    Brown Z, Szymanowski B, Musser M, Saha D, Seaver S 2007. Manufacturing of thin wall structural automotive components through high vacuum die casting technology Presented at International Die Casting Congress and Exposition Houston, TX: May 15–18
    [Google Scholar]
  96. 96.
    Casarotto F, Franke AJ, Franke R 2012. High-pressure die cast (HPDC) aluminum alloys for automotive applications. Advanced Materials in Automotive Engineering J Rowe 109–49 Sawston, UK: Woodhead
    [Google Scholar]
  97. 97.
    Apelian D. 2009. Aluminum Cast Alloys: Enabling Tools for Improved Performance Wheeling, IL: N. Am. Die Cast. Assoc.
    [Google Scholar]
  98. 98.
    Taylor JA. 2012. Iron-containing intermetallic phases in Al-Si based casting alloys. Proc. Mater. Sci. 1:19–33
    [Google Scholar]
  99. 99.
    Dinnis CM, Taylor JA, Dahle AK 2006. Interactions between iron, manganese, and the Al-Si eutectic in hypoeutectic Al-Si alloys. Metall. Mater. Trans. A 37:3283–91
    [Google Scholar]
  100. 100.
    Ceschini L, Boromei I, Morri A, Seifeddine S, Svensson IJ 2009. Microstructure, tensile and fatigue properties of the Al–10% Si–2% Cu alloy with different Fe and Mn content cast under controlled conditions. J. Mater. Proc. Technol. 209:5669–79
    [Google Scholar]
  101. 101.
    Cinkilic E, Sun W, Klarner AD, Luo AA 2015. Use of CALPHAD modeling in controlling microstructure of cast aluminum alloys Pap. 15-044, Am. Foundry Soc .
    [Google Scholar]
  102. 102.
    Klarner AD et al. 2017. A new fluidity die for castability evaluation of high pressure die cast alloys. Trans. North Am. Die Cast. Assoc.T17–101
    [Google Scholar]
  103. 103.
    Luo AA. 2013. Application of computational thermodynamics and CALPHAD in magnesium alloy development. Proc. 2nd World Congr. Integr. Comput. Mater. Eng M Li, C Campbell, K Thornton, E Holm, P Gumbsch 3–8 Warrendale, PA: TMS
    [Google Scholar]
  104. 104.
    Am. Chem. Counc 2018. Plastics and polymer composites in light vehicles Rep., Am. Chem. Counc .
    [Google Scholar]
  105. 105.
    Institute for Advanced Composites Manufacturing Innovation (IACMI) 2017. Phase two roadmap Feb. 2017. http://www.iacmi.org
    [Google Scholar]
  106. 106.
    Vaidya U. 2017. Advanced composite materials and manufacturing in vehicles, wind and compressed gas storage. Text. World Mar 21
    [Google Scholar]
  107. 107.
    Cedric B. 2016. New developments for mass production of epoxy automotive composites Presented at Global Automotive Lightweight Materials Conference Detroit: Accessed Aug 2018.
    [Google Scholar]
  108. 108.
    Gardiner G. 2015. HP-RTM on the rise. Compos. World Apr 14
    [Google Scholar]
  109. 109.
    Gardiner G. 2016. Wet compression molding. Compos. World Jan 2
    [Google Scholar]
  110. 110.
    Rocky Mt. Inst 2013. Kickstarting the widespread adoption of automotive carbon fiber composites: key findings and next steps Rep., Rocky Mt. Inst .
    [Google Scholar]
  111. 111.
    Thattaiparthasarathy K, Pillay S, Bansal D, Ning H, Vaidya U 2013. Processing and characterization of continuous fibre tapes co-moulded with long fibre reinforced thermoplastics. Polym. Polym. Compos. 21:8483–94
    [Google Scholar]
  112. 112.
    Emerson D, Grauer D, Hang B, Reif M, Henning F et al. 2012. Using unidirectional glass tapes to improve impact performance of thermoplastic composites in automotive applications Presented at Soc. Plast. Eng. Automot. Compos. Conf. Exhib Troy, MI: Sept 11–13
    [Google Scholar]
  113. 113.
    LayStitch Technology 2018. Print technology http://www.laystitch.com/Technology.html. Accessed Aug 2018.
    [Google Scholar]
  114. 114.
    Behrens BA, Raatz A, Hubner S, Bonk C, Bohne F et al. 2017. Automated stamp forming of continuous fiber reinforced thermoplastics for complex shell geometries. Proc. CIRP 66:113–18
    [Google Scholar]
  115. 115.
    Vaidya UK. 2010. Composites for Automotive. Truck and Mass Transit Lancaster, PA: DEStech:
    [Google Scholar]
  116. 116.
    Thattaiparthasarathy KB. 2008. Process simulation, design and manufacturing of a long fiber thermoplastic composite for mass transit application. Composites A Appl. Sci. Manuf. 39:91512–21
    [Google Scholar]
  117. 117.
    Thomason JL, Vlug MA. 1996. Influence of fiber length and concentration on the properties of glass fibre–reinforced polypropylene. 1. Tensile and flexural modulus. Composites A Appl. Sci. Manuf. 27:6477–84
    [Google Scholar]
  118. 118.
    IDI Compos 2018. Structural thermoset composites http://www.idicomposites.com/technology-stc.php
    [Google Scholar]
  119. 119.
    Cabrera-Rios M, Castro JM. 2006. An economical way of using carbon fibers in sheet molding compound compression molding for automotive applications. Polym. Compos. 27:6718–22
    [Google Scholar]
  120. 120.
    Carberry W. 2008. Airplane recycling efforts benefit Boeing operators. AERO Quart. 4. http://www.boeing.com/commercial/aeromagazine/articles/qtr_4_08/pdfs/AERO_Q408_article02.pdf
    [Google Scholar]
  121. 121.
    IACMI 2016. Pioneering partnerships announced for composite recycling News Release, IACMI. http://iacmi.org/2016/07/01/pioneering-partnerships-announced-composite-recycling/. AccessedAug.1
    [Google Scholar]
  122. 122.
    Janney M, Ledger J, Vaidya U 2012. Long fiber thermoplastic composites from recycled carbon fiber Presented at ISTC, 44th Charleston, SC: Oct 22–25
    [Google Scholar]
  123. 123.
    Janney M, Vaidya U, Sutton R, Ning H 2014. Re-grind study of PPS-based long fiber thermoplastic composites Presented at SAMPE Seattle:
    [Google Scholar]
  124. 124.
    Okine RK, Edison DH, Little NK 1990. Properties and formability of an aligned discontinuous fiber thermoplastic composite sheet. J. Reinf. Plast. Compos. 9:170–90
    [Google Scholar]
  125. 125.
    Sloan J 2016. Composites recycling becomes a necessity. Compos. World May 16. https://www.compositesworld.com/articles/composites-recycling-becomes-a-necessity
    [Google Scholar]
  126. 126.
    Blackman B, Kinloch A, Watts J 1994. The plasma treatment of thermoplastic fibre composites for adhesive bonding. Composites 25:5332–41
    [Google Scholar]
  127. 127.
    Brosius D, Armstrong K. 2017. IACMI baseline cost and energy metrics Presentation, Mar .
    [Google Scholar]
  128. 128.
    Das S, Armstrong K. 2018. FRPC energy use estimation tool https://ornlenergyestimatortools.shinyapps.io/frpc-energy-estimator2/
    [Google Scholar]
  129. 129.
    USDRIVE 2015. Materials technical team roadmap Rep. https://www.energy.gov/.../MTT%20Roadmap%20UPDATE%20Apprvd%2003-11-1
    [Google Scholar]
  130. 130.
    Baldan A. 2004. Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: adhesives, adhesion theories and surface pretreatment. J. Mater. Sci. 39:11–49
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070218-010134
Loading
/content/journals/10.1146/annurev-matsci-070218-010134
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error