1932

Abstract

Mesoscale modeling and simulation approaches provide a bridge from atomic-scale methods to the macroscale. The phase field (PF) method has emerged as a powerful and popular tool for mesoscale simulation of microstructure evolution, and its use is growing at an ever-increasing rate. While initial research using the PF method focused on model development, as it has matured it has been used more and more for material discovery. In this review we focus on applying the PF method for material discovery. We start with a brief summary of the method, including numerical approaches for solving the PF equations. We then give seven examples of the application of the PF method for material discovery. We also discuss four barriers to its use for material discovery and provide approaches for how these barriers can be overcome. Finally, we detail four lessons that can be learned from the examples on how best to apply the PF method for material discovery.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070218-010151
2019-07-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/matsci/49/1/annurev-matsci-070218-010151.html?itemId=/content/journals/10.1146/annurev-matsci-070218-010151&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Oliver CE 2001. Scientific discovery through advanced computing. Computational Science–ICCS 2001 VN Alexandrov, JJ Dongarra, BA Juliano, RS Renner, CJK Tan Berlin: Springer
    [Google Scholar]
  2. 2.
    Oden JT, Belytschko T, Fish J, Hughes TJR, Johnson C 2006.Simulation-based engineering science: revolutionizing engineering science through simulation. Rep., Natl. Sci. Found.
  3. 3.
    van der Waals JD 1979. The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J. Stat. Phys. 20:20044Foundation of the PF method.
    [Google Scholar]
  4. 4.
    Ginzburg VL 1955. On the theory of superconductivity. Nuovo Cimento 2:123450Foundation of the PF method.
    [Google Scholar]
  5. 5.
    Cahn JW, Hilliard JE 1958. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28:25867Foundation of the PF method.
    [Google Scholar]
  6. 6.
    Wheeler AA, Boettinger WJ, McFadden GB 1992. Phase-field model for isothermal phase transitions in binary alloys. Phys. Rev. A 45:7424–39
    [Google Scholar]
  7. 7.
    Chen LQ 1995. Novel computer simulation technique for modeling grain growth. Scr. Metall. Mater. 32:115–20
    [Google Scholar]
  8. 8.
    Chen LQ 2002. Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32:11340First review covering the PF method.
    [Google Scholar]
  9. 9.
    Emmerich H 2008. Advances of and by phase-field modelling in condensed-matter physics. Adv. Phys. 57:1–87
    [Google Scholar]
  10. 10.
    Moelans N, Blanpain B, Wollants P 2008. An introduction to phase-field modeling of microstructure evolution. CALPHAD 32:268–94
    [Google Scholar]
  11. 11.
    Steinbach I 2009. Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17:073001
    [Google Scholar]
  12. 12.
    Qin RS, Bhadeshia HK 2010. Phase field method. Mater. Sci. Technol. 26:803–11
    [Google Scholar]
  13. 13.
    Steinbach I 2013. Phase-field model for microstructure evolution at the mesoscopic scale. Annu. Rev. Mater. Res. 43:89–107
    [Google Scholar]
  14. 14.
    Boettinger WJ, Warren JA, Beckermann C, Karma A 2002. Phase-field simulation of solidification. Annu. Rev. Mater. Res. 32:163–94
    [Google Scholar]
  15. 15.
    Steinbach I 2013. Why solidification? Why phase-field. JOM 65:1096102
    [Google Scholar]
  16. 16.
    Karma A, Tourret D 2016. Atomistic to continuum modeling of solidification microstructures. Curr. Opin. Solid State Mater. Sci. 20:25–36
    [Google Scholar]
  17. 17.
    Ambati M, Gerasimov T, Lorenzis LD 2015. A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput. Mech. 55:383–405
    [Google Scholar]
  18. 18.
    Millett PC, Tonks M 2011. Application of phase-field modeling to irradiation effects in materials. Curr. Opin. Solid State Mater. Sci. 15:125–33
    [Google Scholar]
  19. 19.
    Li Y, Hu S, Sun X, Stan M 2017. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials. NPJ Comput. Mater. 3:16
    [Google Scholar]
  20. 20.
    Tonks MR, Cheniour A, Aagesen L 2018. How to apply the phase field method to model radiation damage. Comput. Mater. Sci. 147:353–62
    [Google Scholar]
  21. 21.
    Chen LQ, Shen J 1998. Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108:147–58
    [Google Scholar]
  22. 22.
    Carmack JM, Millett PC 2015. Numerical simulations of bijel morphology in thin films with complete surface wetting. J. Chem. Phys. 143:154701Example in Section 3.1.
    [Google Scholar]
  23. 23.
    Chung H-j, Ohno K, Fukuda T, Composto RJ 2005. Self-regulated structures in nanocomposites by directed nanoparticle assembly. Nano Lett. 5:1878–82
    [Google Scholar]
  24. 24.
    Gam S, Corlu A, Chung H-J, Ohno K, Hore MJA, Composto RJ 2011. A jamming morphology map of polymer blend nanocomposite films. Soft Matter 7:7262–68
    [Google Scholar]
  25. 25.
    Carmack JM, Millett PC 2017. Diverse morphologies in thin-film bijels by varying film thickness and composition. Soft Matter 13:4214–23
    [Google Scholar]
  26. 26.
    Carmack JM, Millett PC 2018. Tuning thin-film bijels with applied external electric fields. Soft Matter 14:4344–54
    [Google Scholar]
  27. 27.
    Zhang W, Yu H-C, Wu L, Liu H, Abdellahi A 2018. Localized concentration reversal of lithium during intercalation into nanoparticles. Sci. Adv. 4:eaao2608Example in Section 3.2.
    [Google Scholar]
  28. 28.
    Yu H-C, Ling C, Bhattacharya J, Thomas JC, Thornton K, Van der Ven A 2014. Designing the next generation high capacity battery electrodes. Energy Environ. Sci. 7:1760–68
    [Google Scholar]
  29. 29.
    Yadav AK, Nelson CT, Hsu SL, Hong Z, Clarkson JD et al. 2016. Observation of polar vortices in oxide superlattices. Nature 530:198–201
    [Google Scholar]
  30. 30.
    Damodaran AR, Clarkson JD, Hong Z, Liu H, Yadav AK 2017. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat. Mater. 16:10039Example in Section 3.3.
    [Google Scholar]
  31. 31.
    Chen LQ 2008. Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J. Am. Ceram. Soc. 91:1835–44
    [Google Scholar]
  32. 32.
    Sheng G, Li Y, Zhang J, Choudhury S, Jia Q et al. 2010. A modified Landau–Devonshire thermodynamic potential for strontium titanate. Appl. Phys. Lett. 96:232902
    [Google Scholar]
  33. 33.
    Haun MJ, Furman E, Jang S, McKinstry H, Cross L 1987. Thermodynamic theory of PbTiO3. J. Appl. Phys. 62:3331–38
    [Google Scholar]
  34. 34.
    Gránásy L, Pusztai T, Börzsönyi T, Warren JA, Douglas JF 2004. A general mechanism of polycrystalline growth. Nat. Mater. 3:64550Example in Section 3.4.
    [Google Scholar]
  35. 35.
    Gránásy L, Pusztai T, Warren JA, Douglas JF, Börzsönyi T, Ferreiro V 2003. Growth of ‘dizzy dendrites’ in a random field of foreign particles. Nat. Mater. 2:92–96
    [Google Scholar]
  36. 36.
    Gránásy L, Börzsönyi T, Pusztai T 2002. Nucleation and bulk crystallization in binary phase field theory. Phys. Rev. Lett. 88:206105
    [Google Scholar]
  37. 37.
    Gránásy L, Börzsönyi T, Pusztai T 2002. Crystal nucleation and growth in binary phase-field theory. J. Cryst. Growth 237:1813–17
    [Google Scholar]
  38. 38.
    Wheeler D, Warren JA, Boettinger WJ 2010. Modeling the early stages of reactive wetting. Phys. Rev. E 82:051601Example in Section 3.5.
    [Google Scholar]
  39. 39.
    Biance AL, Clanet C, Quéré D 2004. First steps in the spreading of a liquid droplet. Phys. Rev. E 69:016301
    [Google Scholar]
  40. 40.
    Guyer JE, Wheeler D, Warren JA 2009. FiPy: partial differential equations with Python. Comput. Sci. Eng. 11:6–15
    [Google Scholar]
  41. 41.
    Mitchell NP, Koning V, Vitelli V, Irvine WT 2017. Fracture in sheets draped on curved surfaces. Nat. Mater. 16:8993Example in Section 3.6.
    [Google Scholar]
  42. 42.
    Karma A, Kessler DA, Levine H 2001. Phase-field model of mode III dynamic fracture. Phys. Rev. Lett. 87:045501
    [Google Scholar]
  43. 43.
    Huang FT, Xue F, Gao B, Wang LH, Luo X 2016. Domain topology and domain switching kinetics in a hybrid improper ferroelectric. Nat. Commun. 7:11602Example in Section 3.7.
    [Google Scholar]
  44. 44.
    Iman RL, Helton JC 1988. An investigation of uncertainty and sensitivity analysis techniques for computer models. Risk Anal. 8:71–90
    [Google Scholar]
  45. 45.
    Tonks MR, Gaston D, Millett PC, Andrs D, Talbot P 2012. An object-oriented finite element framework for multiphysics phase field simulations. Comput. Mater. Sci. 51:20–29
    [Google Scholar]
  46. 46.
    Schwen D, Aagesen LK, Peterson JW, Tonks MR 2017. Rapid multiphase-field model development using a modular free energy based approach with automatic differentiation in MOOSE/MARMOT. Comput. Mater. Sci. 132:36–45
    [Google Scholar]
  47. 47.
    Grandi D, Maraldi M, Molari L 2012. A macroscale phase-field model for shape memory alloys with non-isothermal effects: influence of strain rate and environmental conditions on the mechanical response. Acta Mater. 60:179–91
    [Google Scholar]
  48. 48.
    Ulvestad A, Welland M, Collins S, Harder R, Maxey E et al. 2015. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles. Nat. Commun. 6:10092
    [Google Scholar]
  49. 49.
    DeWitt S, Solomon EL, Natarajan AR, Araullo-Peters V, Rudraraju S et al. 2017. Misfit-driven η precipitate composition and morphology in Mg-Nd alloys. Acta Mater. 136:378–89
    [Google Scholar]
  50. 50.
    DeWitt S, Thornton K 2018. Phase field modeling of microstructural evolution. Computational Materials System Design D Shin, J Saal6787 Cham, Switz.: Springer
    [Google Scholar]
  51. 51.
    Steinbach I 2009. Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17:073001
    [Google Scholar]
  52. 52.
    Nakajima K, Apel M, Steinbach I 2006. The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: a multi-phase field study. Acta Mater. 54:3665–72
    [Google Scholar]
  53. 53.
    Steinbach I, Böttger B, Eiken J, Warnken N, Fries S 2007. CALPHAD and phase-field modeling: a successful liaison. J. Phase Equilib. Diffus. 28:101–6
    [Google Scholar]
  54. 54.
    Provatas N, Greenwood M, Athreya B, Goldenfeld N, Dantzig J 2005. Multiscale modeling of solidification: phase-field methods to adaptive mesh refinement. Int. J. Mod. Phys. B 19:4525–65
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070218-010151
Loading
/content/journals/10.1146/annurev-matsci-070218-010151
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error