1932

Abstract

Attempts to track material flows and the calculation of efficiency for material systems go hand in hand. Questions of where materials come from, where materials go to, and how much material is lost along the way are embedded in human societies. This article reviews material flows, their analysis, and progress toward material efficiency. We focus first on material flow analysis (MFA) and the three key tenets of any MFA: presentation of materials, visualization of the flow structure, and insight derived from analysis. Reviewing recent literature, we explore how each of these concepts is described, organized, and presented in MFA studies. We go on to show the role of MFA in material efficiency calculations and what-if scenario analysis for informed decision-making. We investigate the origins and motivations behind the material efficiency paradigm and the key efficiency strategies and practices developed in recent years and conclude by suggesting priorities for a future research agenda.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070218-125903
2022-07-01
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-070218-125903.html?itemId=/content/journals/10.1146/annurev-matsci-070218-125903&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pringle H. 1998. The slow birth of agriculture. Science 282:53931446
    [Google Scholar]
  2. 2.
    Zuo X, Lu H, Jiang L, Zhang J, Yang X et al. 2017. Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. PNAS 114:256486–91
    [Google Scholar]
  3. 3.
    Leontief WW. 1951. Input-output economics. Sci. Am. 185:415–21
    [Google Scholar]
  4. 4.
    Minx JC, Wiedmann T, Wood R, Peters GP, Lenzen M et al. 2009. Input-output analysis and carbon footprinting: an overview of applications. Econ. Syst. Res. 21:3187–216
    [Google Scholar]
  5. 5.
    Majeau-Bettez G, Pauliuk S, Wood R, Bouman EA, Strømman AH. 2016. Balance issues in input-output analysis: a comment on physical inhomogeneity, aggregation bias, and coproduction. Ecol. Econ. 126:188–97
    [Google Scholar]
  6. 6.
    Graedel TE. 2019. Material flow analysis from origin to evolution. Environ. Sci. Technol. 53:2112188–96
    [Google Scholar]
  7. 7.
    OECD (Organ. Econ. Coop. Dev.) 2019. Global material resources outlook to 2060 Rep., OECD Paris: https://www.oecd.org/env/global-material-resources-outlook-to-2060-9789264307452-en.htm
    [Google Scholar]
  8. 8.
    Krausmann F, Wiedenhofer D, Lauk C, Haas W, Tanikawa H et al. 2017. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. PNAS 114:81880–85
    [Google Scholar]
  9. 9.
    Södersten CJ, Wood R, Wiedmann T. 2020. The capital load of global material footprints. Resour. Conserv. Recycl. 158:104811
    [Google Scholar]
  10. 10.
    Hashimoto S, Tanikawa H, Moriguchi Y. 2007. Where will large amounts of materials accumulated within the economy go? – A material flow analysis of construction minerals for Japan. Waste Manag 27:121725–38
    [Google Scholar]
  11. 11.
    Matthews E, Amann C, Bringezu S, Fischer-Kowalski M, Hütter W et al. 2000. The weight of nations: material outflows from industrial economies, 2000 Rep., World Resour. Inst. Washington, DC: http://pdf.wri.org/weight_of_nations.pdf
    [Google Scholar]
  12. 12.
    Babbitt CW, Althaf S, Cruz Rios F, Bilec MM, Graedel TE 2021. The role of design in circular economy solutions for critical materials. One Earth 4:3353–62
    [Google Scholar]
  13. 13.
    Ciacci L, Fishman T, Elshkaki A, Graedel TE, Vassura I, Passarini F. 2020. Exploring future copper demand, recycling and associated greenhouse gas emissions in the EU-28. Glob. Environ. Change 63:102093
    [Google Scholar]
  14. 14.
    Hannon E, Nauclér T, Suneson A, Yüksel F. 2020. The zero carbon car: Abating material emissions is next on the agenda. McKinsey Sustainability https://www.mckinsey.com/business-functions/sustainability/our-insights/the-zero-carbon-car-abating-material-emissions-is-next-on-the-agenda
    [Google Scholar]
  15. 15.
    Craglia M, Cullen J. 2020. Modelling transport emissions in an uncertain future: What actions make a difference?. Transp. Res. Part D Transp. Environ. 89:102614
    [Google Scholar]
  16. 16.
    Fischer-Kowalski M. 1998. Society's metabolism: the intellectual history of materials flow analysis, part I, 1860–1970. J. Ind. Ecol. 2:161–78
    [Google Scholar]
  17. 17.
    Ayres RU, Kneese AV. 1969. Production, consumption, and externalities. Am. Econ. Rev. 59:3282–97
    [Google Scholar]
  18. 18.
    Fischer-Kowalski M, Hüttler W. 1998. Society's metabolism: the intellectual history of materials flow analysis, part II, 1970–1998. J. Ind. Ecol. 2:4107–36
    [Google Scholar]
  19. 19.
    Bringezu S, Fischer-Kowalski M, Kleijn R, Palm V. 1998. The ConAccount agenda: the concerted action on material flow analysis and its research and development agenda Rep., Wuppertal Inst. Clim. Environ. Energy Wuppertal, Ger: https://epub.wupperinst.org/frontdoor/index/index/docId/672
    [Google Scholar]
  20. 20.
    Ayres RU, Ayres L. 2002. A Handbook of Industrial Ecology Cheltenham, UK: Edward Elgar Publ.
    [Google Scholar]
  21. 21.
    Brunner PH, Rechberger H. 2004. Practical Handbook of Material Flow Analysis Boca Raton, FL: CRC/Lewis
    [Google Scholar]
  22. 22.
    Lupton RC, Allwood JM. 2018. Incremental material flow analysis with Bayesian inference. J. Ind. Ecol. 22:61352–64
    [Google Scholar]
  23. 23.
    Allesch A, Rechberger H. 2018. Compilation of uncertainty approaches and recommendations for reporting data uncertainty. MinFuture deliv. D3.3 TU Wien Vienna: https://minfuture.eu/D3.3.html
    [Google Scholar]
  24. 24.
    Danius L, Burström F. 2001. Regional material flow analysis and data uncertainties: Can the results be trusted?. Proceedings of the 15th International Symposium on Informatics for Environmental Protection, ed. LM Hilty, PW Gilgen 609–17 Marburg, Ger: Metrop. Verl.
    [Google Scholar]
  25. 25.
    Laner D, Rechberger H, Astrup T. 2014. Systematic evaluation of uncertainty in material flow analysis. J. Ind. Ecol. 18:6859–70
    [Google Scholar]
  26. 26.
    Laner D, Rechberger H, Astrup T. 2015. Applying fuzzy and probabilistic uncertainty concepts to the material flow analysis of palladium in Austria. J. Ind. Ecol. 19:61055–69
    [Google Scholar]
  27. 27.
    Cullen JM. 2017. Circular economy: theoretical benchmark or perpetual motion machine?. J. Ind. Ecol. 21:3483–86
    [Google Scholar]
  28. 28.
    Di Maio F, Rem PC 2015. A robust indicator for promoting circular economy through recycling. J. Environ. Prot. 6:101095–104
    [Google Scholar]
  29. 29.
    Di Maio F, Rem PC, Baldé K, Polder M. 2017. Measuring resource efficiency and circular economy: a market value approach. Resour. Conserv. Recycl. 122:163–71
    [Google Scholar]
  30. 30.
    Allwood JM 2014. Squaring the circular economy: the role of recycling within a hierarchy of material management strategies. Handbook of Recycling: State-of-the-Art for Practitioners, Analysts, and Scientists E Woprrell, MA Reuter 445–77 Waltham, MA: Elsevier
    [Google Scholar]
  31. 31.
    Haas W, Krausmann F, Wiedenhofer D, Heinz M. 2015. How circular is the global economy?: An assessment of material flows, waste production, and recycling in the European Union and the world in 2005. J. Ind. Ecol. 19:5765–77
    [Google Scholar]
  32. 32.
    Müller DB, Wang T, Duval B 2011. Patterns of iron use in societal evolution. Environ. Sci. Technol. 45:1182–88
    [Google Scholar]
  33. 33.
    Pauliuk S, Wang T, Müller DB. 2013. Steel all over the world: estimating in-use stocks of iron for 200 countries. Resour. Conserv. Recycl. 71:22–30
    [Google Scholar]
  34. 34.
    Cao Z, Liu G, Zhong S, Dai H, Pauliuk S. 2019. Integrating dynamic material flow analysis and computable general equilibrium models for both mass and monetary balances in prospective modeling: a case for the Chinese building sector. Environ. Sci. Technol. 53:1224–33
    [Google Scholar]
  35. 35.
    Milford RL, Pauliuk S, Allwood JM, Müller DB. 2013. The roles of energy and material efficiency in meeting steel industry CO2 targets. Environ. Sci. Technol. 47:73455–62
    [Google Scholar]
  36. 36.
    Müller DB. 2006. Stock dynamics for forecasting material flows—case study for housing in The Netherlands. Ecol. Econ. 59:1142–56
    [Google Scholar]
  37. 37.
    Cao Z, Shen L, Zhong S, Liu L, Kong H, Sun Y. 2018. A probabilistic dynamic material flow analysis model for Chinese urban housing stock. J. Ind. Ecol. 22:2377–91
    [Google Scholar]
  38. 38.
    Chen WQ, Graedel TE. 2012. Dynamic analysis of aluminum stocks and flows in the United States: 1900–2009. Ecol. Econ. 81:92–102
    [Google Scholar]
  39. 39.
    Cullen JM, Brazel S. 2018. Visualising material systems. MinFuture deliv. D3.4 TU Wien Vienna: https://minfuture.eu/D3.4.html
    [Google Scholar]
  40. 40.
    Lupton RC, Allwood JM. 2017. Hybrid Sankey diagrams: visual analysis of multidimensional data for understanding resource use. Resour. Conserv. Recycl. 124:141–51
    [Google Scholar]
  41. 41.
    Graedel TE, Allenby BR. 1995. Industrial Ecology Hoboken, NJ: Prentice Hall. , 1st ed..
    [Google Scholar]
  42. 42.
    Klinglmair M, Lemming C, Jensen LS, Rechberger H, Astrup TF, Scheutz C. 2015. Phosphorus in Denmark: national and regional anthropogenic flows. Resour. Conserv. Recycl. 105:Part B31124
    [Google Scholar]
  43. 43.
    Bertram M, Graedel TE, Fuse K, Gordon R, Lifset R et al. 2003. The copper cycles of European countries. Reg. Environ. Change 3:119–27
    [Google Scholar]
  44. 44.
    Cullen JM, Allwood JM, Bambach MD. 2012. Mapping the global flow of steel: from steelmaking to end-use goods. Environ. Sci. Technol. 46:2413048–55
    [Google Scholar]
  45. 45.
    Cullen JM, Allwood JM. 2013. Mapping the global flow of aluminum: from liquid aluminum to end-use goods. Environ. Sci. Technol. 47:73057–64
    [Google Scholar]
  46. 46.
    Cullen JM, Allwood JM. 2010. The efficient use of energy: tracing the global flow of energy from fuel to service. Energy Policy 38:175–81
    [Google Scholar]
  47. 47.
    Krausmann F, Haberl H, Erb KH, Wackernagel M. 2004. Resource flows and land use in Austria 1950–2000: using the MEFA framework to monitor society-nature interaction for sustainability. Land Use Policy 21:3215–30
    [Google Scholar]
  48. 48.
    Gonzalez Hernandez A, Paoli L, Cullen JM 2018. How resource-efficient is the global steel industry?. Resour. Conserv. Recycl. 133:132–45
    [Google Scholar]
  49. 49.
    Levi PG, Cullen JM. 2018. Mapping global flows of chemicals: from fossil fuel feedstocks to chemical products. Environ. Sci. Technol. 52:41725–34
    [Google Scholar]
  50. 50.
    Bajželj B, Allwood JM, Cullen JM. 2013. Designing climate change mitigation plans that add up. Environ. Sci. Technol. 47:148062–69
    [Google Scholar]
  51. 51.
    Tokimatsu K, Murakami S, Adachi T, Ii R, Yasuoka R, Nishio M. 2017. Long-term demand and supply of non-ferrous mineral resources by a mineral balance model. Miner. Econ. 30:193–206
    [Google Scholar]
  52. 52.
    Guo J, Miatto A, Shi F, Tanikawa H. 2019. Spatially explicit material stock analysis of buildings in Eastern China metropoles. Resour. Conserv. Recycl. 146:45–54
    [Google Scholar]
  53. 53.
    Guinée JB, Heijungs R, Huppes G, Zamagni A, Masoni P et al. 2011. Life cycle assessment: past, present, and future. Environ. Sci. Technol. 45:190–96
    [Google Scholar]
  54. 54.
    Int. Org. Stand 2006. Environmental management—life cycle assessment—principles and framework Stand. 14040:2006 Int. Org. Stand. Geneva:
    [Google Scholar]
  55. 55.
    Int. Org. Stand 2006. Environmental management—life cycle assessment—requirements and guidelines Stand. 14044:2006 Int. Org. Stand. Geneva:
    [Google Scholar]
  56. 56.
    Ayres RU. 1995. Life cycle analysis: a critique. Resour. Conserv. Recycl. 14:3–4199–223
    [Google Scholar]
  57. 57.
    Cullen JM, Allwood JM. 2009. The role of washing machines in life cycle assessment studies. J. Ind. Ecol. 13:127–37
    [Google Scholar]
  58. 58.
    Damgaard A, Vasiliki T, Astrup TF, Boldrin A. 2018. LCA of single use plastic products in Denmark Environ. Proj. 2104 Dan. Environ. Prot. Agency Odense, Den:.
    [Google Scholar]
  59. 59.
    Gibon T, Arvesen A, Hertwich EG. 2017. Life cycle assessment demonstrates environmental co-benefits and trade-offs of low-carbon electricity supply options. Renew. Sustain. Energy Rev. 76:1283–90
    [Google Scholar]
  60. 60.
    Cullen JM, Allwood JM. 2010. Theoretical efficiency limits for energy conversion devices. Energy 35:52059–69
    [Google Scholar]
  61. 61.
    Sousa T, Brockway PE, Cullen JM, Henriques ST, Miller J et al. 2017. The need for robust, consistent methods in societal exergy accounting. Ecol. Econ. 141:11–21
    [Google Scholar]
  62. 62.
    Tukker A, Bulavskaya T, Giljum S, de Koning A, Lutter S et al. 2014. The global resource footprint of nations Delft, Neth.: Neth. Org. Appl. Sci. Res.
    [Google Scholar]
  63. 63.
    Wiedmann TO, Schandl H, Lenzen M, Moran D, Suh S et al. 2015. The material footprint of nations. PNAS 112:206271–76
    [Google Scholar]
  64. 64.
    Hernandez AG, Cullen JM. 2019. Exergy: a universal metric for measuring resource efficiency to address industrial decarbonisation. Sustain. Prod. Consum. 20:151–64
    [Google Scholar]
  65. 65.
    Hertwich EG, Peters GP. 2009. Carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43:166414–20
    [Google Scholar]
  66. 66.
    Hubacek K, Giljum S. 2003. Applying physical input–output analysis to estimate land appropriation (ecological footprints) of international trade activities. Ecol. Econ. 44:1137–51
    [Google Scholar]
  67. 67.
    Hawkins T, Hendrickson C, Higgins C, Matthews HS, Suh S. 2007. A mixed-unit input-output model for environmental life-cycle assessment and material flow analysis. Environ. Sci. Technol. 41:31024–31
    [Google Scholar]
  68. 68.
    Querol E, Gonzalez-Regueral B, Perez-Benedito JL. 2013. Practical Approach to Exergy and Thermoeconomic Analyses of Industrial Processes London: Springer
    [Google Scholar]
  69. 69.
    Brodyansky VM, Sorin M, Goff PL. 1994. The Efficiency of Industrial Processes: Exergy Analysis and Optimization Amsterdam: Elsevier
    [Google Scholar]
  70. 70.
    Ayres RU, Ayres LW, Masini A 2006. An application of exergy accounting to five basic metal industries. Sustainable Metals Management A von Gleich, RU Ayres, S Gößling-Reisemann 141–94 Dordrecht, Neth: Springer
    [Google Scholar]
  71. 71.
    Szargut J. 1999. Exergy analysis of thermal processes and systems with ecological applications. Encyclopedia of Energy Sciences, Engineering and Technology Resources Paris: Encycl. Life Support Syst. Publ https://www.eolss.net/toc/c08-browsecontents.aspx
    [Google Scholar]
  72. 72.
    US Geol. Surv. (USGS) 2014. Mineral commodity summaries 2021 Rep., Natl. Miner. Inf. Cent., USGS Reston, VA: https://pubs.er.usgs.gov/publication/mcs2021
    [Google Scholar]
  73. 73.
    World Steel Assoc 2018. Steel statistical yearbook 2018 Rep., World Steel Assoc. Brussels: https://worldsteel.org/wp-content/uploads/Steel-Statistical-Yearbook-2018.pdf
    [Google Scholar]
  74. 74.
    Pont A, Robles A, Gil JA. 2019. E-WASTE: Everything an ICT scientist and developer should know. IEEE Access 7:169614–35
    [Google Scholar]
  75. 75.
    Parsons T. 2021. The weight of cities: urbanization effects on earth's subsurface. AGU Adv 2:1e2020AV000277
    [Google Scholar]
  76. 76.
    Lupton RC, Allwood JM. 2017. Hybrid Sankey diagrams: visual analysis of multidimensional data for understanding resource use. Resour. Conserv. Recycl. 124:141–51
    [Google Scholar]
  77. 77.
    Ott C, Rechberger H. 2012. The European phosphorus balance. Resour. Conserv. Recycl. 60:159–72
    [Google Scholar]
  78. 78.
    Zhu Y, Syndergaard K, Cooper DR. 2019. Mapping the annual flow of steel in the United States. Environ. Sci. Technol. 53:1911260–68
    [Google Scholar]
  79. 79.
    Narasimhan S, Jordache C. 2000. Data Reconciliation and Gross Error Detection: An Intelligent Use of Process Data Houston: Gulf Publ. Co.
    [Google Scholar]
  80. 80.
    Kopec GM, Allwood JM, Cullen JM, Ralph D 2016. A general nonlinear least squares data reconciliation and estimation method for material flow analysis. J. Ind. Ecol. 20:51038–49
    [Google Scholar]
  81. 81.
    Cencic O. 2016. Nonlinear data reconciliation in material flow analysis with software STAN. Sustain. Environ. Res. 26:6291–98
    [Google Scholar]
  82. 82.
    Cencic O, Frühwirth R. 2018. Data reconciliation of nonnormal observations with nonlinear constraints. J. Appl. Stat. 45:132411–28
    [Google Scholar]
  83. 83.
    Dubois D, Fargier H, Ababou M, Guyonnet D. 2014. A fuzzy constraint-based approach to data reconciliation in material flow analysis. Int. J. Gen. Syst. 43:8787–809
    [Google Scholar]
  84. 84.
    Lupton RC, Allwood JM. 2018. Incremental material flow analysis with Bayesian inference. J. Ind. Ecol. 22:61352–64
    [Google Scholar]
  85. 85.
    Ciroth A, Muller S, Weidema B, Lesage P. 2016. Empirically based uncertainty factors for the pedigree matrix in ecoinvent. Int. J. Life Cycle Assess. 21:91338–48
    [Google Scholar]
  86. 86.
    Haberl H, Wiedenhofer D, Erb KH, Görg C, Krausmann F. 2017. The material stock-flow-service nexus: a new approach for tackling the decoupling conundrum. Sustainability 9:71049
    [Google Scholar]
  87. 87.
    Carmona LG, Whiting K, Haberl H, Sousa T. 2021. The use of steel in the United Kingdom's transport sector: a stock-flow-service nexus case study. J. Ind. Ecol. 25:1125–43
    [Google Scholar]
  88. 88.
    Virág D, Wiedenhofer D, Haas W, Haberl H, Kalt G, Krausmann F. 2022. The stock-flow-service nexus of personal mobility in an urban context: Vienna, Austria. Environ. Dev 41:100628
    [Google Scholar]
  89. 89.
    Cao Z, Myers RJ, Lupton RC, Duan H, Sacchi R et al. 2020. The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nat. Commun. 11:13777
    [Google Scholar]
  90. 90.
    Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3:7e1700782
    [Google Scholar]
  91. 91.
    Daehn KE, Cabrera Serrenho A, Allwood JM 2017. How will copper contamination constrain future global steel recycling?. Environ. Sci. Technol. 51:116599–606
    [Google Scholar]
  92. 92.
    Cooper DR, Ryan NA, Syndergaard K, Zhu Y. 2020. The potential for material circularity and independence in the U.S. steel sector. J. Ind. Ecol. 24:4748–62
    [Google Scholar]
  93. 93.
    Elshkaki A, Graedel TE, Ciacci L, Reck BK. 2018. Resource demand scenarios for the major metals. Environ. Sci. Technol. 52:52491–97
    [Google Scholar]
  94. 94.
    Sverdrup HU, Koca D, Schlyter P. 2017. A simple system dynamics model for the global production rate of sand, gravel, crushed rock and stone, market prices and long-term supply embedded into the WORLD6 model. BioPhys. Econ. Resour. Qual. 2:28
    [Google Scholar]
  95. 95.
    Cabrera Serrenho A, Drewniok M, Dunant C, Allwood JM 2019. Testing the greenhouse gas emissions reduction potential of alternative strategies for the English housing stock. Resour. Conserv. Recycl. 144:267–75
    [Google Scholar]
  96. 96.
    Sandberg NH, Sartori I, Heidrich O, Dawson R, Dascalaki E et al. 2016. Dynamic building stock modelling: application to 11 European countries to support the energy efficiency and retrofit ambitions of the EU. Energy Build 132:26–38
    [Google Scholar]
  97. 97.
    Serrenho AC, Norman JB, Allwood JM. 2017. The impact of reducing car weight on global emissions: the future fleet in Great Britain. Philos. Trans. R. Soc. A. 375:20160364
    [Google Scholar]
  98. 98.
    Liu M, Chen X, Zhang M, Lv X, Wang H et al. 2020. End-of-life passenger vehicles recycling decision system in China based on dynamic material flow analysis and life cycle assessment. Waste Manag 117:81–92
    [Google Scholar]
  99. 99.
    Jiang M, Behrens P, Wang T, Tang Z, Yu Y et al. 2019. Provincial and sector-level material footprints in China. PNAS 116:5226484–90
    [Google Scholar]
  100. 100.
    Heeren N, Hellweg S. 2019. Tracking construction material over space and time: prospective and geo-referenced modeling of building stocks and construction material flows. J. Ind. Ecol. 23:1253–67
    [Google Scholar]
  101. 101.
    Ekins P, Hughes N. 2016. Resource efficiency: potential and economic implications Rep., UN Environ. Prog., Int. Res. Panel Paris:
    [Google Scholar]
  102. 102.
    Eur. Comm. (EC) 2018. 3rd raw materials scoreboard Rep., Eur. Innov. Partnersh. Raw Mater. Luxembourg, Belg: https://www.era-min.eu/sites/default/files/docs/et0320656enn.en_.pdf
    [Google Scholar]
  103. 103.
    Hashimoto S, Moriguchi Y. 2004. Proposal of six indicators of material cycles for describing society's metabolism: from the viewpoint of material flow analysis. Resour. Conserv. Recycl. 40:3185–200
    [Google Scholar]
  104. 104.
    Ellen MacArthur Found 2015. Circularity indicators: an approach to measuring circularity Rep., Ellen MacArthur Found. Isle of Wight, UK:
    [Google Scholar]
  105. 105.
    Linder M, Sarasini S, van Loon P. 2017. A metric for quantifying product-level circularity. J. Ind. Ecol. 21:3545–58
    [Google Scholar]
  106. 106.
    Gao T, Shen L, Shen M, Liu L, Chen F 2016. Analysis of material flow and consumption in cement production process. J. Clean. Prod. 112:553–65
    [Google Scholar]
  107. 107.
    Graedel TE, Allwood J, Birat JP, Buchert M, Hagelüken C et al. 2011. What do we know about metal recycling rates?. J. Ind. Ecol. 15:3355–66
    [Google Scholar]
  108. 108.
    Schandl H, Fischer-Kowalski M, West J, Giljum S, Dittrich M et al. 2018. Global material flows and resource productivity: forty years of evidence. J. Ind. Ecol. 22:4827–38
    [Google Scholar]
  109. 109.
    Densley Tingley D, Cooper S, Cullen J 2017. Understanding and overcoming the barriers to structural steel reuse, a UK perspective. J. Clean. Prod. 148:642–52
    [Google Scholar]
  110. 110.
    World Steel Assoc 2009. Yield Improvement in the Steel Industry: Working Group Report 2003–2006 Brussels: World Steel Assoc.
    [Google Scholar]
  111. 111.
    Hernandez AG, Cullen JM. 2019. Exergy: a universal metric for measuring resource efficiency to address industrial decarbonisation. Sustain. Prod. Consum. 20:151–64
    [Google Scholar]
  112. 112.
    Allegrini E, Maresca A, Olsson ME, Holtze MS, Boldrin A, Astrup TF. 2014. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes. Waste Manag 34:91627–36
    [Google Scholar]
  113. 113.
    Allesch A, Brunner PH. 2016. Benchmarking für die österreichische Abfallwirtschaft - Werden die Ziele der Abfallwirtschaft erreicht?. Österr. Wasser Abfallwirtsch. 68:9–10405–14
    [Google Scholar]
  114. 114.
    Infante-Amate J, Soto D, Aguilera E, García-Ruiz R, Guzmán G et al. 2015. The Spanish transition to industrial metabolism: long-term material flow analysis (1860–2010). J. Ind. Ecol. 19:5866–76
    [Google Scholar]
  115. 115.
    Andersen JK, Boldrin A, Christensen TH, Scheutz C. 2010. Mass balances and life-cycle inventory for a garden waste windrow composting plant (Aarhus, Denmark). Waste Manag. Res. 28:11 1010–20. Erratum. 2012. Waste Manag. Res. 30(11):1227
    [Google Scholar]
  116. 116.
    Andersen JK, Boldrin A, Christensen TH, Scheutz C. 2011. Mass balances and life cycle inventory of home composting of organic waste. Waste Manag 31:9–101934–42
    [Google Scholar]
  117. 117.
    Bader HP, Scheidegger R, Wittmer D, Lichtensteiger T. 2011. Copper flows in buildings, infrastructure and mobiles: a dynamic model and its application to Switzerland. Clean Technol. Environ. Policy 13:87–101
    [Google Scholar]
  118. 118.
    Bajželj B, Allwood JM, Cullen JM. 2013. Designing climate change mitigation plans that add up. Environ. Sci. Technol. 47:148062–69
    [Google Scholar]
  119. 119.
    Buchner H, Laner D, Rechberger H, Fellner J. 2014. In-depth analysis of aluminum flows in Austria as a basis to increase resource efficiency. Resour. Conserv. Recycl. 93:112–23
    [Google Scholar]
  120. 120.
    Buchner H, Laner D, Rechberger H, Fellner J. 2015. Dynamic material flow modeling: an effort to calibrate and validate aluminum stocks and flows in Austria. Environ. Sci. Technol. 49:95546–54
    [Google Scholar]
  121. 121.
    Buchner H, Laner D, Rechberger H, Fellner J. 2015. Future raw material supply: opportunities and limits of aluminium recycling in Austria. J. Sustain. Metall. 1:4253–62
    [Google Scholar]
  122. 122.
    Chancerel P, Meskers CEM, Hagelüken C, Rotter VS. 2009. Assessment of precious metal flows during preprocessing of waste electrical and electronic equipment. J. Ind. Ecol. 13:5791–810
    [Google Scholar]
  123. 123.
    Cooper J, Carliell-Marquet C. 2013. A substance flow analysis of phosphorus in the UK food production and consumption system. Resour. Conserv. Recycl. 74:82–100
    [Google Scholar]
  124. 124.
    Cullen JM, Allwood JM. 2010. The efficient use of energy: tracing the global flow of energy from fuel to service. Energy Policy 38:175–81
    [Google Scholar]
  125. 125.
    Dong L, Dai M, Liang H, Zhang N, Mancheri N et al. 2017. Material flows and resource productivity in China, South Korea and Japan from 1970 to 2008: a transitional perspective. J. Clean. Prod. 141:1164–77
    [Google Scholar]
  126. 126.
    Egle L, Zoboli O, Thaler S, Rechberger H, Zessner M. 2014. The Austrian P budget as a basis for resource optimization. Resour. Conserv. Recycl. 83:152–62
    [Google Scholar]
  127. 127.
    Glöser S, Soulier M, Tercero Espinoza LA 2013. Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation. Environ. Sci. Technol. 47:126564–72
    [Google Scholar]
  128. 128.
    Graedel TE, van Beers D, Bertram M, Fuse K, Gordon RB et al. 2004. Multilevel cycle of anthropogenic copper. Environ. Sci. Technol. 38:41242–52
    [Google Scholar]
  129. 129.
    Guyonnet D, Planchon M, Rollat A, Escalon V, Tuduri J et al. 2015. Material flow analysis applied to rare earth elements in Europe. J. Clean. Prod. 107:215–28
    [Google Scholar]
  130. 130.
    Hoenderdaal S, Tercero Espinoza L, Marscheider-Weidemann F, Graus W 2013. Can a dysprosium shortage threaten green energy technologies?. Energy 49:1344–55
    [Google Scholar]
  131. 131.
    Klinglmair M, Lemming C, Jensen LS, Rechberger H, Astrup TF, Scheutz C. 2015. Phosphorus in Denmark: national and regional anthropogenic flows. Resour. Conserv. Recycl. 105:311–24
    [Google Scholar]
  132. 132.
    Kovanda J. 2017. Total residual output flows of the economy: methodology and application in the case of the Czech Republic. Resour. Conserv. Recycl. 116:61–69
    [Google Scholar]
  133. 133.
    Kovanda J, Weinzettel J. 2013. The importance of raw material equivalents in economy-wide material flow accounting and its policy dimension. Environ. Sci. Policy 29:71–80
    [Google Scholar]
  134. 134.
    Kral U, Lin CY, Kellner K, Ma HW, Brunner PH. 2014. The copper balance of cities: exploratory insights into a European and an Asian city. J. Ind. Ecol. 18:3432–44
    [Google Scholar]
  135. 135.
    Licht C, Peiró LT, Villalba G. 2015. Global substance flow analysis of gallium, germanium, and indium: quantification of extraction, uses, and dissipative losses within their anthropogenic cycles. J. Ind. Ecol. 19:5890–903
    [Google Scholar]
  136. 136.
    Morf LS, Tremp J, Gloor R, Schuppisser F, Stengele M, Taverna R. 2007. Metals, non-metals and PCB in electrical and electronic waste–actual levels in Switzerland. Waste Manag 27:101306–16
    [Google Scholar]
  137. 137.
    Morf LS, Gloor R, Haag O, Haupt M, Skutan S et al. 2013. Precious metals and rare earth elements in municipal solid waste–sources and fate in a Swiss incineration plant. Waste Manag 33:3634–44
    [Google Scholar]
  138. 138.
    Peiró L, Villalba Méndez G, Ayres RU. 2013. Lithium: sources, production, uses, and recovery outlook. JOM 65:8986–96
    [Google Scholar]
  139. 139.
    Peiró LT, Méndez GV, Ayres RU. 2013. Material flow analysis of scarce metals: sources, functions, end-uses and aspects for future supply. Environ. Sci. Technol. 47:62939–47
    [Google Scholar]
  140. 140.
    Raupova O, Kamahara H, Goto N. 2014. Assessment of physical economy through economy-wide material flow analysis in developing Uzbekistan. Resour. Conserv. Recycl. 89:76–85
    [Google Scholar]
  141. 141.
    Rechberger H, Graedel TE. 2002. The contemporary European copper cycle: statistical entropy analysis. Ecol. Econ. 42:1–259–72
    [Google Scholar]
  142. 142.
    Reck BK, Chambon M, Hashimoto S, Graedel TE, Reck BK et al. 2010. Global stainless steel cycle exemplifies China's rise to metal dominance. Environ. Sci. Technol. 44:103940–46
    [Google Scholar]
  143. 143.
    Schulze R, Buchert M. 2016. Estimates of global REE recycling potentials from NdFeB magnet material. Resour. Conserv. Recycl. 113:12–27
    [Google Scholar]
  144. 144.
    Spatari S, Bertram M, Fuse K, Graedel TE, Rechberger H. 2002. The contemporary European copper cycle: 1 year stocks and flows. Ecol. Econ. 42:1–227–42
    [Google Scholar]
  145. 145.
    Spatari S, Bertram M, Fuse K, Graedel TE, Shelov E. 2003. The contemporary European zinc cycle: 1-year stocks and flows. Resour. Conserv. Recycl. 39:2137–60
    [Google Scholar]
  146. 146.
    Stanisavljevic N, Brunner PH. 2014. Combination of material flow analysis and substance flow analysis: a powerful approach for decision support in waste management. Waste Manag. Res. 32:8733–44
    [Google Scholar]
  147. 147.
    Tonini D, Dorini G, Astrup TF. 2014. Bioenergy, material, and nutrients recovery from household waste: advanced material, substance, energy, and cost flow analysis of a waste refinery process. Appl. Energy 121:64–78
    [Google Scholar]
  148. 148.
    van Beers D, van Berkel R, Graedel TE. 2005. The application of material flow analysis for the evaluation of the recovery potential of secondary metals in Australia Paper presented at the 4th Australian LCA Conference Sydney: Feb. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.384.6327&rep=rep1&type=pdf
    [Google Scholar]
  149. 149.
    van Eygen E, Feketitsch J, Laner D, Rechberger H, Fellner J. 2017. Comprehensive analysis and quantification of national plastic flows: the case of Austria. Resour. Conserv. Recycl. 117:183–94
    [Google Scholar]
  150. 150.
    Vyzinkarova D, Brunner PH. 2013. Substance flow analysis of wastes containing polybrominated diphenyl ethers. J. Ind. Ecol. 17:6900–11
    [Google Scholar]
  151. 151.
    Weisz H, Krausmann F, Amann C, Eisenmenger N, Erb KH et al. 2006. The physical economy of the European Union: cross-country comparison and determinants of material consumption. Ecol. Econ. 58:4676–98
    [Google Scholar]
  152. 152.
    Westbroek CD, Bitting J, Craglia M, Azevedo JMC, Cullen JM. 2021. Global material flow analysis of glass: from raw materials to end of life. J. Ind. Ecol. 25:2333–43
    [Google Scholar]
  153. 153.
    Zhang H, He PJ, Shao LM. 2008. Implication of heavy metals distribution for a municipal solid waste management system—a case study in Shanghai. Sci. Total Environ. 402:2–3257–67
    [Google Scholar]
  154. 154.
    Zoboli O, Laner D, Zessner M, Rechberger H. 2016. Added values of time series in material flow analysis: the Austrian phosphorus budget from 1990 to 2011. J. Ind. Ecol. 20:61334–48
    [Google Scholar]
  155. 155.
    Maslow A. 1954. Self-actualizing people. Motivation and Personality149–80 New York: Harper & Row
    [Google Scholar]
  156. 156.
    Gutowski T, Cooper D, Sahni S. 2017. Why we use more materials. Phil. Trans. R. Soc. A 375:209520160368
    [Google Scholar]
  157. 157.
    Winiwarter V, Haberl H, Fischer-Kowalski M, Krausmann F, Martinez-Alier J. 2011. A socio-metabolic transition towards sustainability? Challenges for another great transformation. Sustain. Dev. 19:11–14
    [Google Scholar]
  158. 158.
    Dartmouth Toxic Mater. Superfund Res. Program. n.d. Copper: an ancient metal. Dartmouth Toxic Materials Superfund Research Program https://sites.dartmouth.edu/toxmetal/more-metals/copper-an-ancient-metal/
    [Google Scholar]
  159. 159.
    Micklin P. 2007. The Aral Sea disaster. Annu. Rev. Earth Planet. Sci. 35:47–72
    [Google Scholar]
  160. 160.
    Assoc. Press 2016. Vietnam blames toxic waste water from steel plant for mass fish deaths. The Guardian July 1. https://www.theguardian.com/environment/2016/jul/01/vietnam-blames-toxic-waste-water-fom-steel-plant-for-mass-fish-deaths
    [Google Scholar]
  161. 161.
    BBC 2010. Villagers despair in Hungary's red wasteland. BBC Oct. 12. https://www.bbc.com/news/world-europe-11523573
    [Google Scholar]
  162. 162.
    Allwood JM, Ashby MF, Gutowski TG, Worrell E. 2011. Material efficiency: a white paper. Resour. Conserv. Recycl. 55:3362–81
    [Google Scholar]
  163. 163.
    Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J et al., eds. Summary for policymakers. Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5 C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty Rep., World Meteorol. Org. Geneva: https://www.ipcc.ch/sr15/chapter/spm/
    [Google Scholar]
  164. 164.
    Int. Energy Agency 2019. Material efficiency in clean energy transitions Rep., Int. Energy Agency Paris: https://www.iea.org/reports/material-efficiency-in-clean-energy-transitions
    [Google Scholar]
  165. 165.
    de Arquer M, Ponte B, Pino R. 2021. Examining the balance between efficiency and resilience in closed-loop supply chains. Cent. Eur. J. Oper. Res. https://doi.org/10.1007/s10100-021-00766-1
    [Crossref] [Google Scholar]
  166. 166.
    Cooper D. 2018. How recycling more steel and aluminum could slash imports without a trade war. The Conversation June 15. https://theconversation.com/how-recycling-more-steel-and-aluminum-could-slash-imports-without-a-trade-war-97766
    [Google Scholar]
  167. 167.
    Alonso E, Sherman AM, Wallington TJ, Everson MP, Field FR et al. 2012. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ. Sci. Technol. 46:63406–14 Correction 2012. Environ. Sci. Technol 46:84684
    [Google Scholar]
  168. 168.
    Yuan Z, Bi J, Moriguichi Y. 2006. The circular economy: a new development strategy in China. J. Ind. Ecol. 10:1–24–8
    [Google Scholar]
  169. 169.
    Eur. Comm. (EC) 2022. Circular economy action plan. European Commission https://ec.europa.eu/environment/strategy/circular-economy-action-plan_en
    [Google Scholar]
  170. 170.
    Kirchherr J, Reike D, Hekkert M. 2017. Conceptualizing the circular economy: an analysis of 114 definitions. Resour. Conserv. Recyc. 127:221–32
    [Google Scholar]
  171. 171.
    Sutherland JW, Skerlos SJ, Haapala KR, Cooper D, Zhao F, Huang A. 2020. Industrial sustainability: reviewing the past and envisioning the future. J. Manuf. Sci. Eng. 142:11110806
    [Google Scholar]
  172. 172.
    Argonne Natl. Lab. GREET model: the greenhouse gases, regulated emissions, and energy use in technologies model. Argonne National Laboratory https://greet.es.anl.gov
    [Google Scholar]
  173. 173.
    Hannah R, Roser M. 2020. CO2 and greenhouse gas emissions. Our World in Data https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions
    [Google Scholar]
  174. 174.
    Int. Energy Agency 2020. Iron and steel technology roadmap: towards more sustainable steelmaking Rep., Int. Energy Agency Paris: https://www.iea.org/reports/iron-and-steel-technology-roadmap
    [Google Scholar]
  175. 175.
    Rissman J, Bataille C, Masanet E, Aden N, Morrow WR et al. 2020. Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Appl. Energy 266:114848
    [Google Scholar]
  176. 176.
    Allwood JM, Cullen JM, Milford RL. 2010. Options for achieving a 50% cut in industrial carbon emissions by 2050. Environ. Sci. Technol. 44:61888–94
    [Google Scholar]
  177. 177.
    Gutowski TG, Sahni S, Allwood JM, Ashby MF, Worrell E. 2013. The energy required to produce materials: constraints on energy-intensity improvements, parameters of demand. Philos. Trans. R. Soc. A. 371:20120003
    [Google Scholar]
  178. 178.
    US Environ. Prot. Agency (EPA) 2020. Lifecycle Greenhouse Gas Results. US EPA https://www.epa.gov/fuels-registration-reporting-and-compliance-help/lifecycle-greenhouse-gas-results
    [Google Scholar]
  179. 179.
    Ryan NA, Miller SA, Skerlos SJ, Cooper DR. 2020. Reducing CO2 emissions from U.S. steel consumption by 70% by 2050. Environ. Sci. Technol. 54:2214598–608
    [Google Scholar]
  180. 180.
    Stahel W. 1982. The product-life factor Paper presented at the Woodlands Conference Houston, TX: Nov 7–10 http://www.product-life.org/en/major-publications/the-product-life-factor
    [Google Scholar]
  181. 181.
    Stahel WR. 1997. The service economy: “wealth without resource consumption”?. Philos. Trans. R. Soc. A 355: 1728.1309–19
    [Google Scholar]
  182. 182.
    Hannon B. 1973. System energy and recycling: a study of the beverage industry Doc. 23 Cent. Adv. Comp. Urbana, IL:
    [Google Scholar]
  183. 183.
    Meadows DH, Meadows DL, Randers J, Behrens WW. 1972. The Limits to Growth New York: Universe Books
    [Google Scholar]
  184. 184.
    Chertow MR. 2000. Industrial symbiosis: literature and taxonomy. Annu. Rev. Energy Environ. 25:313–37
    [Google Scholar]
  185. 185.
    Lorenz A. 2011. Kerfless silicon precursor wafer formed by rapid solidification. Subcontract. Rep. NREL/SR-5200-51934 Nat. Renew. Energy Lab. Golden, CO:
    [Google Scholar]
  186. 186.
    Oberhausen G, Zhu Y, Cooper D. 2021. Reducing the environmental impacts of aluminum extrusion. Resour. Conserv. Recycl. 179:106120
    [Google Scholar]
  187. 187.
    Woodhouse M, Smith B, Ramdas A, Margolis R. 2019. Crystalline silicon photovoltaic module manufacturing costs and sustainable pricing: 1H 2018 benchmark and cost reduction roadmap Tech. Rep. NREL/TP-6A20-72134 Nat. Renew. Energy Lab. Golden, CO:
    [Google Scholar]
  188. 188.
    Flint IP, Allwood JM, Serrenho AC. 2019. Scrap, carbon and cost savings from the adoption of flexible nested blanking. Int. J. Adv. Manuf. Technol. 104:1–41171–81
    [Google Scholar]
  189. 189.
    Vazquez V, Altan T. 2000. Die design for flashless forging of complex parts. J. Mater. Proc. Technol. 98:181–89
    [Google Scholar]
  190. 190.
    Music O, Allwood JM. 2011. Flexible asymmetric spinning. CIRP Ann 60:1319–22
    [Google Scholar]
  191. 191.
    Horton PM, Allwood JM. 2017. Yield improvement opportunities for manufacturing automotive sheet metal components. J. Mater. Proc. Technol. 249:78–88
    [Google Scholar]
  192. 192.
    Morgan JM, Liker JK. 2018. Designing the Future: How Ford, Toyota, and Other World-Class Organizations Use Lean Product Development to Drive Innovation and Transform Their Business New York: McGraw-Hill Educ.
    [Google Scholar]
  193. 193.
    Cooper DR, Appell K. 2021. Exploring how lean product and process development can promote industrial sustainability Paper presented at the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, virtual, Aug 17–19
    [Google Scholar]
  194. 194.
    Rodrigues B, Carmona LG, Whiting K, Sousa T. 2022. Resource efficiency for UK cars from 1960 to 2015: from stocks and flows to service provision. Environ. Dev. 41:100676
    [Google Scholar]
  195. 195.
    Zhu Y, Skerlos S, Xu M, Cooper DR. 2021. Reducing greenhouse gas emissions from U.S. light-duty transport in line with the 2°C target. Environ. Sci. Technol. 55:139326–38
    [Google Scholar]
  196. 196.
    Carruth MA, Allwood JM, Moynihan MC. 2011. The technical potential for reducing metal requirements through lightweight product design. Resour. . Conserv. Recycl. 57:48–60
    [Google Scholar]
  197. 197.
    Moynihan MC, Allwood JM. 2014. Utilization of structural steel in buildings. Proc. R. Soc. A 470:20140170
    [Google Scholar]
  198. 198.
    Huang R, Riddle M, Graziano D, Warren J, Das S et al. 2016. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. J. Clean. Prod. 135:1559–70
    [Google Scholar]
  199. 199.
    Osanov M, Guest JK. 2016. Topology optimization for architected materials design. Annu. Rev. Mater. Res. 46:211–33
    [Google Scholar]
  200. 200.
    Hirt G, Bambach M. 2012. Incremental sheet forming. Sheet Metal Forming Processes and Applications T Atlan, A Erman Tekkaya 273–88 Materials Park, OH: ASM Int.
    [Google Scholar]
  201. 201.
    Daehn GS, Taub A. 2018. Metamorphic manufacturing: the third wave in digital manufacturing. Manuf. Lett. 15:86–88
    [Google Scholar]
  202. 202.
    McBrien M, Allwood JM, Barekar NS. 2015. Tailor blank casting—control of sheet width using an electromagnetic edge dam in aluminium twin roll casting. J. Mater. Proc. Technol. 224:60–72
    [Google Scholar]
  203. 203.
    Carruth MA, Allwood JM. 2012. The development of a hot rolling process for variable cross-section I-beams. J. Mater. Proc. Technol. 212:81640–53
    [Google Scholar]
  204. 204.
    Jun L, Xiangsheng X, Qiang C. 2017. An investigation of the variable cross-section extrusion process. Int. J. Adv. Manuf. Technol. 91:1–4453–61
    [Google Scholar]
  205. 205.
    US Bur. Transp. Stat 2017. Table 422: energy intensity of light duty vehicles and motorcycles National Transportation Statistics, US Department of Transportation Washington, DC: updated Apr. 17. https://www.bts.gov/archive/publications/national_transportation_statistics/table_04_22
    [Google Scholar]
  206. 206.
    Wolfram P, Tu Q, Heeren N, Pauliuk S, Hertwich EG. 2021. Material efficiency and climate change mitigation of passenger vehicles. J. Ind. Ecol. 25:2494–510
    [Google Scholar]
  207. 207.
    Shanmugam K, Gadhamshetty V, Yadav P, Athanassiadis D, Tysklind M, Upadhyayula VKK. 2019. Advanced high-strength steel and carbon fiber reinforced polymer composite body in white for passenger cars: environmental performance and sustainable return on investment under different propulsion modes. ACS Sustain. Chem. Eng. 7:54951–63
    [Google Scholar]
  208. 208.
    Int. Panel Clim. Change (IPCC) 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment New York: Cambridge Univ. Press
    [Google Scholar]
  209. 209.
    Shepard W. 2015. “Half the houses will be demolished within 20 years”: on the disposable cities of China. CityMetric, Oct. 21
    [Google Scholar]
  210. 210.
    O'Connor J. 2004. Survey on actual service lives for North American buildings. Paper presented at the Woodframe Housing Durability and Disaster Issues Conference Las Vegas, NV: Oct.
    [Google Scholar]
  211. 211.
    Cooper DR, Skelton ACH, Moynihan MC, Allwood JM. 2014. Component level strategies for exploiting the lifespan of steel in products. Resour. Conserv. Recycl. 84:24–34
    [Google Scholar]
  212. 212.
    Webster MD, Costello DT. 2005. Designing structural systems for deconstruction: how to extend a new building's useful life and prevent it from going to waste when the end finally comes Paper presented at the Greenbuild Conference Atlanta, GA, Nov:.
    [Google Scholar]
  213. 213.
    Sutherland JW, Adler DP, Haapala KR, Kumar V. 2008. A comparison of manufacturing and remanufacturing energy intensities with application to diesel engine production. CIRP Ann 57:15–8
    [Google Scholar]
  214. 214.
    Kerr W, Ryan C. 2001. Eco-efficiency gains from remanufacturing. J. Clean. Prod. 9:175–81
    [Google Scholar]
  215. 215.
    King A, Miemczyk J, Bufton D 2006. Photocopier remanufacturing at Xerox UK. Innovation in Life Cycle Engineering and Sustainable Development D Brissaud 173–86 Dordecht, Neth: Springer
    [Google Scholar]
  216. 216.
    Ferrer G. 1997. The economics of tire remanufacturing. Resour. Conserv. Recycl. 19:4221–55
    [Google Scholar]
  217. 217.
    Boustani A, Sahni S, Gutowski T, Graves S. 2010. Tire remanufacturing and energy savings Rep., Environ. Benign Manuf. Lab., Sloan School Manag. Cambridge, MA:
    [Google Scholar]
  218. 218.
    Xu BS. 2004. Nano surface engineering and remanufacture engineering. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 14:Spec 21–5
    [Google Scholar]
  219. 219.
    Rochester Inst. Tech. n.d. Center for Remanufacturing and Resource Recovery. Rochester Institute of Technology https://www.rit.edu/sustainabilityinstitute/center-remanufacturing-and-resource-recovery
    [Google Scholar]
  220. 220.
    Cooper DR, Allwood JM. 2012. Reusing steel and aluminum components at end of product life. Environ. Sci. Technol. 46:1810334–40
    [Google Scholar]
  221. 221.
    Moynihan MC, Allwood JM. 2014. Viability and performance of demountable composite connectors. J. Constr. Steel Res. 99:4756
    [Google Scholar]
  222. 222.
    Leal-Ayala DR, Allwood JM, Schmidt M, Alexeev I 2012. Toner-print removal from paper by long and ultrashort pulsed lasers. Proc. R. Soc. A 468:2272–93
    [Google Scholar]
  223. 223.
    Cooper D, Gutowski T. 2017. The environmental impacts of reuse: a review. J. Ind. Ecol. 21:138–56
    [Google Scholar]
  224. 224.
    Krill M, Thurston DL. 2005. Remanufacturing: impacts of sacrificial cylinder liners. J. Manuf. Sci. Eng. 127:3687–97
    [Google Scholar]
  225. 225.
    Flint IP, Cabrera Serrenho A, Lupton RC, Allwood JM 2020. Material flow analysis with multiple material characteristics to assess the potential for flat steel prompt scrap prevention and diversion without remelting. Environ. Sci. Technol. 54:42459–66
    [Google Scholar]
  226. 226.
    Chiba R, Nakamura T, Kuroda M. 2011. Solid-state recycling of aluminium alloy swarf through cold profile extrusion and cold rolling. J. Mater. Proc. Technol. 211:111878–87
    [Google Scholar]
  227. 227.
    Duflou JR, Tekkaya AE, Haase M, Welo T, Vanmeensel K et al. 2015. Environmental assessment of solid state recycling routes for aluminium alloys: Can solid state processes significantly reduce the environmental impact of aluminium recycling?. CIRP Ann 64:137–40
    [Google Scholar]
  228. 228.
    Shamsudin S, Lajis M, Zhong ZW. 2016. Evolutionary in solid state recycling techniques of aluminium: a review. Procedia CIRP 40:256–61
    [Google Scholar]
  229. 229.
    Liao J, Cooper DR. 2021. The environmental impacts of metal powder bed additive manufacturing. J. Manuf. Sci. Eng. 143:3030801
    [Google Scholar]
  230. 230.
    Rahimi AR, Garciá JM. 2017. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1:0046
    [Google Scholar]
  231. 231.
    Zheng J, Suh S. 2019. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9:374–78
    [Google Scholar]
  232. 232.
    Ekvall T, Fråne A, Hallgren F, Holmgren K. 2014. Material pinch analysis: a pilot study on global steel flows. Metall. Res. Technol. 111:6359–67
    [Google Scholar]
  233. 233.
    Bertram M, Ramkumar S, Rechberger H, Rombach G, Bayliss C et al. 2017. A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products. Resour. Conserv. Recycl. 125:48–69
    [Google Scholar]
  234. 234.
    Zhu Y, Cooper DR. 2019. An optimal reverse material supply chain for U.S. aluminum scrap. Procedia CIRP 80:677–82
    [Google Scholar]
  235. 235.
    Rod O, Becker C, Nylén M. 2006. Opportunities and dangers of using residual elements in steels: a literature survey Rep. D 819, Jernknotoret Forsk. Stockholm:
    [Google Scholar]
  236. 236.
    Boin UMJ, Bertram M. 2005. Melting standardized aluminum scrap: a mass balance model for Europe. JOM 57:26–33
    [Google Scholar]
  237. 237.
    Ragaert K, Delva L, van Geem K. 2017. Mechanical and chemical recycling of solid plastic waste. Waste Manag 69:24–58
    [Google Scholar]
  238. 238.
    Cooper DR, Song J, Gerard R 2018. Metal recovery during melting of extruded machining chips. J. Clean. Prod. 200:282–92
    [Google Scholar]
  239. 239.
    Vatne HE. 2021. Hydro's approach to sustainability. Presented at the TMS 2021 Annual Meeting and Exhibition, online Mar. 15–18. https://www.tms.org/tms2021/downloads/slides/5-HydroApproachtoSustainability-Vatne.pdf
    [Google Scholar]
  240. 240.
    Shahbazi S, Wiktorsson M, Kurdve M, Jönsson C, Bjelkemyr M. 2016. Material efficiency in manufacturing: Swedish evidence on potential, barriers and strategies. J. Clean. Prod. 127:438–50
    [Google Scholar]
  241. 241.
    Hertwich EG, Ali S, Ciacci L, Fishman T, Heeren N et al. 2019. Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. Environ. Res. Lett. 14:4043004
    [Google Scholar]
  242. 242.
    Skelton ACH, Allwood JM. 2013. Product life trade-offs: What if products fail early?. Environ. Sci. Technol. 47:31719–28
    [Google Scholar]
  243. 243.
    Milford RL, Allwood JM, Cullen JM. 2011. Assessing the potential of yield improvements, through process scrap reduction, for energy and CO2 abatement in the steel and aluminium sectors. Resour. Conserv. Recycl. 55:121185–95
    [Google Scholar]
  244. 244.
    Pauliuk S, Heeren N. 2021. Material efficiency and its contribution to climate change mitigation in Germany: a deep decarbonization scenario analysis until 2060. J. Ind. Ecol. 25:2479–93
    [Google Scholar]
  245. 245.
    Int. Energy Agency 2017. Energy technology perspectives 2017 Rep., Int. Energy Agency Paris: https://www.iea.org/reports/energy-technology-perspectives-2017
    [Google Scholar]
  246. 246.
    Grubler A, Wilson C, Bento N, Boza-Kiss B, Krey V et al. 2018. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 3:6515–27
    [Google Scholar]
  247. 247.
    Int. Energy Agency 2020. Energy technology perspectives 2020: special report on clean energy innovation Rep., Int. Energy Agency Paris:
    [Google Scholar]
  248. 248.
    Hertwich EG. 2005. Consumption and the rebound effect: an industrial ecology perspective. J. Ind. Ecol. 9:1–285–98
    [Google Scholar]
  249. 249.
    Thomas VM. 2011. The environmental potential of reuse: an application to used books. Sustain. Sci. 6:1109–16
    [Google Scholar]
  250. 250.
    Geyer R, Kuczenski B, Zink T, Henderson A. 2016. Common misconceptions about recycling. J. Ind. Ecol. 20:51010–17
    [Google Scholar]
  251. 251.
    Zink T, Geyer R. 2017. Circular economy rebound. J. Ind. Ecol. 21:3593–602
    [Google Scholar]
  252. 252.
    MacKenzie D, Zoepf S, Heywood J 2014. Determinants of US passenger car weight. Int. J. Veh. Des. 65:173–93
    [Google Scholar]
  253. 253.
    Magee CL, Devezas TC. 2017. A simple extension of dematerialization theory: Incorporation of technical progress and the rebound effect. Technol. Forecast. Soc. Change 117:196–205
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070218-125903
Loading
/content/journals/10.1146/annurev-matsci-070218-125903
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error