1932

Abstract

Heusler compounds are a large family of binary, ternary, and quaternary compounds that exhibit a wide range of properties of both fundamental and potential technological interest. The extensive tunability of the Heusler compounds through chemical substitutions and structural motifs makes the family especially interesting. In this article we highlight recent major developments in the field of Heusler compounds and put these in the historical context. The evolution of the Heusler compounds can be described by four major periods of research. In the latest period, Heusler 4.0 has led to the observation of a variety of properties derived from topology that includes topological metals with Weyl and Dirac points; a variety of noncollinear spin textures, including the very recent observation of skyrmions at room temperature; and giant anomalous Hall effects in antiferromagnetic Heuslers with triangular magnetic structures. Here we give a comprehensive overview of these major achievements and set research into Heusler materials within the context of recent emerging trends in condensed matter physics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070616-123928
2017-07-03
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/matsci/47/1/annurev-matsci-070616-123928.html?itemId=/content/journals/10.1146/annurev-matsci-070616-123928&mimeType=html&fmt=ahah

Literature Cited

  1. Heusler F.1.  1903. Ueber magnetische Manganlegierungen. Verh. Dtsch. Phys. Ges. 5:219 [Google Scholar]
  2. Heusler F, Starck W, Haupt E. 2.  1903. Magnetisch-chemische Studien. Verh. Dtsch. Phys. Ges. 5:220 [Google Scholar]
  3. Néel L.3.  1936. Propriétés magnétiques de l'état magnétique et énergie d'interaction entre atomes magnétiques. Ann. Phys. 5:232–79 [Google Scholar]
  4. Néel L.4.  1953. Some new results on antiferromagnetism and ferromagnetism. Rev. Mod. Phys. 25:58–63 [Google Scholar]
  5. Heusler O.5.  1934. Kristallstruktur und Ferromagnetismus der Mangan-Aluminium-Kupferlegierungen. Adv. Phys. 411:155–201 [Google Scholar]
  6. Bradley AJ, Rodgers JW. 6.  1934. The crystal structure of the Heusler alloys. Proc. R. Soc. A 144:340–59 [Google Scholar]
  7. Juza R, Hund F. 7.  1946. Die Kristallstrukturen LiMgN, LiZnN, Li3AlN2 und Li3GaN2. Naturwissenschaften 33:121–22 [Google Scholar]
  8. Nowotny H, Bachmayer K. 8.  1950. Die Verbindungen LiMgP, LiZnP und LiZnAs. Monatsh. Chem. 81:488–96 [Google Scholar]
  9. Castelliz L.9.  1951. Eine ferromagnetische Phase im System Nickel-Mangan-Antimon. Monatsh. Chem. 82:1059–85 [Google Scholar]
  10. Castelliz L.10.  1952. Über eine Mischkristallreihe zwischen zwei terären Vertretern des C1-Typs. Monatsh. Chem. 83:1314–17 [Google Scholar]
  11. Graf T, Felser C, Parkin SSP. 11.  2011. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39:1–50 [Google Scholar]
  12. Webster P.12.  1971. Magnetic and chemical order in Heusler alloys containing cobalt and manganese. J. Phys. Chem. Solids 32:1221–31 [Google Scholar]
  13. Webster PJ, Tebble RS. 13.  1967. The magnetic and chemical ordering of the Heusler alloys Pd2MnIn, Pd2MnSn and Pd2MnSb. Philos. Mag. 16:347–61 [Google Scholar]
  14. Morris DP, Preston RR, Williams I. 14.  1959. Search for new Heusler alloys. Proc. Phys. Soc. 73:520 [Google Scholar]
  15. Webster P, Ramadan M. 15.  1977. Magnetic order in palladium-based Heusler alloys. Part I. Pd2MnIn1xSnx and Pd2MnSn1xSbx. J. Magn. Magn. Mater. 5:51–59 [Google Scholar]
  16. Suits J.16.  1976. Structural instability in new magnetic Heusler compounds. Solid State Commun. 18:423–25 [Google Scholar]
  17. Suits JC.17.  1976. New magnetic compounds with Heusler and Heusler-related structures. Phys. Rev. B 14:4131–35 [Google Scholar]
  18. Felser C, Fecher G, Balke B. 18.  2007. Spintronics: a challenge for materials science and solid-state chemistry. Angew. Chem. Int. Ed. 46:668–99 [Google Scholar]
  19. de Groot RA, Mueller FM, van Engen PG, Buschow KHJ. 19.  1983. New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50:2024–27 [Google Scholar]
  20. Ishida S, Akazawa S, Kubo Y, Ishida J. 20.  1982. Band theory of Co2MnSn, Co2TiSn and Co2TiAl. J. Phys. F Met. Phys. 12:1111 [Google Scholar]
  21. Vosko SH, Wilk L, Nusair M. 21.  1980. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58:1200–11 [Google Scholar]
  22. Kübler J, William AR, Sommers CB. 22.  1983. Formation and coupling of magnetic moments in Heusler alloys. Phys. Rev. B 28:1745 [Google Scholar]
  23. Friedel J.23.  1958. Metallic alloys. Nuovo Cim. 7:287–311 [Google Scholar]
  24. Ouardi S, Fecher GH, Balke B, Beleanu A, Kozina X. 24.  et al. 2011. Electronic and crystallographic structure, hard X-ray photoemission, and mechanical and transport properties of the half-metallic Heusler compound Co2MnGe. Phys. Rev. B 84:155122 [Google Scholar]
  25. Skaftouros S, Özdoğan K, Şaşioğlu E, Galanakis I. 25.  2013. Generalized Slater-Pauling rule for the inverse Heusler compounds. Phys. Rev. B 87:024420 [Google Scholar]
  26. Kübler J, Fecher GH, Felser C. 26.  2007. Understanding the trend in the Curie temperatures of Co2-based Heusler compounds: ab initio calculations. Phys. Rev. B 76:024414 [Google Scholar]
  27. Kübler J.27.  2000. Theory of Itinerant Electron Magnetism Oxford, UK: Oxford Univ. Press [Google Scholar]
  28. Block T, Felser C, Jakob G, Ensling J, Mühling B. 28.  et al. 2003. Large negative magnetoresistance effects in Co2Cr0.6Fe0.4Al. J. Solid State Chem. 176:646–51 [Google Scholar]
  29. Liu Hx, Honda Y, Taira T, Matsuda Ki, Arita M. 29.  et al. 2012. Giant tunneling magnetoresistance in epitaxial Co2MnSi/MgO/Co2MnSi magnetic tunnel junctions by half-metallicity of Co2MnSi and coherent tunneling. Appl. Phys. Lett. 101:132418 [Google Scholar]
  30. Jourdan M, Minár J, Braun J, Kronenberg A, Chadov S. 30.  et al. 2014. Direct observation of half-metallicity in the Heusler compound Co2MnSi. Nat. Commun. 5:3974 [Google Scholar]
  31. Weht R, Pickett WE. 31.  1999. Half-metallic ferrimagnetism in Mn2VAl. Phys. Rev. B 60:13006–10 [Google Scholar]
  32. Krén E, Kádár G. 32.  1970. Neutron diffraction study of Mn3Ga. Solid State Commun. 8:1653–55 [Google Scholar]
  33. Balke B, Fecher GH, Winterlik J, Felser C. 33.  2007. Mn3Ga, a compensated ferrimagnet with high Curie temperature and low magnetic moment for spin torque transfer applications. Appl. Phys. Lett. 90:152504 [Google Scholar]
  34. Winterlik J, Balke B, Fecher GH, Felser C, Alves MCM. 34.  et al. 2008. Structural, electronic, and magnetic properties of tetragonal Mn3–xGa: experiments and first-principles calculations. Phys. Rev. B 77:054406 [Google Scholar]
  35. Kopp WU, Wachtel E. 35.  1969. Magnetic properies of solid and liquid Al-Mn alloys containing Cr, V or Ti. Z. Metallkd. 60:713 [Google Scholar]
  36. Nakamichi T, Itoh H. 36.  1978. Magnegtic properties of Mn-V-Al ternary alloys. Z. Metallkd. 69:344–50 [Google Scholar]
  37. Itoh H, Nakamichi T, Yamaguchi Y, Kazama N. 37.  1983. Neutron diffraction study of Heusler type alloy Mn0.47V0.28Al0.25. Trans. Jpn. Inst. Met. 24:265–71 [Google Scholar]
  38. Galanakis I, Dederichs PH, Papanikolaou N. 38.  2002. Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Phys. Rev. B 66:134428 [Google Scholar]
  39. Özdogan K, Galanakis I, Şaşioğlu E, Aktaş B. 39.  2006. Search for half-metallic ferrimagnetism in V-based Heusler alloys Mn2VZ (Z = Al, Ga, In, Si, Ge, Sn). J. Phys. Condens. Matter 18:2905–14 [Google Scholar]
  40. Wollmann L, Chadov S, Kübler J, Felser C. 40.  2014. Magnetism in cubic manganese-rich Heusler compounds. Phys. Rev. B 90:214420 [Google Scholar]
  41. Wollmann L, Chadov S, Kübler J, Felser C. 41.  2015. Magnetism in tetragonal manganese-rich Heusler compounds. Phys. Rev. B 92:064417 [Google Scholar]
  42. Wurmehl S, Kandpal HC, Fecher GH, Felser C. 42.  2006. Valence electron rules for prediction of half-metallic compensated-ferrimagnetic behaviour of Heusler compounds with complete spin polarization. J. Phys. Condens. Matter 18:6171–81 [Google Scholar]
  43. Burch TJ, Litrenta T, Budnick JI. 43.  1974. Hyperfine studies of site occupation in ternary systems. Phys. Rev. Lett. 33:421–24 [Google Scholar]
  44. Luo H, Zhu Z, Ma L, Xu S, Zhu X. 44.  et al. 2008. Effect of site preference of 3d atoms on the electronic structure and half-metallicity of Heusler alloy Mn2Y Al. J. Phys. D Appl. Phys. 41:055010 [Google Scholar]
  45. Slater JC.45.  1936. The ferromagnetism of nickel. II. Temperature effects. Phys. Rev. 49:931–37 [Google Scholar]
  46. Pauling L.46.  1938. The nature of the interatomic forces in metals. Phys. Rev. 54:899–904 [Google Scholar]
  47. Kurt H, Rode K, Stamenov P, Venkatesan M, Lau YC. 47.  et al. 2014. Cubic Mn2Ga thin films: crossing the spin gap with ruthenium. Phys. Rev. Lett. 112:027201 [Google Scholar]
  48. Betto D, Thiyagarajah N, Lau YC, Piamonteze C, Arrio MA. 48.  et al. 2015. Site-specific magnetism of half-metallic Mn2RuxGa thin films determined by X-ray absorption spectroscopy. Phys. Rev. B 91:094410 [Google Scholar]
  49. Stinshoff R, Nayak AK, Fecher GH, Balke B, Ouardi S. 49.  et al. 2017. Completely compensated ferrimagnetism and sublattice spin crossing in the half-metallic Heusler compound Mn1.5FeV0.5Al. Phys. Rev. B 95:060410(R) [Google Scholar]
  50. Ouardi S, Fecher GH, Felser C, Kübler J. 50.  2013. Realization of spin gapless semiconductors: the Heusler compound Mn2CoAl. Phys. Rev. Lett. 110:100401 [Google Scholar]
  51. Wang XL.51.  2008. Proposal for a new class of materials: spin gapless semiconductors. Phys. Rev. Lett. 100:156404 [Google Scholar]
  52. Özdoğan K, Şaşioğlu E, Galanakis I. 52.  2013. Slater-Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: half-metallicity, spin-gapless and magnetic semiconductors. J. Appl. Phys. 113:193903 [Google Scholar]
  53. Ullakko K, Huang JK, Kantner C, O'Handley RC, Kokorin VV. 53.  1996. Large magnetic field induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 69:1966–68 [Google Scholar]
  54. Liu GD, Dai XF, Yu SY, Zhu ZY, Chen JL. 54.  et al. 2006. Physical and electronic structure and magnetism of Mn2NiGa: experiment and density-functional theory calculations. Phys. Rev. B 74:054435 [Google Scholar]
  55. Slonczewski J.55.  1996. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159:L1–7 [Google Scholar]
  56. Berger L.56.  1996. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54:9353–58 [Google Scholar]
  57. Alijani V, Winterlik J, Fecher GH, Felser C. 57.  2011. Tuning the magnetism of the Heusler alloys Mn3–xCoxGa from soft and half-metallic to hard-magnetic for spin-transfer torque applications. Appl. Phys. Lett. 99:222510 [Google Scholar]
  58. Ouardi S, Kubota T, Fecher GH, Stinshoff R, Mizukami S. 58.  et al. 2012. Stoichiometry dependent phase transition in Mn-Co-Ga-based thin films: from cubic in-plane, soft magnetized to tetragonal perpendicular, hard magnetized. Appl. Phys. Lett. 101:242406 [Google Scholar]
  59. Wollmann L, Fecher GH, Chadov S, Felser C. 59.  2015. A scheme for spin-selective electron localization in Mn3Ga Heusler material. J. Phys. D Appl. Phys. 48:164004 [Google Scholar]
  60. Chadov S, D'Souza SW, Wollmann L, Kiss J, Fecher GH, Felser C. 60.  2015. Chemical disorder as an engineering tool for spin polarization in Mn3Ga-based Heusler systems. Phys. Rev. B 91:094203 [Google Scholar]
  61. Winterlik J, Fecher GH, Balke B, Graf T, Alijani V. 61.  et al. 2011. Electronic, magnetic, and structural properties of the ferrimagnet Mn2CoSn. Phys. Rev. B 83:174448 [Google Scholar]
  62. Klaer P, Jenkins CA, Alijani V, Winterlik J, Balke B. 62.  et al. 2011. Disentangling the Mn moments on different sublattices in the half-metallic ferrimagnet Mn3–xCoxGa. Appl. Phys. Lett. 98:212510 [Google Scholar]
  63. Nayak AK, Shekhar C, Winterlik J, Gupta A, Felser C. 63.  2012. Mn2PtIn: a tetragonal Heusler compound with exchange bias behavior. Appl. Phys. Lett. 100:152404 [Google Scholar]
  64. Gasi T, Nayak AK, Winterlik J, Ksenofontov V, Adler P. 64.  et al. 2013. Exchange-spring like magnetic behavior of the tetragonal Heusler compound Mn2FeGa as a candidate for spin-transfer torque. Appl. Phys. Lett. 102:202402 [Google Scholar]
  65. Kurt H, Baadji N, Rode K, Venkatesan M, Stamenov P. 65.  et al. 2012. Magnetic and electronic properties of D022-Mn3Ge (001) films. Appl. Phys. Lett. 101:132410 [Google Scholar]
  66. Jeong J, Ferrante Y, Faleev SV, Samant MG, Felser C, Parkin SSP. 66.  2016. Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy. Nat. Commun. 7:10276 [Google Scholar]
  67. Nayak AK, Nicklas M, Chadov S, Khuntia P, Shekhar C. 67.  et al. 2015. Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias. Nat. Mater. 14:679 [Google Scholar]
  68. Sahoo R, Wollmann L, Selle S, Höche T, Ernst B. 68.  et al. 2016. Compensated ferrimagnetic tetragonal Heusler thin films for antiferromagnetic spintronics. Adv. Mater. 28:8499–504 [Google Scholar]
  69. Nayak AK, Nicklas M, Chadov S, Shekhar C, Skourski Y. 69.  et al. 2013. Large zero-field cooled exchange-bias in bulk Mn2PtGa. Phys. Rev. Lett. 110:127204 [Google Scholar]
  70. Ryu KS, Thomas L, Yang SH, Parkin SS. 70.  2013. Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8:527–33 [Google Scholar]
  71. Yang SH, Ryu KS, Parkin SS. 71.  2015. Domain-wall velocities of up to 750 ms–1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10:221–26 [Google Scholar]
  72. Parkin SSP, Hayashi M, Thomas L. 72.  2008. Magnetic domain-wall racetrack memory. Science 320:190 [Google Scholar]
  73. Parkin SSP.73.  2004. Shiftable magnetic shift register and method of using the same US Patent 6,834,005 [Google Scholar]
  74. Schulz T, Ritz R, Bauer A, Halder M, Wagner M. 74.  et al. 2012. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8:301–4 [Google Scholar]
  75. Meshcheriakova O, Chadov S, Nayak AK, Rössler UK, Kübler J. 75.  et al. 2014. Large noncollinearity and spin reorientation in the novel Mn2RhSn Heusler magnet. Phys. Rev. Lett. 113:087203 [Google Scholar]
  76. Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R. 76.  et al. 2009. Topological Hall effect in the a phase of MnSi. Phys. Rev. Lett. 102:186602 [Google Scholar]
  77. Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K. 77.  et al. 2011. Large topological Hall effect in a short-period helimagnet MnGe. Phys. Rev. Lett. 106:156603 [Google Scholar]
  78. Rana KG, Meshcheriakova O, Kübler J, Ernst B, Karel J. 78.  et al. 2016. Observation of topological Hall effect in Mn2RhSn films. New J. Phys. 18:085007 [Google Scholar]
  79. Bernevig BA, Hughes TL, Zhang SC. 79.  2006. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314:1757–61 [Google Scholar]
  80. König M, Wiedmann S, Brüne C, Roth A, Buhmann H. 80.  et al. 2007. Quantum spin Hall insulator state in HgTe quantum wells. Science 318:766–70 [Google Scholar]
  81. Beleanu A, Mondeshki M, Juan Q, Casper F, Felser C, Porcher F. 81.  2011. Systematical, experimental investigations on LiMgZ (Z = P, As, Sb) wide band gap semiconductors. J. Phys. D Appl. Phys. 44:475302 [Google Scholar]
  82. Ouardi S, Shekhar C, Fecher GH, Kozina X, Stryganyuk G. 82.  et al. 2011. Electronic structure of Pt based topological Heusler compounds with C1b structure and “zero band gap”. Appl. Phys. Lett. 98:211901 [Google Scholar]
  83. Chadov S, Qi X, Kübler J, Fecher GH, Felser C, Zhang SC. 83.  2010. Tunable multifunctional topological insulators in ternary Heusler compounds. Nat. Mater. 9:541–45 [Google Scholar]
  84. Lin H, Wray LA, Xia Y, Xu S, Jia S. 84.  et al. 2010. Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nat. Mater. 9:546–49 [Google Scholar]
  85. Canfield PC, Thompson JD, Beyermann WP, Lacerda A, Hundley MF. 85.  et al. 1991. Magnetism and heavy fermion-like behavior in the RBiPt series. J. Appl. Phys. 70:5800 [Google Scholar]
  86. Goll G, Marz M, Hamann A, Tomanic T, Grube K. 86.  et al. 2008. Thermodynamic and transport properties of the non-centrosymmetric superconductor LaBiPt. Physica B 403:1065–67 [Google Scholar]
  87. Fisk Z, Canfield PC, Beyermann WP, Thompson JD, Hundley MF. 87.  et al. 1991. Massive electron state in YbBiPt. Phys. Rev. Lett. 67:3310–13 [Google Scholar]
  88. Butch NP, Syers P, Kirshenbaum K, Hope AP, Paglione J. 88.  2011. Superconductivity in the topological semimetal YPtBi. Phys. Rev. B 84:220504 [Google Scholar]
  89. Müchler L, Casper F, Yan B, Chadov S, Felser C. 89.  2013. Topological insulators and thermoelectric materials. Phys. Stat. Solid. RRL 7:91–100 [Google Scholar]
  90. Weng H, Fang C, Fang Z, Bernevig BA, Dai X. 90.  2015. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5:011029 [Google Scholar]
  91. Shekhar C, Nayak AK, Sun Y, Schmidt M, Nicklas M. 91.  et al. 2015. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11:645–49 [Google Scholar]
  92. Huang X, Zhao L, Long Y, Wang P, Chen D. 92.  et al. 2015. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5:031023 [Google Scholar]
  93. Ciudad D.93.  2015. Weyl fermions: massless yet real. Nat. Mater. 14:863–63 [Google Scholar]
  94. Xu SY, Belopolski I, Alidoust N, Neupane M, Bian G. 94.  et al. 2015. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349:613–17 [Google Scholar]
  95. Huang SM, Xu SY, Belopolski I, Lee CC, Chang G. 95.  et al. 2015. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6:7373 [Google Scholar]
  96. Xu SY, Alidoust N, Belopolski I, Yuan Z, Bian G. 96.  et al. 2015. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11:748–54 [Google Scholar]
  97. Xu SY, Belopolski I, Sanchez DS, Zhang C, Chang G. 97.  et al. 2015. Experimental discovery of a topological Weyl semimetal state in TaP. Sci. Adv. 1:e1501092 [Google Scholar]
  98. Xiong J, Kushwaha SK, Liang T, Krizan JW, Hirschberger M. 98.  et al. 2015. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350:413–16 [Google Scholar]
  99. Dai X.99.  2015. Weyl semimetals: a group family picture. Nat. Mater. 15:5–6 [Google Scholar]
  100. Liu ZK, Yang LX, Sun Y, Zhang T, Peng H. 100.  et al. 2015. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat. Mater. 15:27–31 [Google Scholar]
  101. Batabyal R, Morali N, Avraham N, Sun Y, Schmidt M. 101.  et al. 2016. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions. Sci. Adv. 2:e1600709 [Google Scholar]
  102. Chang G, Xu SY, Sanchez DS, Huang SM, Lee CC. 102.  et al. 2016. A strongly robust type II Weyl fermion semimetal state in Ta3S2. Sci. Adv. 2:e1600295 [Google Scholar]
  103. Lee CC, Xu SY, Huang SM, Sanchez DS, Belopolski I. 103.  et al. 2015. Fermi surface interconnectivity and topology in Weyl fermion semimetals TaAs, TaP, NbAs, and NbP. Phys. Rev. B 92:235104 [Google Scholar]
  104. Chang G, Xu SY, Zheng H, Lee CC, Huang SM. 104.  et al. 2016. Signatures of Fermi arcs in the quasiparticle interferences of the Weyl semimetals TaAs and NbP. Phys. Rev. Lett. 116:066601 [Google Scholar]
  105. Belopolski I, Xu SY, Sanchez DS, Chang G, Guo C. 105.  et al. 2016. Criteria for directly detecting topological fermi arcs in Weyl semimetals. Phys. Rev. Lett. 116:066802 [Google Scholar]
  106. Yang FY.106.  1999. Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science 284:1335–37 [Google Scholar]
  107. Xu R, Husmann A, Rosenbaum TF, Saboungi ML, Enderby JE, Littlewood PB. 107.  1997. Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390:57–60 [Google Scholar]
  108. Ali MN, Xiong J, Flynn S, Tao J, Gibson QD. 108.  et al. 2014. Large, non-saturating magnetoresistance in WTe2. Nature 514:205–8 [Google Scholar]
  109. Liu ZK, Yang LX, Wu SC, Shekhar C, Jiang J. 109.  et al. 2016. Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln = Lu, Y). Nat. Commun. 7:12924 [Google Scholar]
  110. Hirschberger M, Kushwaha S, Wang Z, Gibson Q, Liang S. 110.  et al. 2016. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 15:1161–65 [Google Scholar]
  111. Kreyssig A, Kim MG, Kim JW, Pratt DK, Sauerbrei SM. 111.  et al. 2011. Magnetic order in GdBiPt studied by X-ray resonant magnetic scattering. Phys. Rev. B 84:220408 [Google Scholar]
  112. Müller RA, Lee-Hone NR, Lapointe L, Ryan DH, Pereg-Barnea T. 112.  et al. 2014. Magnetic structure of GdBiPt: a candidate antiferromagnetic topological insulator. Phys. Rev. B 90:041109 [Google Scholar]
  113. Müller RA, Desilets-Benoit A, Gauthier N, Lapointe L, Bianchi AD. 113.  et al. 2015. Magnetic structure of the antiferromagnetic half-Heusler compound NdBiPt. Phys. Rev. B 92:184432 [Google Scholar]
  114. Shekhar C, Nayak AK, Singh S, Kumar N, Wu SC. 114.  et al. 2016. Observation of chiral magneto-transport in RPtBi topological Heusler compounds. arXiv:1604.01641 [Google Scholar]
  115. Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP. 115.  2010. Anomalous Hall effect. Rev. Mod. Phys. 82:1539–92 [Google Scholar]
  116. Fang Z, Nagaosa N, Takahashi KS, Asamitsu A, Mathieu R. 116.  et al. 2003. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302:92–95 [Google Scholar]
  117. Kübler J, Felser C. 117.  2012. Berry curvature and the anomalous Hall effect in Heusler compounds. Phys. Rev. B 85:012405 [Google Scholar]
  118. Vidal EV, Stryganyuk G, Schneider H, Felser C, Jakob G. 118.  2011. Exploring Co2MnAl Heusler compound for anomalous Hall effect sensors. Appl. Phys. Lett. 99:132509 [Google Scholar]
  119. Husmann A, Singh LJ. 119.  2006. Temperature dependence of the anomalous Hall conductivity in the Heusler alloy Co2CrAl. Phys. Rev. B 73:172417 [Google Scholar]
  120. Wang Z, Vergniory MG, Kushwaha S, Hirschberger M, Chulkov EV. 120.  et al. 2016. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117:236401 [Google Scholar]
  121. Chang G, Xu S-Y, Zheng H, Singh B, Hsu C-H. 121.  et al. 2016. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X = Si, Ge, or Sn). Sci. Rep. 6:38839 [Google Scholar]
  122. Nagamiya T, Tomiyoshi S, Yamaguchi Y. 122.  1982. Triangular spin configuration and weak ferromagnetism of Mn3Sn and Mn3Ge. Solid State Commun. 42:385–88 [Google Scholar]
  123. Tomiyoshi S, Yamaguchi Y, Nagamiya T. 123.  1983. Triangular spin configuration and weak ferromagnetism of Mn3Ge. J. Magn. Magn. Mater. 31–34:629–30 [Google Scholar]
  124. Yamada N, Sakai H, Mori H, Ohoyama T. 124.  1988. Magnetic properties of ε-Mn3Ge. Physica B+C 149:311–15 [Google Scholar]
  125. Qian JF, Nayak AK, Kreiner G, Schnelle W, Felser C. 125.  2014. Exchange bias up to room temperature in antiferromagnetic hexagonal Mn3Ge. J. Phys. D Appl. Phys. 47:305001 [Google Scholar]
  126. Zhang D, Yan B, Wu SC, Kübler J, Kreiner G. 126.  et al. 2013. First-principles study of the structural stability of cubic, tetragonal and hexagonal phases in Mn3Z (Z = Ga, Sn and Ge) Heusler compounds. J. Phys. Condens. Matter 25:206006 [Google Scholar]
  127. Chen H, Niu Q, MacDonald AH. 127.  2014. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112:017205 [Google Scholar]
  128. Kübler J, Felser C. 128.  2014. Non-collinear antiferromagnets and the anomalous Hall effect. EPL 108:67001 [Google Scholar]
  129. Nayak AK, Fischer JE, Sun Y, Yan B, Karel J. 129.  et al. 2016. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2:e1501870 [Google Scholar]
  130. Nakatsuji S, Kiyohara N, Higo T. 130.  2015. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527:212–15 [Google Scholar]
  131. Wurmehl S, Fecher GH, Kandpal HC, Ksenofontov V, Felser C. 131.  et al. 2005. Geometric, electronic, and magnetic structure of Co2FeSi: Curie temperature and magnetic moment measurements and calculations. Phys. Rev. B 72:184434 [Google Scholar]
  132. Jungwirth T, Marti X, Wadley P, Wunderlich J. 132.  2016. Antiferromagnetic spintronics. Nat. Nanotechnol. 11:231–41 [Google Scholar]
  133. Bragg WL. 133.  1914. The analysis of crystals by the X-ray spectrometer. Proc. R. Soc. A 89:468–89 [Google Scholar]
  134. Nowotny H, Sibert W. 134.  1941. Ternäre Valenzverbindungen in den Systemen Kupfer(Silber)-Arsen(Antimon, Wismut)-Magnesium. Z. Metallkd. 33:391 [Google Scholar]
  135. Pauly H, Weiss A, Witte H. 135.  1968. The crystal structure of the ternary intermetallic phases Li2EX (E=Cu, Ag, Au; X=Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, Bi). Z. Metallkd. 59:47–58 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070616-123928
Loading
/content/journals/10.1146/annurev-matsci-070616-123928
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error