Li ion batteries are important components of portable devices, electric vehicles, and smart grids owing to their high energy density, excellent cyclic performance, and safe operation. However, further development of electrode materials for these batteries is needed to satisfy continually increasing performance demands. Typically, both the charge/discharge kinetics and structural stability of these electrode materials depend on the transport and storage properties of the Li ions. High-spatial-resolution information on structural changes and on the strong interaction between electrons and ions is essential for a better understanding of the electrochemical performance of rechargeable batteries. In this article, we review the known atomic-scale structural changes of these electrode materials during the charge/discharge process, with special emphasis on ion/electron interactions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Dunn B, Kamath H, Tarascon J-M. 1.  2011. Electrical energy storage for the grid: a battery of choices. Science 334:928–35 [Google Scholar]
  2. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D. 2.  et al. 2011. Electrochemical energy storage for green grid. Chem. Rev. 111:3577–613 [Google Scholar]
  3. Tarascon JM, Armand M. 3.  2001. Issues and challenges facing rechargeable lithium batteries. Nature 414:359–67 [Google Scholar]
  4. Goodenough JB, Park K-S. 4.  2013. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135:1167–76 [Google Scholar]
  5. Choi N-S, Chen Z, Freunberger SA, Ji X, Sun Y-K. 5.  et al. 2012. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51:9994–10024 [Google Scholar]
  6. Armand M, Tarascon JM. 6.  2008. Building better batteries. Nature 451:652–57 [Google Scholar]
  7. Goodenough JB, Kim Y. 7.  2010. Challenges for rechargeable Li batteries. Chem. Mater. 22:587–603 [Google Scholar]
  8. Reimers JN, Dahn JR. 8.  1992. Electrochemical and in situ X‐ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139:2091–97 [Google Scholar]
  9. Li W, Reimers JN, Dahn JR. 9.  1993. In situ X-ray diffraction and electrochemical studies of Li1−xNiO2. Solid State Ionics 67:123–30 [Google Scholar]
  10. Mukerjee S, Thurston TR, Jisrawi NM, Yang XQ, McBreen J. 10.  et al. 1998. Structural evolution of LixMn2O4 in lithium‐ion battery cells measured in situ using synchrotron X‐ray diffraction techniques. J. Electrochem. Soc. 145:466–72 [Google Scholar]
  11. Mohanty D, Kalnaus S, Meisner RA, Rhodes KJ, Li J. 11.  et al. 2013. Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J. Power Sources 229:239–48 [Google Scholar]
  12. Yamada A, Tanaka M. 12.  1995. Jahn-Teller structural phase transition around 280K in LiMn2O4. Mater. Res. Bull. 30:715–21 [Google Scholar]
  13. Shao-Horn Y, Levasseur S, Weill F, Delmas C. 13.  2003. Probing lithium and vacancy ordering in O3 layered LixCoO2 (x≈0.5): an electron diffraction study. J. Electrochem. Soc 150:A366–73 [Google Scholar]
  14. Wolverton C, Zunger A. 14.  1998. First-principles prediction of vacancy order-disorder and intercalation battery voltages in LixCoO2. Phys. Rev. Lett. 81:606–9 [Google Scholar]
  15. Ohzuku T, Ueda A, Yamamoto N. 15.  1995. Zero‐strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142:1431–35 [Google Scholar]
  16. Padhi AK, Nanjundaswamy KS, Goodenough JB. 16.  1997. Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144:1188–94 [Google Scholar]
  17. Morcrette M, Rozier P, Dupont L, Mugnier E, Sannier L. 17.  et al. 2003. A reversible copper extrusion-insertion electrode for rechargeable Li batteries. Nat. Mater. 2:755–61 [Google Scholar]
  18. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM. 18.  2000. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–99 [Google Scholar]
  19. Hwang S, Chang W, Kim SM, Su D, Kim DH. 19.  et al. 2014. Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge. Chem. Mater. 26:1084–92 [Google Scholar]
  20. Abraham DP, Twesten RD, Balasubramanian M, Petrov I, McBreen J, Amine K. 20.  2002. Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells. Electrochem. Commun. 4:620–25 [Google Scholar]
  21. He X, Gu L, Zhu C, Yu Y, Li C. 21.  et al. 2011. Direct imaging of lithium ions using aberration-corrected annular-bright-field scanning transmission electron microscopy and associated contrast mechanisms. Mater. Express 1:43–50 [Google Scholar]
  22. Gu M, Belharouak I, Zheng J, Wu H, Xiao J. 22.  et al. 2013. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7:760–67 [Google Scholar]
  23. Lee J, Zhou W, Idrobo JC, Pennycook SJ, Pantelides ST. 23.  2011. Vacancy-driven anisotropic defect distribution in the battery-cathode material LiFePO4. Phys. Rev. Lett. 107:085507 [Google Scholar]
  24. Ishikawa R, Okunishi E, Sawada H, Kondo Y, Hosokawa F, Abe E. 24.  2011. Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat. Mater. 10:278–81 [Google Scholar]
  25. Yang Z, Wang J, Zhang Q, Xiao D, Xu B. 25.  et al. 2015. Doping the Li4Ti5O12 lattice with extra-large anions. Mater. Express 5:457–62 [Google Scholar]
  26. Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y. 26.  1999. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 45:67–86 [Google Scholar]
  27. Endo M, Kim C, Nishimura K, Fujino T, Miyashita K. 27.  2000. Recent development of carbon materials for Li ion batteries. Carbon 38:183–97 [Google Scholar]
  28. Ma Y, Ding B, Ji G, Yang Lee J. 28.  2013. Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries. ACS Nano 7:10870–78 [Google Scholar]
  29. Li X, Dhanabalan A, Gu L, Wang C. 29.  2012. Three-dimensional porous core-shell Sn@carbon composite anodes for high-performance lithium-ion battery applications. Adv. Energy Mater. 2:238–44 [Google Scholar]
  30. Xu B, Qian D, Wang Z, Meng YS. 30.  2012. Recent progress in cathode materials research for advanced lithium ion batteries. Mater. Sci. Eng. R 73:51–65 [Google Scholar]
  31. Malik R, Abdellahi A, Ceder G. 31.  2013. A critical review of the Li insertion mechanisms in LiFePO4 electrodes. J. Electrochem. Soc. 160:A3179–97 [Google Scholar]
  32. Malik R, Zhou F, Ceder G. 32.  2009. Phase diagram and electrochemical properties of mixed olivines from first-principles calculations. Phys. Rev. B 79:214201 [Google Scholar]
  33. Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB. 33.  1997. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 144:1609–13 [Google Scholar]
  34. Morgan D, Van der Ven A, Ceder G. 34.  2004. Li conductivity in LixMPO4 (M = Mn,Fe,Co,Ni) olivine materials. Electrochem. Solid State Lett. 7:A30 [Google Scholar]
  35. Nishimura S, Kobayashi G, Ohoyama K, Kanno R, Yashima M, Yamada A. 35.  2008. Experimental visualization of lithium diffusion in LixFePO4. Nat. Mater. 7:707–11 [Google Scholar]
  36. Andersson AS, Thomas JO. 36.  2001. The source of first-cycle capacity loss in LiFePO4. J. Power Sources 97–98:498–502 [Google Scholar]
  37. Laffont L, Delacourt C, Gibot P, Wu MY, Kooyman P. 37.  et al. 2006. Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem. Mater. 18:5520–29 [Google Scholar]
  38. Srinivasan V, Newman J. 38.  2004. Discharge model for the lithium iron-phosphate electrode. J. Electrochem. Soc. 151:A1517–29 [Google Scholar]
  39. Delmas C, Maccario M, Croguennec L, Le Cras F, Weill F. 39.  2008. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 7:665–71 [Google Scholar]
  40. Malik R, Zhou F, Ceder G. 40.  2011. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat. Mater. 10:587–90 [Google Scholar]
  41. Whittingham MS.41.  2014. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114:11414–43 [Google Scholar]
  42. Gu L, Zhu CB, Li H, Yu Y, Li CL. 42.  et al. 2011. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. J. Am. Chem. Soc. 133:4661–63 [Google Scholar]
  43. Zhu C, Gu L, Suo L, Popovic J, Li H. 43.  et al. 2014. Size-dependent staging and phase transition in LiFePO4/FePO4. Adv. Funct. Mater. 24:312–18 [Google Scholar]
  44. Suo LM, Han WZ, Lu X, Gu L, Hu YS. 44.  et al. 2012. Highly ordered staging structural interface between LiFePO4 and FePO4. PCCP 14:5363–67 [Google Scholar]
  45. Gu L, Xiao DD, Hu YS, Li H, Ikuhara Y. 45.  2015. Atomic-scale structure evolution in a quasi-equilibrated electrochemical process of electrode materials for rechargeable batteries. Adv. Mater. 27:2134–49 [Google Scholar]
  46. Sun Y, Lu X, Xiao R, Li H, Huang X. 46.  2012. Kinetically controlled lithium-staging in delithiated LiFePO4 driven by the Fe center mediated interlayer Li-Li interactions. Chem. Mater. 24:4693–703 [Google Scholar]
  47. Maxisch T, Zhou F, Ceder G. 47.  2006. Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Phys. Rev. B 73:104301 [Google Scholar]
  48. Ellis B, Perry LK, Ryan DH, Nazar LF. 48.  2006. Small polaron hopping in LixFePO4 solid solutions: coupled lithium-ion and electron mobility. J. Am. Chem. Soc. 128:11416–22 [Google Scholar]
  49. Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM. 49.  2007. Electronic, optical, and magnetic properties of LiFePO4: small magnetic polaron effects. Chem. Mater. 19:3740–47 [Google Scholar]
  50. Seo D-H, Gwon H, Kim S-W, Kim J, Kang K. 50.  2010. Multicomponent olivine cathode for lithium rechargeable batteries: a first-principles study. Chem. Mater. 22:518–23 [Google Scholar]
  51. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. 51.  1980. LixCoO2 (0<x≥1): a new cathode material for batteries of high energy density. Mater. Res. Bull 15:783–89 [Google Scholar]
  52. Lu X, Sun Y, Jian Z, He X, Gu L. 52.  et al. 2012. New insight into the atomic structure of electrochemically delithiated O3-Li(1−x)CoO2 (0 ≤ x ≤ 0.5) nanoparticles. Nano Lett 12:6192–97 [Google Scholar]
  53. Carlier D, Saadoune I, Croguennec L, Menetrier M, Suard E, Delmas C. 53.  2001. On the metastable O2-type LiCoO2. Solid State Ionics 144:263–76 [Google Scholar]
  54. Yang XQ, Sun X, McBreen J. 54.  2000. New phases and phase transitions observed in Li1−xCoO2 during charge: in situ synchrotron X-ray diffraction studies. Electrochem. Commun. 2:100–3 [Google Scholar]
  55. Ohzuku T, Ueda A, Nagayama M. 55.  1993. Electrochemistry and structural chemistry of LiNiO2 (Rm) for 4 volt secondary lithium cells. J. Electrochem. Soc. 140:1862–70 [Google Scholar]
  56. Yang X-Q, McBreen J, Yoon W-S, Grey CP. 56.  2002. Crystal structure changes of LiMn0.5Ni0.5O2 cathode materials during charge and discharge studied by synchrotron based in situ XRD. Electrochem. Commun. 4:649–54 [Google Scholar]
  57. Yoon WS, Chung KY, McBreen J, Yang XQ. 57.  2006. A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD. Electrochem. Commun. 8:1257–62 [Google Scholar]
  58. de Picciotto LA, Thackeray MM, David WIF, Bruce PG, Goodenough JB. 58.  1984. Structural characterization of delithiated LiVO2. Mater. Res. Bull. 19:1497–506 [Google Scholar]
  59. Kumada N, Muramatu S, Muto F, Kinomura N, Kikkawa S, Koizumi M. 59.  1988. Topochemical reactions of LixNbO2. J. Solid State Chem. 73:33–39 [Google Scholar]
  60. Kumada N, Muramatsu S, Kinomura N, Muto F. 60.  1988. Deintercalation of Li2MoO3. J. Ceram. Soc. Jpn. 96:1181–85 [Google Scholar]
  61. Sathiya M, Rousse G, Ramesha K, Laisa CP, Vezin H. 61.  et al. 2013. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12:827–35 [Google Scholar]
  62. Sathiya M, Ramesha K, Rousse G, Foix D, Gonbeau D. 62.  et al. 2013. High performance Li2Ru1−yMnyO3 (0.2 ≤ y ≤ 0.8) cathode materials for rechargeable lithium-ion batteries: their understanding. Chem. Mater 25:1121–31 [Google Scholar]
  63. Xiao R, Li H, Chen L. 63.  2012. Density functional investigation on Li2MnO3. Chem. Mater. 24:4242–51 [Google Scholar]
  64. Wang R, He X, He L, Wang F, Xiao R. 64.  et al. 2013. Atomic structure of Li2MnO3 after partial delithiation and re-lithiation. Adv. Energy Mater. 3:1358–67 [Google Scholar]
  65. James ACWP, Goodenough JB. 65.  1988. Structure and bonding in Li2MoO3 and Li2−xMoO3 (0 ≤ x ≤ 1.7). J. Solid State Chem. 76:87–96 [Google Scholar]
  66. Zhou YN, Ma J, Hu EY, Yu XQ, Gu L. 66.  et al. 2014. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries. Nat. Commun. 5:5381 [Google Scholar]
  67. Wei Q, Jiang Z, Tan S, Li Q, Huang L. 67.  et al. 2015. Lattice breathing inhibited layered vanadium oxide ultrathin nanobelts for enhanced sodium storage. ACS Appl. Mater. Interfaces 7:18211–17 [Google Scholar]
  68. Kalathil AK, Arunkumar P, Kim DH, Lee J-W, Im WB. 68.  2015. Influence of Ti4+ on the electrochemical performance of Li-rich layered oxides: high power and long cycle life of Li2Ru1−xTixO3 cathodes. ACS Appl. Mater. Interfaces 7:7118–28 [Google Scholar]
  69. Lu Z, MacNeil DD, Dahn JR. 69.  2001. Layered cathode materials Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochem. Solid State Lett. 4:A191–94 [Google Scholar]
  70. Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang S-H. 70.  et al. 2006. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 128:8694–98 [Google Scholar]
  71. Croguennec L, Palacin MR. 71.  2015. Recent achievements on inorganic electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 137:3140–56 [Google Scholar]
  72. Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W. 72.  2005. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4:366–77 [Google Scholar]
  73. Zaghib K, Dontigny M, Guerfi A, Charest P, Rodrigues I. 73.  et al. 2011. Safe and fast-charging Li-ion battery with long shelf life for power applications. J. Power Sources 196:3949–54 [Google Scholar]
  74. Zhu G-N, Wang Y-G, Xia Y-Y. 74.  2012. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 5:6652–67 [Google Scholar]
  75. Lu X, Zhao L, He XQ, Xiao RJ, Gu L. 75.  et al. 2012. Lithium storage in Li4Ti5O12 spinel: the full static picture from electron microscopy. Adv. Mater. 24:3233–38 [Google Scholar]
  76. Ouyang CY, Zhong ZY, Lei MS. 76.  2007. Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel. Electrochem. Commun. 9:1107–12 [Google Scholar]
  77. Kim S-W, Seo D-H, Ma X, Ceder G, Kang K. 77.  2012. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2:710–21 [Google Scholar]
  78. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-Gonzalez J, Rojo T. 78.  2012. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5:5884–901 [Google Scholar]
  79. Slater MD, Kim D, Lee E, Johnson CS. 79.  2013. Sodium-ion batteries. Adv. Funct. Mater. 23:947–58 [Google Scholar]
  80. Pan H, Hu Y-S, Chen L. 80.  2013. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6:2338–60 [Google Scholar]
  81. Zhao L, Pan H-L, Hu Y-S, Li H, Chen L-Q. 81.  2012. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery. Chin. Phys. B 21:028201 [Google Scholar]
  82. Sun Y, Zhao L, Pan H, Lu X, Gu L. 82.  et al. 2013. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4:1870 [Google Scholar]
  83. Yu X, Pan H, Wan W, Ma C, Bai J. 83.  et al. 2013. A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation. Nano Lett 13:4721–27 [Google Scholar]
  84. Park OK, Cho Y, Lee S, Yoo H-C, Song H-K, Cho J. 84.  2011. Who will drive electric vehicles, olivine or spinel?. Energy Environ. Sci. 4:1621–33 [Google Scholar]
  85. Thackeray MM, Shao‐Horn Y, Kahaian AJ, Kepler KD, Skinner E. 85.  et al. 1998. Structural fatigue in spinel electrodes in high voltage (4V)Li/LixMn2O4 cells. Electrochem. Solid State Lett. 1:7–9 [Google Scholar]
  86. Jang DH, Shin YJ, Oh SM. 86.  1996. Dissolution of spinel oxides and capacity losses in 4V Li/LixMn2O4 cells. J. Electrochem. Soc. 143:2204–11 [Google Scholar]
  87. Shin Y, Manthiram A. 87.  2002. Microstrain and capacity fade in spinel manganese oxides. Electrochem. Solid State Lett. 5:A55–58 [Google Scholar]
  88. Huang H, Vincent CA, Bruce PG. 88.  1999. Capacity loss of lithium manganese oxide spinel in LiPF6/ethylene carbonate‐dimethyl carbonate electrolytes. J. Electrochem. Soc. 146:481–85 [Google Scholar]
  89. Tang D, Sun Y, Yang Z, Ben L, Gu L, Huang X. 89.  2014. Surface structure evolution of LiMn2O4 cathode material upon charge/discharge. Chem. Mater. 26:3535–43 [Google Scholar]
  90. Manthiram A, Chemelewski K, Lee E-S. 90.  2014. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ. Sci. 7:1339–50 [Google Scholar]
  91. Yan H, Huang X, Chen L. 91.  1999. Microwave synthesis of LiMn2O4 cathode material. J. Power Sources 81–82:647–50 [Google Scholar]
  92. Lin M, Ben L, Sun Y, Wang H, Yang Z. 92.  et al. 2015. Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle. Chem. Mater. 27:292–303 [Google Scholar]
  93. Choi W, Manthiram A. 93.  2006. Comparison of metal ion dissolutions from lithium ion battery cathodes. J. Electrochem. Soc. 153:A1760–64 [Google Scholar]
  94. Ouyang CY, Shi SQ, Lei MS. 94.  2009. Jahn–Teller distortion and electronic structure of LiMn2O4. J. Alloys Compd. 474:1370–74 [Google Scholar]
  95. Nie ZX, Ouyanga CY, Chenc JZ, Zhonga ZY, Dua YL. 95.  et al. 2010. First principles study of Jahn–Teller effects in LixMnPO4. Solid State Commun 150:140–44 [Google Scholar]
  96. Yamada A, Tanaka M, Tanaka K, Sekai K. 96.  1999. Jahn–Teller instability in spinel Li–Mn–O. J. Power Sources 81:73–78 [Google Scholar]
  97. Li X, Ma X, Su D, Liu L, Chisnell R. 97.  et al. 2014. Direct visualization of the Jahn-Teller effect coupled to Na ordering in Na5/8MnO2. Nat. Mater. 13:586–92 [Google Scholar]
  98. Tateishi K, du Boulay D, Ishizawa N. 98.  2004. The effect of mixed Mn valences on Li migration in LiMn2O4 spinel: a molecular dynamics study. Appl. Phys. Lett. 84:529 [Google Scholar]
  99. Mueller DN, Machala ML, Bluhm H, Chueh WC. 99.  2015. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat. Commun. 6:6097 [Google Scholar]
  100. Seo DH, Lee J, Urban A, Malik R, Kang S, Ceder G. 100.  2016. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8:692–97 [Google Scholar]
  101. Lee J, Seo D-H, Balasubramanian M, Twu N, Li X, Ceder G. 101.  2015. A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li-Ni-Ti-Mo oxides. Energy Environ. Sci. 8:3255–65 [Google Scholar]
  102. Sathiya M, Rousse G, Ramesha K, Laisa CP, Vezin H. 102.  et al. 2013. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12:827–35 [Google Scholar]
  103. Saubanere M, McCalla E, Tarascon JM, Doublet ML. 103.  2016. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci. 9:984–91 [Google Scholar]
  104. McCalla E, Sougrati MT, Rousse G, Berg EJ, Abakumov A. 104.  et al. 2015. Understanding the roles of anionic redox and oxygen release during electrochemical cycling of lithium-rich layered Li4FeSbO6. J. Am. Chem. Soc. 137:4804–14 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error