X-ray tomography has emerged as a powerful technique for studying lithium ion batteries, allowing nondestructive and often quantitative imaging of these complex systems, which contain solid components with length scales spanning orders of magnitude and which are in-filled with liquid electrolyte. Over the past decade, X-ray tomography has allowed interrogation of structure and material composition, providing quantitative or qualitative insight into battery operation and degradation. In this review, we first provide an overview of X-ray tomography and explore what types of experiments can yield insight into open questions in the lithium ion battery research field. In the second half of the review, we discuss the aspects a researcher must consider, and we summarize challenges and approaches to sample preparation, experimental setup, and data analysis. Finally, we describe both outstanding challenges and promise in using X-ray tomography for lithium ion battery research.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Stock SR.1.  2008. Recent advances in X-ray microtomography applied to materials. Int. Mater. Rev. 53:3129–81 [Google Scholar]
  2. Maire E, Withers PJ. 2.  2014. Quantitative X-ray tomography. Int. Mater. Rev. 59:11–43 [Google Scholar]
  3. Nitta N, Wu F, Lee JT, Yushin G. 3.  2015. Li-ion battery materials: present and future. Mater. Today 18:5252–64 [Google Scholar]
  4. Weker JN, Toney MF. 4.  2015. Emerging in situ and operando nanoscale X-ray imaging techniques for energy storage materials. Adv. Funct. Mater. 25:111622–37 [Google Scholar]
  5. Als-Nielsen J, McMorrow D. 5.  2011. Elements of Modern X-Ray Physics Hoboken, NJ: Wiley, 2nd ed.. [Google Scholar]
  6. Herman GT.6.  2009. Fundamentals of Computerized Tomography: Image Reconstructions from Projections Dordrecht, Neth.: Springer, 2nd ed.. [Google Scholar]
  7. Kak AC, Slaney M. 7.  2001. Principles of Computerized Tomographic Imaging Philadelphia: SIAM [Google Scholar]
  8. van Aarle W, Palenstijn WJ, De Beenhouwer J, Altantzis T, Bals S. 8.  et al. 2015. The ASTRA toolbox: a platform for advanced algorithm development in electron tomography. Ultramicroscopy 157:35–47 [Google Scholar]
  9. Weitkamp T, Haas D, Wegrzynek D, Rack A. 9.  2011. ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J. Synchrotron Radiat. 18:4617–29 [Google Scholar]
  10. Langer M, Cloetens P, Guigay J-P, Peyrin F. 10.  2008. Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography. Med. Phys 35104556–66 [Google Scholar]
  11. McDonald SA, Marone F, Hintermüller C, Mikuljan G, David C. 11.  et al. 2009. Advanced phase-contrast imaging using a grating interferometer. J. Synchrotron Radiat. 16:4562–72 [Google Scholar]
  12. Zernike F.12.  1942. Phase contrast, a new method for the microscopic observation of transparent objects. Physica 9:10974–86 [Google Scholar]
  13. Mokso R, Marone F, Irvine S, Nyvlt M, Schwyn D. 13.  et al. 2013. Advantages of phase retrieval for fast X-ray tomographic microscopy. J. Phys. D Appl. Phys. 46:49494004 [Google Scholar]
  14. Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW. 14.  2002. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206:133–40 [Google Scholar]
  15. Zielke L, Barchasz C, Waluś S, Alloin F, Leprêtre J-C. 15.  et al. 2015. Degradation of Li/S battery electrodes on 3D current collectors studied using X-ray phase contrast tomography. Sci. Rep. 5:April10921 [Google Scholar]
  16. Eastwood DS, Bradley RS, Tariq F, Cooper SJ, Taiwo OO. 16.  et al. 2014. The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes. Nucl. Instrum. Methods Phys. Res. B 324:118–23 [Google Scholar]
  17. Pietsch P, Westhoff D, Feinauer J, Eller J, Marone F. 17.  et al. 2016. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes. Nat. Commun. 7:12909 [Google Scholar]
  18. Eastwood DS, Bayley PM, Chang HJ, Taiwo OO, Vila-Comamala J. 18.  et al. 2015. Three-dimensional characterization of electrodeposited lithium microstructures using synchrotron X-ray phase contrast imaging. Chem. Commun. 51:2266–68 [Google Scholar]
  19. Steinbock L, Dustmann C-H. 19.  2001. Investigation of the inner structures of ZEBRA cells with a microtomograph. J. Electrochem. Soc. 148:2A132–36 [Google Scholar]
  20. Manke I, Banhart J, Haibel A, Rack A, Zabler S. 20.  et al. 2007. In situ investigation of the discharge of alkaline Zn-MnO2 batteries with synchrotron X-ray and neutron tomographies. Appl. Phys. Lett. 90:21214102 [Google Scholar]
  21. Harris SJ, Lu P. 21.  2013. Effects of inhomogeneities—nanoscale to mesoscale—on the durability of Li-ion batteries. J. Phys. Chem. C 117:136481–92 [Google Scholar]
  22. Shearing PR, Howard LE, Jørgensen PS, Brandon NP, Harris SJ. 22.  2010. Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery. Electrochem. Commun. 12:3374–77 [Google Scholar]
  23. Kehrwald D, Shearing PR, Brandon NP, Sinha PK, Harris SJ. 23.  2011. Local tortuosity inhomogeneities in a lithium battery composite electrode. J. Electrochem. Soc. 158:12A1393–99 [Google Scholar]
  24. Ebner M, Geldmacher F, Marone F, Stampanoni M, Wood V. 24.  2013. X-ray tomography of torous, transition metal oxide based lithium ion battery electrodes. Adv. Energy Mater. 3:7845–50 [Google Scholar]
  25. Mitsch T, Krämer Y, Feinauer J, Gaiselmann G, Markötter H. 25.  et al. 2014. Preparation and characterization of Li-ion graphite anodes using synchrotron tomography. Materials 7:64455–72 [Google Scholar]
  26. Cooper SJ, Eastwood DS, Gelb J, Damblanc G, Brett DJL. 26.  et al. 2014. Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries. J. Power Sources 247:1033–39 [Google Scholar]
  27. Tariq F, Yufit V, Kishimoto M, Shearing PR, Menkin S. 27.  et al. 2014. Three-dimensional high resolution X-ray imaging and quantification of lithium ion battery mesocarbon microbead anodes. J. Power Sources 248:1014–20 [Google Scholar]
  28. Shearing PR, Brandon NP, Gelb J, Bradley R, Withers PJ. 28.  et al. 2012. Multi length scale microstructural investigations of a commercially available Li-ion battery electrode. J. Electrochem. Soc. 159:7A1023–27 [Google Scholar]
  29. 29. Fraunhofer Inst. Ind. Math. ITWM. 2016. BEST—battery and electrochemistry modeling http://www.itwm.fraunhofer.de/en/departments/flow-and-material-simulation/complex-fluids/best-battery-and-electrochemistry-modeling.html [Google Scholar]
  30. Latz A, Zausch J. 30.  2015. Multiscale modeling of lithium ion batteries: thermal aspects. Beilstein J. Nanotechnol. 6:1987–1007 [Google Scholar]
  31. Hein S, Latz A. 31.  2016. Influence of local lithium metal deposition in 3D microstructures on local and global behavior of lithium-ion batteries. Electrochim. Acta 201:354–65 [Google Scholar]
  32. Ender M, Joos J, Weber A, Ivers-Tiffée E. 32.  2014. Anode microstructures from high-energy and high-power lithium-ion cylindrical cells obtained by X-ray nano-tomography. J. Power Sources 269:912–19 [Google Scholar]
  33. Ebner M, Chung DW, García RE, Wood V. 33.  2014. Tortuosity anisotropy in lithium-ion battery electrodes. Adv. Energy Mater. 4:51301278 [Google Scholar]
  34. Ebner M, Wood V. 34.  2015. Tool for tortuosity estimation in lithium ion battery porous electrodes. J. Electrochem. Soc. 162:2A3064–70 [Google Scholar]
  35. Vijayaraghavan B, Ely DR, Chiang Y-M, García-García R, García RE. 35.  2012. An analytical method to determine tortuosity in rechargeable battery electrodes. J. Electrochem. Soc. 159:5A548–52 [Google Scholar]
  36. Ender M, Joos J, Carraro T, Ivers-Tiffée E. 36.  2011. Three-dimensional reconstruction of a composite cathode for lithium-ion cells. Electrochem. Commun. 13:2166–68 [Google Scholar]
  37. Lagadec MF, Ebner M, Zahn R, Wood V. 37.  2016. Communication—technique for visualization and quantification of lithium-ion battery separator microstructure. J. Electrochem. Soc. 163:6A992–94 [Google Scholar]
  38. Wilson JR, Cronin JS, Barnett SA, Harris SJ. 38.  2011. Measurement of three-dimensional microstructure in a LiCoO2 positive electrode. J. Power Sources 196:73443–47 [Google Scholar]
  39. Chen-Wiegart YCK, Demike R, Erdonmez C, Thornton K, Barnett SA, Wang J. 39.  2014. Tortuosity characterization of 3D microstructure at nano-scale for energy storage and conversion materials. J. Power Sources 249:349–56 [Google Scholar]
  40. Komini Babu S, Mohamed AI, Whitacre JF, Litster S. 40.  2015. Multiple imaging mode X-ray computed tomography for distinguishing active and inactive phases in lithium-ion battery cathodes. J. Power Sources 283:314–19 [Google Scholar]
  41. Zielke L, Hutzenlaub T, Wheeler DR, Manke I, Arlt T. 41.  et al. 2014. A combination of X-ray tomography and carbon binder modeling: reconstructing the three phases of LiCoO2 Li-ion battery cathodes. Adv. Energy Mater. 4:81301617 [Google Scholar]
  42. Kashkooli AG, Farhad S, Lee DU, Feng K, Litster S. 42.  et al. 2016. Multiscale modeling of lithium-ion battery electrodes based on nano-scale X-ray computed tomography. J. Power Sources 307:496–509 [Google Scholar]
  43. Ebner M, Marone F, Stampanoni M, Wood V. 43.  2013. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342:6159716–20 [Google Scholar]
  44. Villevieille C, Ebner M, Gómez-Cámer JL, Marone F, Novák P, Wood V. 44.  2015. Influence of conversion material morphology on electrochemistry studied with operando X-ray tomography and diffraction. Adv. Mater. 27:101676–81 [Google Scholar]
  45. Wang J, Chen-Wiegart YK, Wang J. 45.  2014. In situ three-dimensional synchrotron X-ray nanotomography of the (de)lithiation processes in tin anodes. Angew. Chem. 126:174549–53 [Google Scholar]
  46. Paz-Garcia JM, Taiwo OO, Tudisco E, Finegan DP, Shearing PR. 46.  et al. 2016. 4D analysis of the microstructural evolution of Si-based electrodes during lithiation: time-lapse X-ray imaging and digital volume correlation. J. Power Sources 320:196–203 [Google Scholar]
  47. Eastwood DS, Yufit V, Gelb J, Gu A, Bradley RS. 47.  et al. 2014. Lithiation-induced dilation mapping in a lithium-ion battery electrode by 3D X-ray microscopy and digital volume correlation. Adv. Energy Mater. 4:41300506 [Google Scholar]
  48. Finegan DP, Tudisco E, Scheel M, Robinson JB, Taiwo OO. 48.  et al. 2016. Quantifying bulk electrode strain and material displacement within lithium batteries via high-speed operando tomography and digital volume correlation. Adv. Sci. 3:31500332 [Google Scholar]
  49. Pietsch P, Hess M, Ludwig W, Eller J, Wood V. 49.  2016. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries. Sci. Rep. 6:May27994 [Google Scholar]
  50. Finegan DP, Scheel M, Robinson JB, Tjaden B, Hunt I. 50.  et al. 2015. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 6:6924 [Google Scholar]
  51. Yufit V, Shearing P, Hamilton RW, Lee PD, Wu M, Brandon NP. 51.  2011. Investigation of lithium-ion polymer battery cell failure using X-ray computed tomography. Electrochem. Commun. 13:6608–10 [Google Scholar]
  52. Tariq F, Yufit V, Eastwood DS, Merla Y, Biton M. 52.  et al. 2014. In-operando X-ray tomography study of lithiation induced delamination of Si based anodes for lithium-ion batteries. ECS Electrochem. Lett. 3:7A76–78 [Google Scholar]
  53. Gonzalez J, Sun K, Huang M, Lambros J, Dillon S, Chasiotis I. 53.  2014. Three dimensional studies of particle failure in silicon based composite electrodes for lithium ion batteries. J. Power Sources 269:334–43 [Google Scholar]
  54. Gonzalez J, Sun K, Huang M, Dillon S, Chasiotis I, Lambros J. 54.  2015. X-ray microtomography characterization of Sn particle evolution during lithiation/delithiation in lithium ion batteries. J. Power Sources 285:205–9 [Google Scholar]
  55. Zielke L, Sun F, Markötter H, Hilger A, Moroni R. 55.  et al. 2016. Synchrotron X-ray tomographic study of a silicon electrode before and after discharge and the effect of cavities on particle fracturing. ChemElectroChem 3:71170–77 [Google Scholar]
  56. Ebner M, Marone F, Stampanoni M, Wood V. 56.  2013. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342:6159716–20 [Google Scholar]
  57. Weker JN, Liu N, Misra S, Andrews JC, Cui Y, Toney MF. 57.  2014. In situ nanotomography and operando transmission X-ray microscopy of micron-sized Ge particles. Energy Environ. Sci. 7:82771–77 [Google Scholar]
  58. Chen-Wiegart YCK, Shearing P, Yuan Q, Tkachuk A, Wang J. 58.  2012. 3D morphological evolution of Li-ion battery negative electrode LiVO2 during oxidation using X-ray nano-tomography. Electrochem. Commun. 21:158–61 [Google Scholar]
  59. Li F, Zhou G, Pei S, Li L, Wang DW. 59.  et al. 2014. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater. 26:4625–31 [Google Scholar]
  60. Meirer F, Cabana J, Liu Y, Mehta A, Andrews JC, Pianetta P. 60.  2011. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J. Synchrotron Radiat. 18:773–81 [Google Scholar]
  61. Yang F, Liu Y, Martha SK, Wu Z, Andrews JC. 61.  et al. 2014. Nanoscale morphological and chemical changes of high voltage lithium-manganese rich NMC composite cathodes with cycling. Nano Lett 14:84334–41 [Google Scholar]
  62. Sun F, Zielke L, Markötter H, Hilger A, Zhou D. 62.  et al. 2016. Morphological evolution of electrochemically plated/stripped lithium microstructures investigated by synchrotron X-ray phase contrast tomography. ACS Nano 10:87990–97 [Google Scholar]
  63. Withers PJ, De Carlo F. 63.  2015. Development of fast X-ray tomography. https://docs.google.com/spreadsheet/ccc?key=0Ar8bW1AwveI_dHdTa2VjYndRVl9ybnRPckRrZUQ1alE
  64. Wu SR, Hwu Y, Margaritondo G. 64.  2012. Hard X-ray zone plates: recent progress. Materials 5:101752–73 [Google Scholar]
  65. Grodzins L.65.  1983. Optimum energies for X-ray transmission tomography of small samples. Nucl. Instrum. Methods Phys. Res. 206:3541–45 [Google Scholar]
  66. Henke BL, Gullikson EM, Davis JC. 66.  1993. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 54:2181–342 [Google Scholar]
  67. Hubbell JH, Seltzer SM. 67.  1995. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest http://www.nist.gov/pml/data/xraycoef/ [Google Scholar]
  68. Hubbell JH, Gimm HA, Øverbø I. 68.  1980. Pair, triplet, and total atomic cross sections (and mass attenuation coefficients) for 1 MeV–100 GeV photons in elements Z=1 to 100. J. Phys. Chem. Ref. Data 9:41023–148 [Google Scholar]
  69. Bech M.69.  2009. X-ray imaging with a grating interferometer PhD thesis, Univ Copenhagen: [Google Scholar]
  70. Lin F, Markus IM, Doeff MM, Xin HL. 70.  2014. Chemical and structural stability of lithium-ion battery electrode materials under electron beam. Sci. Rep. 4:5694 [Google Scholar]
  71. Nelson J, Yang Y, Misra S, Andrews JC, Cui Y, Toney MF. 71.  2013. Identifying and managing radiation damage during in situ transmission X-ray microscopy of Li-ion batteries. Proc. SPIE 8851: http://dx.doi.org/10.1117/12.2027263 [Crossref] [Google Scholar]
  72. Jähne B.72.  2005. Digital Image Processing Berlin: Springer, 6th ed.. [Google Scholar]
  73. Sezgin M, Sankur B. 73.  2004. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13:1146–54 [Google Scholar]
  74. Aggarwal CC, Reddy CK. 74.  2014. Data Clustering: Algorithms and Applications Boca Raton, FL: CRC Press [Google Scholar]
  75. Qi Y, Harris SJ. 75.  2010. In situ observation of strains during lithiation of a graphite electrode. J. Electrochem. Soc. 157:6A741–47 [Google Scholar]
  76. King A, Johnson G, Engelberg D, Ludwig W, Marrow J. 76.  2008. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. Science 321:5887382–85 [Google Scholar]
  77. Reischig P, King A, Nervo L, Viganó N, Guilhem Y. 77.  et al. 2013. Advances in X-ray diffraction contrast tomography: flexibility in the setup geometry and application to multiphase materials. J. Appl. Crystallogr. 46:2297–311 [Google Scholar]
  78. 78. ZEISS 2016. ZEISS Xradia 520 Versa https://www.zeiss.com/microscopy/int/products/x-ray-microscopy/zeiss-xradia-520-versa.html [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error