We review recent advances in crystal growth techniques, focusing on the development of novel quantum materials. Recent progress in instrumentation design, opening new avenues in bulk crystal growth of oxide and intermetallic compounds, is highlighted. Specifically, we illustrate leading techniques that allow for the active control of crystal nucleation/growth and provide platforms for the realization of single crystals with ultrahigh purity and minimized defects. Advances in the postgrowth manipulation of crystals, as well as the impact of purification techniques on the stabilization of delicate quantum phases, are also discussed. Throughout, we highlight new scientific avenues opened by access to high-purity single-crystal samples.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Tokunaga Y, Lottermoser T, Lee Y, Kumai R, Uchida M. 1.  et al. 2006. Rotation of orbital stripes and the consequent charge-polarized state in bilayer manganites. Nat. Mater. 5:937–41 [Google Scholar]
  2. Lester C, Ramos S, Perry RS, Croft TP, Bewley RI. 2.  et al. 2015. Field-tunable spin-density-wave phases in Sr3Ru2O7. Nat. Mater. 14:373–78 [Google Scholar]
  3. Kim C, Matsuura AY, Shen ZX, Motoyama N, Eisaki H. 3.  et al. 1996. Observation of spin-charge separation in one-dimensional SrCuO2. Phys. Rev. Lett. 77:4054–57 [Google Scholar]
  4. Ross KA, Savary L, Gaulin BD, Balents L. 4.  2011. Quantum excitations in quantum spin ice. Phys. Rev. X 1:021002 [Google Scholar]
  5. Christensen N, McMorrow D, Rønnow H, Lake B, Hayden S. 5.  et al. 2004. Dispersive excitations in the high-temperature superconductor La2−xSrxCuO4. Phys. Rev. Lett. 93:147002 [Google Scholar]
  6. Wilson SD, Li S, Woo H, Dai P, Mook HA. 6.  et al. 2006. High-energy spin excitations in the electron-doped superconductor Pr0.88LaCe0.12CuO4−δ with Tc = 21 K. Phys. Rev. Lett. 96:157001 [Google Scholar]
  7. Kane CL, Mele EJ. 7.  2005. Z2 topological order and the quantum spin hall effect. Phys. Rev. Lett. 95:146802 [Google Scholar]
  8. Georges A, Kotliar G, Krauth W, Rozenberg MJ. 8.  1996. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68:13–125 [Google Scholar]
  9. Ishida K, Mukuda H, Kitaoka Y, Asayama K, Mao ZQ. 9.  et al. 1998. Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift. Nature 396:658–60 [Google Scholar]
  10. Borzi RA, Grigera SA, Farrell J, Perry RS, Lister SJS. 10.  et al. 2007. Formation of a nematic fluid at high fields in Sr3Ru2O7. Science 315:214–17 [Google Scholar]
  11. Kim D, Cho S, Butch NP, Syers P, Kirshenbaum K. 11.  et al. 2012. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3. Nat. Phys. 8:459–63 [Google Scholar]
  12. Taniguchi T, Kadowaki H, Takatsu H, Fåk B, Ollivier J. 12.  et al. 2013. Long-range order and spin-liquid states of polycrystalline Tb2+xTi2−xO7+y. Phys. Rev. B 87:060408 [Google Scholar]
  13. Kanatzidis MG, Pöttgen R, Jeitschko W. 13.  2005. The metal flux: a preparative tool for the exploration of intermetallic compounds. Angew. Chem. Int. Ed. 44:6996–7023 [Google Scholar]
  14. Fisher I, Shapiro M, Analytis J. 14.  2012. Principles of crystal growth of intermetallic and oxide compounds from molten solutions. Philos. Mag. 92:2401–35 [Google Scholar]
  15. Binnewies M, Glaum R, Schmidt M, Schmidt P. 15.  2013. Chemical vapor transport reactions—a historical review. J. Inorg. Gen. Chem. 639:219–29 [Google Scholar]
  16. Theuerer HC.16.  1962. Method of processing semiconductive materials US Patent No. 3,060,123 [Google Scholar]
  17. Pfann WG.17.  1952. Principles of zone melting. Trans. Am. Inst. Min. Metall. Eng. 194:747–53 [Google Scholar]
  18. Keck PH, Golay MJE. 18.  1953. Crystallization of silicon from a floating liquid zone. Phys. Rev. 89:1297–97 [Google Scholar]
  19. Koohpayeh S.19.  2016. Single crystal growth by the traveling solvent technique: a review. Prog. Cryst. Growth Charact. Mater. 62:22–34 [Google Scholar]
  20. Balbashov A, Egorov S. 20.  1981. Apparatus for growth of single crystals of oxide compounds by floating zone melting with radiation heating. J. Cryst. Growth 52:498–504 [Google Scholar]
  21. Souptel D, Löser W, Behr G. 21.  2007. Vertical optical floating zone furnace: principles of irradiation profile formation. J. Cryst. Growth 300:538–50 [Google Scholar]
  22. Ito T, Ushiyama T, Yanagisawa Y, Tomioka Y, Shindo I, Yanase A. 22.  2013. Laser-diode-heated floating zone (LDFZ) method appropriate to crystal growth of incongruently melting materials. J. Cryst. Growth 363:264–69 [Google Scholar]
  23. Cao H, Zhao Z, Lee M, Choi E, McGuire M. 23.  et al. 2015. High pressure floating zone growth and structural properties of ferrimagnetic quantum paraelectric BaFe12O19. APL Mater. 3:062512 [Google Scholar]
  24. Ikeda SI, Maeno Y, Nakatsuji S, Kosaka M, Uwatoko Y. 24.  2000. Ground state in Sr3Ru2O7: Fermi liquid close to a ferromagnetic instability. Phys. Rev. B 62:R6089–92 [Google Scholar]
  25. Capogna L, Mackenzie AP, Perry RS, Grigera SA, Galvin LM. 25.  et al. 2002. Sensitivity to disorder of the metallic state in the ruthenates. Phys. Rev. Lett. 88:076602 [Google Scholar]
  26. Zurbuchen MA, Jia Y, Knapp S, Carim AH, Schlom DG. 26.  et al. 2001. Suppression of superconductivity by crystallographic defects in epitaxial Sr2RuO4 films. Appl. Phys. Lett. 78:2351–53 [Google Scholar]
  27. Mao Z, Maenoab Y, Fukazawa H. 27.  2000. Crystal growth of Sr2RuO4. Mater. Res. Bull. 35:1813–24 [Google Scholar]
  28. Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T. 28.  et al. 1994. Superconductivity in a layered perovskite without copper. Nature 372:532–34 [Google Scholar]
  29. Emery V, Kivelson S, Tranquada J. 29.  1999. Stripe phases in high-temperature superconductors. PNAS 96:8814–17 [Google Scholar]
  30. Tanaka I, Kojima H. 30.  1989. Superconducting single crystals. Nature 337:21–22 [Google Scholar]
  31. Hosoya S, Lee C, Wakimoto S, Yamada K, Endoh Y. 31.  1994. Single crystal growth of La2−xSrxCuO4 with improved lamp-image floating-zone furnace. Phys. C: Supercond. Appl. 235:547–48 [Google Scholar]
  32. Dabkowska H, Gaulin B. 32.  2007. Growth of single crystals of selected cuprates by the optical floating zone technique. J. Optoelectron. Adv. Mater. 9:1215–20 [Google Scholar]
  33. Gardner J, Gaulin B, Paul DM. 33.  1998. Single crystal growth by the floating-zone method of a geometrically frustrated pyrochlore antiferromagnet, Tb2Ti2O7. J. Cryst. Growth 191:740–45 [Google Scholar]
  34. Kimura K, Nakatsuji S, Wen J, Broholm C, Stone M. 34.  et al. 2013. Quantum fluctuations in spin-ice-like Pr2Zr2O7. Nat. Commun. 4:1934 [Google Scholar]
  35. Sala G, Gutmann MJ, Prabhakaran D, Pomaranski D, Mitchelitis C. 35.  et al. 2014. Vacancy defects and monopole dynamics in oxygen-deficient pyrochlores. Nat. Mater. 13:488–93 [Google Scholar]
  36. Van Aken BB, Palstra TTM, Filippetti A, Spaldin NA. 36.  2004. The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3:164–70 [Google Scholar]
  37. Pailhès S, Fabrèges X, Régnault L, Pinsard-Godart L, Mirebeau I. 37.  et al. 2009. Hybrid goldstone modes in multiferroic YMnO3 studied by polarized inelastic neutron scattering. Phys. Rev. B 79:134409 [Google Scholar]
  38. Fan C, Zhao Z, Song J, Wu J, Zhang F, Sun X. 38.  2014. Single crystal growth of the hexagonal manganites R MnO3 (R = rare earth) by the optical floating-zone method. J. Cryst. Growth 388:54–60 [Google Scholar]
  39. Ito T, Ushiyama T, Yanagisawa Y, Kumai R, Tomioka Y. 39.  2011. Growth of highly insulating bulk single crystals of multiferroic BiFeO3 and their inherent internal strains in the domain-switching process. Cryst. Growth Des. 11:5139–43 [Google Scholar]
  40. Jeong J, Goremychkin EA, Guidi T, Nakajima K, Jeon GS. 40.  et al. 2012. Spin wave measurements over the full Brillouin zone of multiferroic BiFeO3. Phys. Rev. Lett. 108:077202 [Google Scholar]
  41. Matsuda M, Fishman RS, Hong T, Lee CH, Ushiyama T. 41.  et al. 2012. Magnetic dispersion and anisotropy in multiferroic BiFeO3. Phys. Rev. Lett. 109:067205 [Google Scholar]
  42. Czochralski J.42.  1918. Ein neues Verfahren zur Messung der Kristallisationsgeschwindigheit der Metalle. Z. Phys. Chem. 92:219–21 [Google Scholar]
  43. Ghosh S, Rosenbaum TF, Aeppli G. 43.  2008. Macroscopic signature of protected spins in a dense frustrated magnet. Phys. Rev. Lett. 101:157205 [Google Scholar]
  44. Huxley A, Rodiere P, Paul DM, van Dijk N, Cubitt R, Flouquet J. 44.  2000. Realignment of the flux-line lattice by a change in the symmetry of superconductivity in UPt3. Nature 406:160–64 [Google Scholar]
  45. Oike H, Kikkawa A, Kanazawa N, Taguchi Y, Kawasaki M. 45.  et al. 2016. Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice. Nat. Phys. 12:62–66 [Google Scholar]
  46. Rudolph P. 46.  2014. Handbook of Crystal Growth: Bulk Crystal Growth. Amsterdam: Elsevier Science [Google Scholar]
  47. Reed TB, Fahey RE. 47.  1966. Resistance heated crystal puller for operation at 2000°C. Rev. Sci. Instrum. 37:59–61 [Google Scholar]
  48. Reed T, Pollard E. 48.  1968. Tri-arc furnace for Czochralski growth with a cold crucible. J. Cryst. Growth 2:243–47 [Google Scholar]
  49. Fort D.49.  1997. A tri-arc system for growing high-purity crystals of metallic materials. Rev. Sci. Instrum. 68:3504–11 [Google Scholar]
  50. Szlawska M, Kaczorowski D. 50.  2013. Single-crystal growth of f-electron intermetallics in a tetra-arc Czochralski furnace. Acta Phys. Pol. A 124:336–39 [Google Scholar]
  51. Brown SA, Howard BK, Brown SV, Julian SR. 51.  1990. A new design for a UHV compatible Czochralski crystal growth system. Rev. Sci. Instrum. 61:2427–29 [Google Scholar]
  52. Fort D.52.  1993. An ultrahigh vacuum Czochralski crystal growth system using either hot or cold crucibles. Rev. Sci. Instrum. 64:3209–14 [Google Scholar]
  53. Cockayne B.53.  1974. Czochralski growth of oxide single crystals. Platin. Metals Rev. 18:86–91 [Google Scholar]
  54. Hukin D.54.  1971. A new design of cold crucible and its application to the growth of rare earth metal single crystals Clarendon Lab. Rep. No. 24/71 Oxford Univ. Oxford, UK: [Google Scholar]
  55. McEwen KA, Touborg P. 55.  1973. Crystal growth of the rare earth metals. J. Phys. F: Metal Phys. 3:1903 [Google Scholar]
  56. Mullin J.56.  1989. Melt growth of III-V compounds by the liquid encapsulation and horizontal growth techniques. III-V Semicond. Mater. Dev. 1:1–72 [Google Scholar]
  57. Ciszek T, Evans C. 57.  1988. A simple high-pressure furnace for liquid-encapsulated Bridgman/Stockbarger crystal growth. J. Cryst. Growth 91:533–37 [Google Scholar]
  58. Jayavel R, Mochiku T, Ooi S, Hirata K. 58.  2002. Growth of bulk Pr2−xCexCuO4+δ single crystals by B2O3 encapsulated flux technique. J. Cryst. Growth 237:792–95 [Google Scholar]
  59. Metz EPA, Miller RC, Mazelsky R. 59.  1962. A technique for pulling single crystals of volatile materials. J. Appl. Phys. 33:2016–17 [Google Scholar]
  60. Mullin J, Straughan B, Brickell W. 60.  1965. Liquid encapsulation techniques: the use of an inert liquid in suppressing dissociation during the melt-growth of InAs and GaAs crystals. J. Phys. Chem. Solids 26:782–84 [Google Scholar]
  61. Langsdorf A, Assmus W. 61.  1998. Growth of large single grains of the icosahedral quasicrystal ZnMgY. J. Cryst. Growth 192:152–56 [Google Scholar]
  62. Hiscocks S, Elliott C. 62.  1969. On the preparation, growth and properties of Cd3As2. J. Mater. Sci. 4:784–88 [Google Scholar]
  63. Iseler G.63.  1981. Liquid-encapsulated Czochralski growth of InP crystals. J. Cryst. Growth 54:16–20 [Google Scholar]
  64. Bass S, Oliver P. 64.  1968. Pulling of gallium phosphide crystals by liquid encapsulation. J. Cryst. Growth 3:286–90 [Google Scholar]
  65. Abdul-Jabbar G, Sokolov DA, O'Neill CD, Stock C, Wermeille D. 65.  et al. 2015. Modulated magnetism in PrPtAl. Nat. Phys. 11:321–27 [Google Scholar]
  66. Tokiwa Y, Stingl C, Kim MS, Takabatake T, Gegenwart P. 66.  2015. Characteristic signatures of quantum criticality driven by geometrical frustration. Sci. Adv. 1:e1500001 [Google Scholar]
  67. Yamashita T, Shimoyama Y, Haga Y, Matsuda TD, Yamamoto E. 67.  et al. 2015. Colossal thermomagnetic response in the exotic superconductor URu2Si2. Nat. Phys. 11:17–20 [Google Scholar]
  68. Machida Y, Itoh A, So Y, Izawa K, Haga Y. 68.  et al. 2012. Twofold spontaneous symmetry breaking in the heavy-fermion superconductor UPt3. Phys. Rev. Lett. 108:157002 [Google Scholar]
  69. Taufour V, Aoki D, Knebel G, Flouquet J. 69.  2010. Tricritical point and wing structure in the itinerant ferromagnet UGe2. Phys. Rev. Lett. 105:217201 [Google Scholar]
  70. Nakatsuji S, Kiyohara N, Higo T. 70.  2015. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527:212–15 [Google Scholar]
  71. Zur D, Menzel D, Jursic I, Schoenes J, Patthey L. 71.  et al. 2007. Absence of Kondo resonance in high-resolution photoemission spectra of monocrystalline Fe1−xCoxSi. Phys. Rev. B 75:165103 [Google Scholar]
  72. Wakimoto S, Birgeneau R, Kagedan A, Kim H, Swainson I. 72.  et al. 2005. Magnetic properties of the overdoped superconductor La2−xSrxCuO4 with and without Zn impurities. Phys. Rev. B 72:064521 [Google Scholar]
  73. Kang HJ, Dai P, Campbell BJ, Chupas PJ, Rosenkranz S. 73.  et al. 2007. Microscopic annealing process and its impact on superconductivity in T′-structure electron-doped copper oxides. Nat. Mater. 6:224–29 [Google Scholar]
  74. Armitage NP, Fournier P, Greene RL. 74.  2010. Progress and perspectives on electron-doped cuprates. Rev. Mod. Phys. 82:2421–87 [Google Scholar]
  75. Ando Y, Komiya S, Segawa K, Ono S, Kurita Y. 75.  2004. Electronic phase diagram of high-Tc cuprate superconductors from a mapping of the in-plane resistivity curvature. Phys. Rev. Lett. 93:267001 [Google Scholar]
  76. Shekhter A, Ramshaw B, Liang R, Hardy W, Bonn D. 76.  et al. 2013. Bounding the pseudogap with a line of phase transitions in YBa2Cu3O6+δ. Nature 498:75–77 [Google Scholar]
  77. Hashimoto M, Vishik IM, He RH, Devereaux TP, Shen ZX. 77.  2014. Energy gaps in high-transition-temperature cuprate superconductors. Nat. Phys. 10:483–95 [Google Scholar]
  78. Rice W, Ambwani P, Bombeck M, Thompson J, Haugstad G. 78.  et al. 2014. Persistent optically induced magnetism in oxygen-deficient strontium titanate. Nat. Mater. 13:481–87 [Google Scholar]
  79. Bocarsly JD, Hirai D, Ali M, Cava R. 79.  2013. Superconducting phase diagram of InxWO3 synthesized by indium deintercalation. EPL 103:17001 [Google Scholar]
  80. Huy N, Huang Y, De Visser A. 80.  2009. Effect of annealing on the magnetic and superconducting properties of single-crystalline UCoGe. J. Magn. Magnet. Mater. 321:2691–93 [Google Scholar]
  81. Zhang J, Chen YS, Phelan D, Zheng H, Norman MR, Mitchell JF. 81.  2016. Stacked charge stripes in the quasi-2D trilayer nickelate La4Ni3O8. PNAS 113:8945–50 [Google Scholar]
  82. Nayak AK, Fischer JE, Sun Y, Yan B, Karel J. 82.  et al. 2016. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2:e1501870 [Google Scholar]
  83. Ohoyama T.83.  1961. X-ray and magnetic studies of the manganese-germanium system. J. Phys. Soc. Jpn. 16:1995–2002 [Google Scholar]
  84. Gerardin M.84.  1861. De l'action de la pile sur les sels de potasse et de soude et sur les alliages soumis la fusion igne. C. R. Acad. Sci. Paris 53:727 [Google Scholar]
  85. Fort D.85.  2002. Purification of the rare earth metals. Purification Process and Characterization of Ultra High Purity Metals Y Waseda, M Isshiki 145–77 New York: Springer [Google Scholar]
  86. Schmidt F, Conzemius R, Carlson O. 86.  1978. Electrotransport of vanadium, niobium and tantalum in thorium. J. Less Common Metals 59:53–60 [Google Scholar]
  87. Schmidt F, Martsching G, Carlson O. 87.  1979. Electrotransport of carbon, nitrogen and oxygen in lanthanum. J. Less Common Metals 68:75–83 [Google Scholar]
  88. Vdovin EE, Kasumov AY. 88.  1988. Direct observation of electromigration of dislocations in a metal. Sov. Phys. Solid State 30:180–81 [Google Scholar]
  89. Schmehr J, Whitley W, Huxley A. 89.  2016. Composition-tuning in a solid-state electrotransport furnace with active thermal expansion compensation. Rev. Sci. Instrum. 87:123903 [Google Scholar]
  90. Martin M.90.  2000. Electrotransport and demixing in oxides. Solid State Ionics 136:331–37 [Google Scholar]
  91. Teller O, Martin M. 91.  1997. Kinetic demixing of (Co,Ni)O in an electric field. Solid State Ionics101–103475–78 [Google Scholar]
  92. Monceau D, Filal M, Tebtoub M, Petot C, Petot-Ervas G. 92.  1994. Kinetic demixing of ceramics in an electrical field. Solid State Ionics 73:221–25 [Google Scholar]
  93. Haga Y, Honma T, Yamamoto E, Ohkuni H, Ōnuki Y. 93.  et al. 1998a. Purification of uranium metal using the solid state electrotransport method under ultrahigh vacuum. Jpn. J. Appl. Phys. 37:3604 [Google Scholar]
  94. Marchant J, Shedd E, Henrie T, Wong M. 94.  1971. Electrotransport of impurities in rare-earth metals, using a pulsed current. Bur. Mines Rep. Investig. 7480, US Dep. Inter Washington, DC: [Google Scholar]
  95. Matsuda TD, Hassinger E, Aoki D, Taufour V, Knebel G. 95.  et al. 2011. Details of sample dependence and transport properties of URu2Si2. J. Phys. Soc. Jpn. 80:114710 [Google Scholar]
  96. Yokoyama M, Amitsuka H, Tenya K, Watanabe K, Kawarazaki S. 96.  et al. 2005. Competition between hidden order and antiferromagnetism in URu2Si2 under uniaxial stress studied by neutron scattering. Phys. Rev. B 72:214419 [Google Scholar]
  97. Mydosh JA, Oppeneer PM. 97.  2011. Colloquium Hidden order, superconductivity, and magnetism: The unsolved case of URu2Si2. Rev. Mod. Phys. 83:1301–22 [Google Scholar]
  98. Haga Y, Yamamoto E, Kimura N, Hedo M, Ohkuni H. 98.  et al. 1998b. High-quality single crystal growth of uranium-based intermetallics. J. Magn. Magn. Mater. 177:437–38 [Google Scholar]
  99. Yamamoto E, Haga Y, Ikeda S, Matsuda T, Akazawa T. 99.  et al. 2007. High-quality single crystal growth and physical properties in a ferromagnet UIr. J. Magn. Magn. Mater. 310:e123–25 [Google Scholar]
  100. Hedo M, Inada Y, Yamamoto E, Haga Y, Ōnuki Y. 100.  et al. 1998. Superconducting properties of CeRu 2. J. Phys. Soc. Jpn. 67:272–79 [Google Scholar]
  101. Wells BO, Lee YS, Kastner MA, Christianson RJ, Birgeneau RJ. 101.  et al. 1997. Incommensurate spin fluctuations in high-transition temperature superconductors. Science 277:1067–71 [Google Scholar]
  102. Lee Y, Birgeneau R, Kastner M, Endoh Y, Wakimoto S. 102.  et al. 1999. Neutron-scattering study of spin-density wave order in the superconducting state of excess-oxygen-doped La2CuO4+y. Phys. Rev. B 60:3643 [Google Scholar]
  103. Prabhakaran D, Boothroyd A, Coldea R, Charnley N. 103.  2004. Crystal growth of NaxCoO2 under different atmospheres. J. Cryst. Growth 271:74–80 [Google Scholar]
  104. Chou FC, Cho JH, Lee PA, Abel ET, Matan K, Lee YS. 104.  2004. Thermodynamic and transport measurements of superconducting Na0.3CoO2·1.3H2O single crystals prepared by electrochemical deintercalation. Phys. Rev. Lett. 92:157004 [Google Scholar]
  105. Chou F, Abel E, Cho J, Lee Y. 105.  2005. Electrochemical de-intercalation, oxygen non-stoichiometry, and crystal growth of NaxCoO2−δ. J. Phys. Chem. Solids 66:155–60 [Google Scholar]
  106. Shu G, Prodi A, Chu S, Lee Y, Sheu H, Chou F. 106.  2007. Searching for stable Na-ordered phases in single-crystal samples of γ-NaxCoO2. Phys. Rev. B 76:184115 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error