The recent advent of acoustic metamaterials has initiated a strong revival of interest on the subject of sound absorption. The present review is based on the physics perspective as the coherent basis of this diverse field. For conventional absorbers, viscous dissipation and heat conduction at the fluid-solid interface, when expressed through micro-geometric parameters, yield an effective medium description of porous media and micro-perforated panels as effectual sound absorbers. Local resonances and their geometric and symmetry constraints serve as the framework for surveying a variety of acoustic metamaterial absorbers that can realize previously unattainable absorption spectra with subwavelength-scale structures. These structures include decorated membrane resonators, degenerate resonators, hybrid resonators, and coiled Fabry-Pérot and Helmholtz resonators. As the acoustic response of any structure or material must obey the causality principle, the implied constraint—which relates the absorption spectrum of a sample to its required minimum thickness—is presented as a means to delineate what is ultimately possible for sound-absorbing structures. The review concludes by describing a recently reported strategy for realizing structures that can exhibit custom-designed absorption spectra, as well as its implementation in the form of a broadband absorber with a thickness that is close to the minimum value as dictated by causality.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allard J, Atalla N. 1.  2009. Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials Chichester, UK: John Wiley & Sons. 2nd ed. [Google Scholar]
  2. Sagartzazu X, Hervella-Nieto L, Pagalday J. 2.  2008. Review in sound absorbing materials. Arch. Comput. Methods Eng. 15:311–42 [Google Scholar]
  3. Liu Z, Zhang X, Mao Y, Zhu Y, Yang Z. 3.  et al. 2000. Locally resonant sonic materials. Science 289:1734–36 [Google Scholar]
  4. Fang N, Xi D, Xu J, Ambati M, Srituravanich W. 4.  et al. 2006. Ultrasonic metamaterials with negative modulus. Nat. Mater. 5:452–56 [Google Scholar]
  5. Lee SH, Park CM, Seo YM, Wang ZG, Kim CK. 5.  2010. Composite acoustic medium with simultaneously negative density and modulus. Phys. Rev. Lett. 104:054301 [Google Scholar]
  6. Lai Y, Wu Y, Sheng P, Zhang ZQ. 6.  2011. Hybrid elastic solids. Nat. Mater. 10:620–24 [Google Scholar]
  7. Wu Y, Lai Y, Zhang ZQ. 7.  2011. Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107:105506 [Google Scholar]
  8. Yang M, Ma G, Yang Z, Sheng P. 8.  2013. Coupled membranes with doubly negative mass density and bulk modulus. Phys. Rev. Lett. 110:134301 [Google Scholar]
  9. Brunet T, Merlin A, Mascaro B, Zimny K, Leng J. 9.  et al. 2015. Soft 3D acoustic metamaterial with negative index. Nat. Mater. 14:384–88 [Google Scholar]
  10. Cummer SA, Christensen J, Alù A. 10.  2016. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1:16001 [Google Scholar]
  11. Ma G, Sheng P. 11.  2016. Acoustic metamaterials: from local resonances to broad horizons. Sci. Adv. 2e1501595 [Google Scholar]
  12. Xie Y, Wang W, Chen H, Konneker A, Popa BI, Cummer SA. 12.  2014. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat. Commun. 5:5553 [Google Scholar]
  13. Li Y, Jiang X, Liang B, Cheng J, Zhang L. 13.  2015. Metascreen-based acoustic passive phased array. Phys. Rev. Appl. 4:024003 [Google Scholar]
  14. Liang Z, Li J. 14.  2012. Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. 108:114301 [Google Scholar]
  15. Xie Y, Popa BI, Zigoneanu L, Cummer SA. 15.  2013. Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys. Rev. Lett. 110:175501 [Google Scholar]
  16. Kaina N, Lemoult F, Fink M, Lerosey G. 16.  2015. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525:77–81 [Google Scholar]
  17. Li J, Fok L, Yin X, Bartal G, Zhang X. 17.  2009. Experimental demonstration of an acoustic magnifying hyperlens. Nat. Mater. 8:931–34 [Google Scholar]
  18. Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X. 18.  et al. 2011. A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nat. Phys. 7:52–55 [Google Scholar]
  19. Christensen J, de Abajo FJG. 19.  2012. Anisotropic metamaterials for full control of acoustic waves. Phys. Rev. Lett. 108:124301 [Google Scholar]
  20. Zigoneanu L, Popa BI, Cummer SA. 20.  2014. Three-dimensional broadband omnidirectional acoustic ground cloak. Nat. Mater. 13:352–55 [Google Scholar]
  21. Faure C, Richoux O, Félix S, Pagneux V. 21.  2016. Experiments on metasurface carpet cloaking for audible acoustics. Appl. Phys. Lett. 108:064103 [Google Scholar]
  22. Liang B, Guo X, Tu J, Zhang D, Cheng J. 22.  2010. An acoustic rectifier. Nat. Mater. 9:989–92 [Google Scholar]
  23. Fleury R, Sounas DL, Sieck CF, Haberman MR, Alù A. 23.  2014. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343:516–19 [Google Scholar]
  24. Yang M, Li Y, Meng C, Fu C, Mei J. 24.  et al. 2015. Sound absorption by subwavelength membrane structures: a geometric perspective. C. R. Méc. 343:635–44 [Google Scholar]
  25. Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P. 25.  2012. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3:756 [Google Scholar]
  26. Ma G, Yang M, Xiao S, Yang Z, Sheng P. 26.  2014. Acoustic metasurface with hybrid resonances. Nat. Mater. 13:873–78 [Google Scholar]
  27. Cai X, Guo Q, Hu G, Yang J. 27.  2014. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators. Appl. Phys. Lett. 105:121901 [Google Scholar]
  28. Jiang X, Liang B, Li R-q, Zou X-y, Yin L-l, Cheng J-c. 28.  2014. Ultra-broadband absorption by acoustic metamaterials. Appl. Phys. Lett. 105:243505 [Google Scholar]
  29. Wei P, Croënne C, Chu ST, Li J. 29.  2014. Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Appl. Phys. Lett. 104:121902 [Google Scholar]
  30. Song J, Bai P, Hang Z, Lai Y. 30.  2014. Acoustic coherent perfect absorbers. New J. Phys. 16:033026 [Google Scholar]
  31. Duan Y, Luo J, Wang G, Hang ZH, Hou B. 31.  et al. 2015. Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films. Sci. Rep. 5:12139 [Google Scholar]
  32. Leroy V, Strybulevych A, Lanoy M, Lemoult F, Tourin A, Page JH. 32.  2015. Superabsorption of acoustic waves with bubble metascreens. Phys. Rev. B 91:020301 [Google Scholar]
  33. Yang M, Meng C, Fu C, Li Y, Yang Z, Sheng P. 33.  2015. Subwavelength total acoustic absorption with degenerate resonators. Appl. Phys. Lett. 107:104104 [Google Scholar]
  34. Merkel A, Theocharis G, Richoux O, Romero-García V, Pagneux V. 34.  2015. Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Appl. Phys. Lett. 107:244102 [Google Scholar]
  35. Romero-García V, Theocharis G, Richoux O, Merkel A, Tournat V, Pagneux V. 35.  2016. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 6:19519 [Google Scholar]
  36. Romero-García V, Theocharis G, Richoux O, Pagneux V. 36.  2016. Use of complex frequency plane to design broadband and sub-wavelength absorbers. J. Acoust. Soc. Am. 139:3395–403 [Google Scholar]
  37. Li Y, Assouar BM. 37.  2016. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108:063502 [Google Scholar]
  38. Meng C, Zhang X, Tang ST, Yang M, Yang Z. 38.  2016. Acoustic coherent perfect absorbers as sensitive null detectors. arXiv:1610.03749 [physics.class-ph]
  39. Yang M, Chen S, Fu C, Sheng P. 39.  2016. Optimal sound absorbing structures. arXiv:1609.09561 [physics.class-ph]
  40. Yang M, Chen S, Fu C, Sheng P. 39a.  2017. Optimal sound absorbing structures. Mater. Horiz. https://doi.org/10.1039/c7mh00129k [Crossref] [Google Scholar]
  41. Allard JF, Depollier C, Guignouard P, Rebillard P. 40.  1991. Effect of a resonance of the frame on the surface impedance of glass wool of high density and stiffness. J. Acoust. Soc. Am. 89:999–1001 [Google Scholar]
  42. Landau L, Lifshitz E. 41.  2004. Fluid Mechanics 6 Oxford, UK: Butterworth-Heinemann. 2nd ed. [Google Scholar]
  43. Champoux Y, Stinson MR, Daigle GA. 42.  1991. Air-based system for the measurement of porosity. J. Acoust. Soc. Am. 89:910–16 [Google Scholar]
  44. Whitaker S.43.  1986. Flow in porous media. I. A theoretical derivation of Darcy's law. Transp. Porous Media 1:3–25 [Google Scholar]
  45. Carman PC.44.  1956. Flow of Gases Through Porous Media London: Butterworth [Google Scholar]
  46. Johnson DL, Koplik J, Dashen R. 45.  1987. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 176:379–402 [Google Scholar]
  47. Kostek S, Schwartz LM, Johnson DL. 46.  1992. Fluid permeability in porous media: comparison of electrical estimates with hydrodynamical calculations. Phys. Rev. B 45:186–95 [Google Scholar]
  48. Johnson DL, Koplik J, Schwartz LM. 47.  1986. New pore-size parameter characterizing transport in porous media. Phys. Rev. Lett. 57:2564–67 [Google Scholar]
  49. Champoux Y, Allard JF. 48.  1991. Dynamic tortuosity and bulk modulus in air-saturated porous media. J. Appl. Phys. 70:1975–79 [Google Scholar]
  50. Von Terzaghi K. 49.  1923. Die Berechnung der Durchlässigkeit des Tones aus dem Verlauf der hydromechanischen Spannungserscheinungen. Sitzungsber. Akad. Wiss. Math. Naturwiss. KI Abt. IIa 182:125–38 [Google Scholar]
  51. Biot MA.50.  1941. General theory of three-dimensional consolidation. J. Appl. Phys. 12:155–64 [Google Scholar]
  52. Biot MA.51.  1956. Theory of deformation of a porous viscoelastic anisotropic solid. J. Appl. Phys. 27:459–67 [Google Scholar]
  53. Biot MA.52.  1956. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28:168–78 [Google Scholar]
  54. Biot MA.53.  1956. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28:179–91 [Google Scholar]
  55. Delany M, Bazley E. 54.  1970. Acoustical properties of fibrous absorbent materials. Appl. Acoust. 3:105–16 [Google Scholar]
  56. Allard JF, Champoux Y. 55.  1992. New empirical equations for sound propagation in rigid frame fibrous materials. J. Acoust. Soc. Am. 91:3346–53 [Google Scholar]
  57. Lafarge D, Nemati N. 56.  2013. Nonlocal Maxwellian theory of sound propagation in fluid-saturated rigid-framed porous media. Wave Motion 50:1016–35 [Google Scholar]
  58. Nemati N, Lafarge D. 57.  2014. Check on a nonlocal Maxwellian theory of sound propagation in fluid-saturated rigid-framed porous media. Wave Motion 51:716–28 [Google Scholar]
  59. Maa DY.58.  1998. Potential of microperforated panel absorber. J. Acoust. Soc. Am. 104:2861–66 [Google Scholar]
  60. Bolt RH.59.  1947. On the design of perforated facings for acoustic materials. J. Acoust. Soc. Am. 19:917–21 [Google Scholar]
  61. Callaway D, Ramer L. 60.  1952. The use of perforated facings in designing low frequency resonant absorbers. J. Acoust. Soc. Am. 24:309–12 [Google Scholar]
  62. Ingard U.61.  1953. On the theory and design of acoustic resonators. J. Acoust. Soc. Am. 25:1037–61 [Google Scholar]
  63. Ingard U.62.  1954. Perforated facing and sound absorption. J. Acoust. Soc. Am. 26:151–54 [Google Scholar]
  64. Morse PM, Ingard KU. 63.  1968. Theoretical Acoustics New York: McGraw Hill [Google Scholar]
  65. Maa DY.64.  1975. Theory and design of microperforated panel sound-absorbing constructions. Sci. Sin. 18:55–71 [Google Scholar]
  66. Raleigh JWD.65.  1929. Theory of Sound. II. New York: MacMillan327 pp. [Google Scholar]
  67. Crandall IB.66.  1926. Theory of Vibration System and Sound New York: Van Nostrand229 pp. [Google Scholar]
  68. Liu J, Herrin D. 67.  2010. Enhancing micro-perforated panel attenuation by partitioning the adjoining cavity. Appl. Acoust. 71:120–27 [Google Scholar]
  69. Wang C, Huang L. 68.  2011. On the acoustic properties of parallel arrangement of multiple micro-perforated panel absorbers with different cavity depths. J. Acoust. Soc. Am. 130:208–18 [Google Scholar]
  70. Wang C, Huang L, Zhang Y. 69.  2014. Oblique incidence sound absorption of parallel arrangement of multiple micro-perforated panel absorbers in a periodic pattern. J. Sound Vib. 333:6828–42 [Google Scholar]
  71. Park SH.70.  2013. Acoustic properties of micro-perforated panel absorbers backed by Helmholtz resonators for the improvement of low-frequency sound absorption. J. Sound Vib. 332:4895–911 [Google Scholar]
  72. Yang Z, Mei J, Yang M, Chan N, Sheng P. 71.  2008. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101:204301 [Google Scholar]
  73. Yang M, Ma G, Wu Y, Yang Z, Sheng P. 72.  2014. Homogenization scheme for acoustic metamaterials. Phys. Rev. B 89:064309 [Google Scholar]
  74. Bliokh KY, Bliokh YP, Freilikher V, Savelev S, Nori F. 73.  2008. Unusual resonators: plasmonics, metamaterials, and random media. Rev. Mod. Phys. 80:1201–13 [Google Scholar]
  75. Xu Y, Li Y, Lee RK, Yariv A. 74.  2000. Scattering-theory analysis of waveguide-resonator coupling. Phys. Rev. E 62:7389–404 [Google Scholar]
  76. Chen Y, Huang G, Zhou X, Hu G, Sun CT. 75.  2014. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: membrane model. J. Acoust. Soc. Am. 136:969–79 [Google Scholar]
  77. Chen Y, Huang G, Zhou X, Hu G, Sun CT. 76.  2014. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: plate model. J. Acoust. Soc. Am. 136:2926–34 [Google Scholar]
  78. Ivansson SM.77.  2012. Anechoic coatings obtained from two-and three-dimensional monopole resonance diffraction gratings. J. Acoust. Soc. Am. 131:2622–37 [Google Scholar]
  79. Wen J, Zhao H, Lv L, Yuan B, Wang G, Wen X. 78.  2011. Effects of locally resonant modes on underwater sound absorption in viscoelastic materials. J. Acoust. Soc. Am. 130:1201–208 [Google Scholar]
  80. Meng H, Wen J, Zhao H, Lv L, Wen X. 79.  2012. Analysis of absorption performances of anechoic layers with steel plate backing. J. Acoust. Soc. Am. 132:69–75 [Google Scholar]
  81. Achilleos V, Richoux O, Theocharis G. 80.  2016. Coherent perfect absorption induced by the nonlinearity of a Helmholtz resonator. arXiv:1601.03912 [physics.class-ph]
  82. Godwin R.81.  1972. Optical mechanism for enhanced absorption of laser energy incident on solid targets. Phys. Rev. Lett. 28:85–87 [Google Scholar]
  83. Freidberg J, Mitchell R, Morse RL, Rudsinski L. 82.  1972. Resonant absorption of laser light by plasma targets. Phys. Rev. Lett. 28:795–99 [Google Scholar]
  84. Kindel J, Lee K, Lindman E. 83.  1975. Surface-wave absorption. Phys. Rev. Lett. 34:134–38 [Google Scholar]
  85. Yang M, Ma G, Yang Z, Sheng P. 84.  2015. Subwavelength perfect acoustic absorption in membrane-type metamaterials: a geometric perspective. EPJ Appl. Metamater. 2:10 [Google Scholar]
  86. Piper JR, Liu V, Fan S. 85.  2014. Total absorption by degenerate critical coupling. Appl. Phys. Lett. 104:251110 [Google Scholar]
  87. Jiménez N, Huang W, Romero-García V, Pagneux V, Groby JP. 86.  2016. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Appl. Phys. Lett. 109:121902 [Google Scholar]
  88. Landy N, Sajuyigbe S, Mock J, Smith D, Padilla W. 87.  2008. Perfect metamaterial absorber. Phys. Rev. Lett. 100:207402 [Google Scholar]
  89. Ye D, Wang Z, Xu K, Li H, Huangfu J. 88.  et al. 2013. Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. Phys. Rev. Lett. 111:187402 [Google Scholar]
  90. Radi Y, Simovski C, Tretyakov S. 89.  2015. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys. Rev. Appl. 3:037001 [Google Scholar]
  91. Lee YP, Rhee JY, Yoo YJ, Kim KW. 90.  2016. Broadband and tunable MMPA. Metamaterials for Perfect Absorption ed. Y Pak Lee, JY Rhee, YJ Yoo, KW Kim 113–41 Singapore: Springer [Google Scholar]
  92. Li J, Wang W, Xie Y, Popa BI, Cummer SA. 91.  2016. A sound absorbing metasurface with coupled resonators. Appl. Phys. Lett. 109:091908 [Google Scholar]
  93. Liang Z, Feng T, Lok S, Liu F, Ng KB. 92.  et al. 2013. Space-coiling metamaterials with double negativity and conical dispersion. Sci. Rep. 3:1614 [Google Scholar]
  94. Xie Y, Konneker A, Popa BI, Cummer SA. 93.  2013. Tapered labyrinthine acoustic metamaterials for broadband impedance matching. Appl. Phys. Lett. 103:201906 [Google Scholar]
  95. Kim S, Kim YH, Jang JH. 94.  2006. A theoretical model to predict the low-frequency sound absorption of a Helmholtz resonator array. J. Acoust. Soc. Am. 119:1933–36 [Google Scholar]
  96. Wu X, Fu C, Li X, Meng Y, Gao Y. 95.  et al. 2016. Low-frequency tunable acoustic absorber based on split tube resonators. Appl. Phys. Lett. 109:043501 [Google Scholar]
  97. Landau L, Lifshitz E, Pitaevskii L. 96.  1995. Electrodynamics of Continuous Media 8 Oxford, UK: Butterworth-Heinemann. 2nd ed. [Google Scholar]
  98. Fano RM.97.  1950. Theoretical limitations on the broadband matching of arbitrary impedances. J. Franklin Inst. 249:57–83 [Google Scholar]
  99. Rozanov KN.98.  2000. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antennas Propag. 48:1230–34 [Google Scholar]
  100. Wu T, Cox T, Lam Y. 99.  2000. From a profiled diffuser to an optimized absorber. J. Acoust. Soc. Am. 108:643–50 [Google Scholar]
  101. Fahy F.100.  2001. Foundations of Engineering Acoustics London: Academic [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error