Transparent conducting oxides (TCOs) and transparent oxide semiconductors (TOSs) have become necessary materials for a variety of applications in the information and energy technologies, ranging from transparent electrodes to active electronics components. Perovskite barium stannate (BaSnO), a new TCO or TOS system, is a potential platform for realizing optoelectronic devices and observing novel electronic quantum states due to its high electron mobility, excellent thermal stability, high transparency, structural versatility, and flexible doping controllability. This article reviews recent progress in the doped BaSnO system, discussing the wide range of physical properties, electron-scattering mechanism, and demonstration of key semiconducting devices such as diodes and field-effect transistors. Moreover, we discuss the pathways to achieving two-dimensional electron gases at the interface between BaSnO and other perovskite oxides and describe remaining challenges for observing novel quantum phenomena at the heterointerface.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ginley DS, Bright C. 1.  2000. Transparent conducting oxides. MRS Bull 25:15–18 [Google Scholar]
  2. Minami T.2.  2000. New n-type transparent conducting oxides. MRS Bull 25:38–44 [Google Scholar]
  3. Freeman AJ, Poeppelmeier KR, Mason TO, Chang RPH, Marks TJ. 3.  2000. Chemical and thin-film strategies for new transparent conducting oxides. MRS Bull 25:45–51 [Google Scholar]
  4. Ohta H, Nomura K, Hiramatsu H, Ueda K, Kamiya T. 4.  et al. 2003. Frontier of transparent oxide semiconductors. Solid State Electron 47:2261–67 [Google Scholar]
  5. Hosono H.5.  2007. Recent progress in transparent oxide semiconductors: materials and device application. Thin Solid Films 515:6000–14 [Google Scholar]
  6. Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H. 6.  2004. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432:488–92 [Google Scholar]
  7. Kamiya T, Nomura K, Hosono H. 7.  2010. Present status of amorphous In–Ga–Zn–O thin-film transistors. Sci. Technol. Adv. Mater. 11:044305 [Google Scholar]
  8. Calnan S, Tiwari AN. 8.  2010. High mobility transparent conducting oxides for thin film solar cells. Thin Solid Films 518:1839–49 [Google Scholar]
  9. Hosono H, Ohta H, Hayashi K, Oritaa M, Hirano M. 9.  2002. Near-UV emitting diodes based on a transparent p–n junction composed of heteroepitaxially grown p-SrCu2O2 and n-ZnO. J. Cryst. Growth 237–239:496–502 [Google Scholar]
  10. Das S, Jayaraman V. 10.  2014. SnO2: a comprehensive review on structures and gas sensors. Prog. Mater. Sci. 66:112–255 [Google Scholar]
  11. Wang Z, Nayak PK, Caraveo-Frescas JA, Alshareef HN. 11.  2016. Recent developments in p-type oxide semiconductor materials and devices. Adv. Mater. 28:3831–92 [Google Scholar]
  12. Minami T.12.  2005. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20:S35–44 [Google Scholar]
  13. Hamberg I, Granqvist CG. 13.  1986. Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60:R123–59 [Google Scholar]
  14. Rakhshani AE, Makdisi Y, Ramazaniyan HA. 14.  1998. Electronic and optical properties of fluorine-doped tin oxide films. J. Appl. Phys. 83:1049–57 [Google Scholar]
  15. Agashe C, Kluth O, Hüpkes J, Zastrow U, Rech B, Wuttig M. 15.  2004. Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films. J. Appl. Phys. 95:1911–17 [Google Scholar]
  16. Preissler N, Bierwagen O, Ramu AT, Speck JS. 16.  2013. Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films. Phys. Rev. B 88:085305 [Google Scholar]
  17. Wen SJ, Couturier G, Chaminade JP, Marquestaut E, Claverie J, Hagenmuller P. 17.  1992. Electrical properties of pure In2O3 and Sn-doped In2O3 single crystals and ceramics. J. Solid State Chem. 101:203–10 [Google Scholar]
  18. Nakao S, Yamada N, Hitosugi T, Hirose Y, Shimada T, Hasegawa T. 18.  2010. High mobility exceeding 80 cm2 V−1 s−1 in polycrystalline Ta-doped SnO2 thin films on glass using anatase TiO2 seed layers. Appl. Phys. Express 3:031102 [Google Scholar]
  19. Nagasawa M, Shionoya S, Makishima S. 19.  1965. Vapor reaction growth of SnO2 single crystals and their properties. Jpn. J. Appl. Phys. 4:195–202 [Google Scholar]
  20. Nian Q, Zhang MY, Schwartz BD, Cheng GJ. 20.  2014. Ultraviolet laser crystallized ZnO:Al films on sapphire with high Hall mobility for simultaneous enhancement of conductivity and transparency. Appl. Phys. Lett. 104:201907 [Google Scholar]
  21. Lin W, Chen D, Zhang J, Lin Z, Huang J. 21.  et al. 2009. Hydrothermal growth of ZnO single crystals with high carrier mobility. Cryst. Growth Des. 9:4378–83 [Google Scholar]
  22. Sachet E, Shelton CT, Harris JS, Gaddy BE, Irving DL. 22.  et al. 2015. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nat. Mater. 14:414–20 [Google Scholar]
  23. Koffyberg FP.23.  1970. Electronic conduction and defect equilibria in CdO single crystals. J. Solid State Chem. 2:176–81 [Google Scholar]
  24. Sasaki K, Kuramata A, Masui T, Víllora EG, Shimamura K, Yamakoshi S. 24.  2012. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl. Phys. Express 5:035502 [Google Scholar]
  25. Oishi T, Koga Y, Harada K, Kasu M. 25.  2015. High-mobility β-Ga2O3(201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl. Phys. Express 8:031101 [Google Scholar]
  26. He H, Orlando R, Blanco MA, Pandey R, Amzallag E. 26.  et al. 2006. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 74:195123 [Google Scholar]
  27. Kamiya T, Nomura K, Hosono H. 27.  2009. Electronic structure of the amorphous oxide semiconductor a-InGaZnO4−x: Tauc-Lorentz optical model and origins of subgap states. Phys. Status Solid. A 206:860–67 [Google Scholar]
  28. Son J, Moetakef P, Jalan B, Bierwagen O, Wright NJ. 28.  et al. 2010. Epitaxial SrTiO3 films with electron mobilities exceeding 30,000 cm2 V−1 s−1. Nat. Mater. 9:482–84 [Google Scholar]
  29. Ohta S, Nomura T, Ohta H, Koumoto K. 29.  2005. High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 97:034106 [Google Scholar]
  30. Raghavan S, Schumann T, Kim H, Zhang JY, Cain TA, Stemmer S. 30.  2016. High-mobility BaSnO3 grown by oxide molecular beam epitaxy. APL Mater 4:016106 [Google Scholar]
  31. Kim HJ, Kim U, Kim HM, Kim TH, Mun HS. 31.  et al. 2012. High mobility in a stable transparent perovskite oxide. Appl. Phys. Express 5:061102 [Google Scholar]
  32. Exarhos GJ, Zhou X-D. 32.  2007. Discovery-based design of transparent conducting oxide films. Thin Solid Films 515:7025–52 [Google Scholar]
  33. Walsh A, Da Silva JL, Wei SH. 33.  2011. Multi-component transparent conducting oxides: progress in materials modelling. J. Phys. Condens. Matter 23:334210 [Google Scholar]
  34. Mryasov O, Freeman A. 34.  2001. Electronic band structure of indium tin oxide and criteria for transparent conducting behavior. Phys. Rev. B 64:233111 [Google Scholar]
  35. Kumar A, Zhou CW. 35.  2010. The race to replace tin-doped indium oxide: Which material will win?. ACS Nano 4:11–14 [Google Scholar]
  36. Bayraktaroglu B, Leedy K, Bedford R. 36.  2008. High temperature stability of postgrowth annealed transparent and conductive ZnO:Al films. Appl. Phys. Lett. 93:022104 [Google Scholar]
  37. Ping W, Jie Z, Jianguo L, Xifeng L, Chuanjia W. 37.  et al. 2014. Instability induced by ultraviolet light in ZnO thin-film transistors. IEEE Trans. Electron. Devices 61:1431–35 [Google Scholar]
  38. Claflin B, Look DC, Park SJ, Cantwell G. 38.  2006. Persistent n-type photoconductivity in p-type ZnO. J. Cryst. Growth 287:16–22 [Google Scholar]
  39. Janotti A, Van de Walle CG. 39.  2009. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72:126501 [Google Scholar]
  40. Fortunato E, Barquinha P, Goncalves G, Pereira L, Martins R. 40.  2008. High mobility and low threshold voltage transparent thin film transistors based on amorphous indium zinc oxide semiconductors. Solid State Electron 52:443–48 [Google Scholar]
  41. Oana Y.41.  2001. Current and future technology of low-temperature poly-Si TFT-LCDs. J. Soc. Inf. Display 9:169–72 [Google Scholar]
  42. Kojima A, Teshima K, Shirai Y, Miyasaka T. 42.  2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131:6050–51 [Google Scholar]
  43. Liu M, Johnston MB, Snaith HJ. 43.  2013. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–98 [Google Scholar]
  44. Mattheiss LF, Gyorgy EM, Johnson DW. 44.  1988. Superconductivity above 20 K in the Ba-K-Bi-O system. Phys. Rev. B 37:3745–46 [Google Scholar]
  45. Cava RJ, Batlogg B, Krajewski JJ, Farrow R, Rupp LW. 45.  et al. 1988. Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite. Nature 332:814–16 [Google Scholar]
  46. Cava RJ, Batlogg B, Espinosa GP, Ramirez AP, Krajewski JJ. 46.  et al. 1989. Superconductivity at 3.5 K in BaPb0.75Sb0.25O3: Why is Tc so low?. Nature 339:291–93 [Google Scholar]
  47. Tokura Y, Tomioka Y. 47.  1999. Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 200:1–23 [Google Scholar]
  48. Haertling GH.48.  1999. Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82:797–818 [Google Scholar]
  49. Ryu J, Carazo AV, Uchino K, Kim H-E. 49.  2001. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn. J. Appl. Phys. 40:4948–51 [Google Scholar]
  50. Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. 50.  2003. Magnetic control of ferroelectric polarization. Nature 426:55–58 [Google Scholar]
  51. Nan C-W, Bichurin MI, Dong S, Viehland D, Srinivasan G. 51.  2008. Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103:031101 [Google Scholar]
  52. Mathews S, Ramesh R, Venkatesan T, Benedetto J. 52.  1997. Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276:238–40 [Google Scholar]
  53. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB. 53.  et al. 2003. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–22 [Google Scholar]
  54. Wemple SH.54.  1965. Some transport properties of oxygen-deficient single-crystal potassium tantalate (KTaO3). Phys. Rev. A 137:1575–82 [Google Scholar]
  55. Ohtomo A, Hwang HY. 55.  2004. Surface depletion in doped SrTiO3 thin films. Appl. Phys. Lett. 84:1716–18 [Google Scholar]
  56. Shannon RD.56.  1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32:751–67 [Google Scholar]
  57. Mountstevens EH, Attfield JP, Redfern SAT. 57.  2003. Cation-size control of structural phase transitions in tin perovskites. J. Phys. Condens. Matter 15:8315–26 [Google Scholar]
  58. Zhang W, Tang J, Ye J. 58.  2007. Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (M = Ca, Sr, and Ba) photocatalysts. J. Mater. Res. 22:1859–71 [Google Scholar]
  59. Mizoguchi H, Eng HW, Woodward PM. 59.  2004. Probing the electronic structures of ternary perovskite and pyrochlore oxides containing Sn4+ or Sb5+. Inorg. Chem. 43:1667–80 [Google Scholar]
  60. Kim HJ, Kim U, Kim TH, Kim J, Kim HM. 60.  et al. 2012. Physical properties of transparent perovskite oxides (Ba,La)SnO3 with high electrical mobility at room temperature. Phys. Rev. B 86:165205 [Google Scholar]
  61. Singh DJ, Papaconstantopoulos DA, Julien JP, Cyrot-Lackmann F. 61.  1991. Electronic structure of Ba(Sn,Sb)O3: absence of superconductivity. Phys. Rev. B 44:9519–23 [Google Scholar]
  62. Wang HF, Liu QZ, Chen F, Gao GY, Wu W, Chen XH. 62.  2007. Transparent and conductive oxide films with the perovskite structure: La- and Sb-doped BaSnO3. J. Appl. Phys. 101:106105 [Google Scholar]
  63. Hadjarab B, Bouguelia A, Trari M. 63.  2007. Optical and transport properties of lanthanum-doped stannate BaSnO3. J. Phys. D Appl. Phys. 40:5833–39 [Google Scholar]
  64. Liu Q, Liu J, Li B, Li H, Zhu G. 64.  et al. 2012. Composition dependent metal-semiconductor transition in transparent and conductive La-doped BaSnO3 epitaxial films. Appl. Phys. Lett. 101:241901 [Google Scholar]
  65. Lee W-J, Kim HJ, Sohn E, Kim HM, Kim TH. 65.  et al. 2015. Oxygen diffusion process in a Ba0.96La0.04SnO3 thin film on SrTiO3(001) substrate as investigated by time-dependent Hall effect measurements. Phys. Status Solid. A 212:1487–93 [Google Scholar]
  66. Kim HJ, Kim J, Kim TH, Lee W-J, Jeon B-G. 66.  et al. 2013. Indications of strong neutral impurity scattering in Ba(Sn,Sb)O3 single crystals. Phys. Rev. B 88:125204 [Google Scholar]
  67. Schmid R.67.  1983. A thermodynamic analysis of the Cu-O system with an associated solution model. Metall. Trans. B 14:473–81 [Google Scholar]
  68. Luo X, Oh YS, Sirenko A, Gao P, Tyson TA. 68.  et al. 2012. High carrier mobility in transparent Ba1−xLaxSnO3 crystals with a wide band gap. Appl. Phys. Lett. 100:172112 [Google Scholar]
  69. Toyosaki H, Kawasaki M, Tokura Y. 69.  2008. Electrical properties of Ta-doped SnO2 thin films epitaxially grown on TiO2 substrate. Appl. Phys. Lett. 93:132109 [Google Scholar]
  70. Wang H-h, Cui D-F, Dai S-Y, Lu H-B, Zhou Y-L. 70.  et al. 2001. Optical and transport properties of Sb-doped SrTiO3 thin films. J. Appl. Phys. 90:4664–67 [Google Scholar]
  71. Sze SM.71.  2008. Semiconductor Devices: Physics and Technology New York: John Wiley & Sons [Google Scholar]
  72. Mnatsakanov TT, Levinshtein ME, Pomortseva LI, Yurkov SN, Simin GS, Khan MA. 72.  2003. Carrier mobility model for GaN. Solid State Electron 47:111–15 [Google Scholar]
  73. Rode DL, Knight S. 73.  1971. Electron transport in GaAs. Phys. Rev. B 3:2534–41 [Google Scholar]
  74. Pearton SJ, Zolper JC, Shul RJ, Ren F. 74.  1999. GaN: processing, defects, and devices. J. Appl. Phys. 86:1–78 [Google Scholar]
  75. Lee W-J, Kim HJ, Sohn E, Kim TH, Park J-Y. 75.  et al. 2016. Enhanced electron mobility in epitaxial (Ba,La)SnO3 films on BaSnO3(001) substrates. Appl. Phys. Lett. 108:082105 [Google Scholar]
  76. Jang DH, Lee W-J, Sohn E, Kim HJ, Seo D. 76.  et al. 2017. Single crystal growth and optical properties of a transparent perovskite oxide LaInO3. J. Appl. Phys. 121:125109 [Google Scholar]
  77. Ubic R.77.  2007. Revised method for the prediction of lattice constants in cubic and pseudocubic perovskites. J. Am. Ceram. Soc. 90:3326–30 [Google Scholar]
  78. Uecker R, Bertram R, Brützam M, Galazka Z, Gesing TM. 78.  et al. 2017. Large-lattice-parameter perovskite single-crystal substrates. J. Cryst. Growth 1:137–42 [Google Scholar]
  79. Krishnaswamy K, Bjaalie L, Himmetoglu B, Janotti A, Gordon L, Van de Walle CG. 79.  2016. BaSnO3 as a channel material in perovskite oxide heterostructures. Appl. Phys. Lett. 108:083501 [Google Scholar]
  80. Kim U, Park C, Kim YM, Shin J, Char K. 80.  2016. Conducting interface states at LaInO3/BaSnO3 polar interface controlled by Fermi level. APL Mater 4:071102 [Google Scholar]
  81. Podor B.81.  1966. Electron mobility in plastically deformed germanium. Phys. Status Solid. B 16:K167–70 [Google Scholar]
  82. Ng H, Doppalapudi D, Moustakas T, Weimann N, Eastman L. 82.  1998. The role of dislocation scattering in n-type GaN films. Appl. Phys. Lett. 73:821–23 [Google Scholar]
  83. Wadekar PV, Alaria J, O'Sullivan M, Flack NLO, Manning TD. 83.  et al. 2014. Improved electrical mobility in highly epitaxial La:BaSnO3 films on SmScO3(110) substrates. Appl. Phys. Lett. 105:052104 [Google Scholar]
  84. Park C, Kim U, Ju CJ, Park JS, Kim YM, Char K. 84.  2014. High mobility field effect transistor based on BaSnO3 with Al2O3 gate oxide. Appl. Phys. Lett. 105:203503 [Google Scholar]
  85. Shiogai J, Nishihara K, Sato K, Tsukazaki A. 85.  2016. Improvement of electron mobility in La:BaSnO3 thin films by insertion of an atomically flat insulating (Sr,Ba)SnO3 buffer layer. AIP Adv 6:065305 [Google Scholar]
  86. Ohnishi T, Shibuya K, Yamamoto T, Lippmaa M. 86.  2008. Defects and transport in complex oxide thin films. J. Appl. Phys. 103:103703 [Google Scholar]
  87. Lebens-Higgins Z, Scanlon DO, Paik H, Sallis S, Nie Y. 87.  et al. 2016. Direct observation of electrostatically driven band gap renormalization in a degenerate perovskite transparent conducting oxide. Phys. Rev. Lett. 116:027602 [Google Scholar]
  88. Niedermeier CA, Rhode S, Fearn S, Ide K, Moram MA. 88.  et al. 2016. Solid phase epitaxial growth of high mobility La:BaSnO3 thin films co-doped with interstitial hydrogen. Appl. Phys. Lett. 108:172101 [Google Scholar]
  89. Alaan US, Shafer P, N'Diaye AT, Arenholz E, Suzuki Y. 89.  2016. Gd-doped BaSnO3: a transparent conducting oxide with localized magnetic moments. Appl. Phys. Lett. 108:042106 [Google Scholar]
  90. Mun H, Kim U, Kim HM, Park C, Kim TH. 90.  et al. 2013. Large effects of dislocations on high mobility of epitaxial perovskite Ba0.96La0.04SnO3 films. Appl. Phys. Lett. 102:252105 [Google Scholar]
  91. Liu Q, Jin F, Dai J, Li B, Geng L, Liu J. 91.  2016. Effect of thickness on the electrical and optical properties of epitaxial (La0.07Ba0.93)SnO3 thin films. Superlattices Microstruct 96:205–11 [Google Scholar]
  92. Yu S, Yoon D, Son J. 92.  2016. Enhancing electron mobility in La-doped BaSnO3 thin films by thermal strain to annihilate extended defects. Appl. Phys. Lett. 108:262101 [Google Scholar]
  93. Ganguly K, Ambwani P, Xu P, Jeong JS, Mkhoyan KA. 93.  et al. 2015. Structure and transport in high pressure oxygen sputter-deposited BaSnO3−δ. APL Mater 3:062509 [Google Scholar]
  94. Wei RH, Tang XW, Hui ZZ, Luo X, Dai JM. 94.  et al. 2015. Solution processing of transparent conducting epitaxial La:BaSnO3 films with improved electrical mobility. Appl. Phys. Lett. 106:101906 [Google Scholar]
  95. Prakash A, Dewey J, Yun H, Jeong JS, Mkhoyan KA, Jalan B. 95.  2015. Hybrid molecular beam epitaxy for the growth of stoichiometric BaSnO3. J. Vac. Sci. Technol. A 33:060608 [Google Scholar]
  96. Liu ZQ, Li CJ, WM, Huang XH, Huang Z. 96.  et al. 2013. Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces: the role of oxygen vacancies and electronic reconstruction. Phys. Rev. X 3:021010 [Google Scholar]
  97. Yu L, Zunger A. 97.  2014. A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces. Nat. Commun. 5:5118 [Google Scholar]
  98. Tsuruoka T, Terabe K, Hasegawa T, Valov I, Waser R, Aono M. 98.  2012. Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Adv. Funct. Mater. 22:70–77 [Google Scholar]
  99. Wang J-C, Hsu C-H, Ye Y-R, Lai C-S, Ai C-F, Tsai W-F. 99.  2014. High-performance multilevel resistive switching gadolinium oxide memristors with hydrogen plasma immersion ion implantation treatment. IEEE Electron. Device Lett. 35:452–54 [Google Scholar]
  100. Pasierb P, Komornicki S, Rekas M. 100.  1999. Comparison of the chemical diffusion of undoped and Nb-doped SrTiO3. J. Phys. Chem. Solids 60:1835–44 [Google Scholar]
  101. Kreuer K, Schönherr E, Maier J. 101.  1994. Proton and oxygen diffusion in BaCeO3 based compounds: a combined thermal gravimetric analysis and conductivity study. Solid State Ionics 70:278–84 [Google Scholar]
  102. Mizusaki J.102.  1992. Nonstoichiometry, diffusion, and electrical-properties of perovskite-type oxide electrode materials. Solid State Ionics 52:79–91 [Google Scholar]
  103. Kim HJ, Kim TH, Lee W-J, Chai Y, Kim JW. 103.  et al. 2014. Determination of temperature-dependent thermal conductivity of a BaSnO3−δ single crystal by using the 3ω method. Thermochim. Acta 585:16–20 [Google Scholar]
  104. Yu C, Scullin ML, Huijben M, Ramesh R, Majumdar A. 104.  2008. Thermal conductivity reduction in oxygen-deficient strontium titanates. Appl. Phys. Lett. 92:191911 [Google Scholar]
  105. Tachibana M, Kolodiazhnyi T, Takayama-Muromachi E. 105.  2008. Thermal conductivity of perovskite ferroelectrics. Appl. Phys. Lett. 93:092902 [Google Scholar]
  106. Cohn JL, Neumeier JJ, Popoviciu CP, McClellan KJ, Leventouri T. 106.  1997. Local lattice distortions and thermal transport in perovskite manganites. Phys. Rev. B 56:R8495–98 [Google Scholar]
  107. Moreira E, Henriques JM, Azevedo DL, Caetano EWS, Freire VN. 107.  et al. 2012. Structural and optoelectronic properties, and infrared spectrum of cubic BaSnO3 from first principles calculations. J. Appl. Phys. 112:043703 [Google Scholar]
  108. Kim BG, Jo JY, Cheong SW. 108.  2013. Hybrid functional calculation of electronic and phonon structure of BaSnO3. J. Solid State Chem. 197:134–38 [Google Scholar]
  109. Liu H-R, Yang J-H, Xiang HJ, Gong XG, Wei S-H. 109.  2013. Origin of the superior conductivity of perovskite Ba(Sr)SnO3. Appl. Phys. Lett. 102:112109 [Google Scholar]
  110. Dabaghmanesh S, Saniz R, Amini MN, Lamoen D, Partoens B. 110.  2013. Perovskite transparent conducting oxides: an ab initio study. J. Phys. Condens. Matter 25:415503 [Google Scholar]
  111. Scanlon DO.111.  2013. Defect engineering of BaSnO3 for high-performance transparent conducting oxide applications. Phys. Rev. B 87:161201(R) [Google Scholar]
  112. Shan C, Huang T, Zhang J, Han M, Li Y. 112.  et al. 2014. Optical and electrical properties of sol–gel derived Ba1−xLaxSnO3 transparent conducting films for potential optoelectronic applications. J. Phys. Chem. C 118:6994–7001 [Google Scholar]
  113. Seo D, Yu K, Chang YJ, Sohn E, Kim KH, Choi EJ. 113.  2014. Infrared-optical spectroscopy of transparent conducting perovskite (La,Ba)SnO3 thin films. Appl. Phys. Lett. 104:022102 [Google Scholar]
  114. Kim U, Park C, Ha T, Kim R, Mun HS. 114.  et al. 2014. Dopant-site-dependent scattering by dislocations in epitaxial films of perovskite semiconductor BaSnO3. APL Mater 2:056107 [Google Scholar]
  115. Zhang P, Su F, Dai J, Zhang K, Zhang C. 115.  et al. 2014. Observation of diamagnetic effect in BaSnO3 via low-temperature magneto-photoluminescence spectroscopy. Europhys. Lett. 106:67005 [Google Scholar]
  116. Wunderlich W, Ohta H, Koumoto K. 116.  2009. Enhanced effective mass in doped SrTiO3 and related perovskites. Physica B 404:2202–12 [Google Scholar]
  117. Simonis F, Vanderleij M, Hoogendoorn CJ. 117.  1979. Physics of doped tin dioxide films for spectral-selective surfaces. Sol. Energy Mater. 1:221–31 [Google Scholar]
  118. Ellmer K.118.  2001. Resistivity of polycrystalline zinc oxide films: current status and physical limit. J. Phys. D Appl. Phys. 34:3097–108 [Google Scholar]
  119. Riffe DM.119.  2002. Temperature dependence of silicon carrier effective masses with application to femtosecond reflectivity measurements. J. Opt. Soc. Am. B Opt. Phys. 19:1092–100 [Google Scholar]
  120. Chattopadhyay D, Queisser HJ. 120.  1981. Electron scattering by ionized impurities in semiconductors. Rev. Mod. Phys. 53:745–68 [Google Scholar]
  121. Dingle RB.121.  1955. XCIV. Scattering of electrons and holes by charged donors and acceptors in semiconductors. Lond. Edinb. Dublin Philos. Mag. J. Sci. 46:831–40 [Google Scholar]
  122. Singh P, Brandenburg BJ, Sebastian CP, Singh P, Singh S. 122.  et al. 2008. Electronic structure, electrical and dielectric properties of BaSnO3 below 300 K. Jpn. J. Appl. Phys. 47:3540–45 [Google Scholar]
  123. Erginsoy C.123.  1950. Neutral impurity scattering in semiconductors. Phys. Rev. 79:1013–14 [Google Scholar]
  124. Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H. 124.  2003. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300:1269–72 [Google Scholar]
  125. Kim U, Park C, Ha T, Kim YM, Kim N. 125.  et al. 2015. All-perovskite transparent high mobility field effect using epitaxial BaSnO3 and LaInO3. APL Mater 3:036101 [Google Scholar]
  126. Kim YM, Park C, Kim U, Ju C, Char K. 126.  2016. High-mobility BaSnO3 thin-film transistor with HfO2 gate insulator. Appl. Phys. Express 9:011201 [Google Scholar]
  127. Fujiwara K, Nishihara K, Shiogai J, Tsukazaki A. 127.  2016. High field-effect mobility at the (Sr,Ba)SnO3/BaSnO3 interface. AIP Adv 6:085014 [Google Scholar]
  128. Kim HM, Kim U, Park C, Kwon H, Char K. 128.  2016. Thermally stable pn-junctions based on a single transparent perovskite semiconductor BaSnO3. APL Mater 4:056105 [Google Scholar]
  129. Li B-h, Tang Y-W, Luo L-J, Xiao T, Li D-W. 129.  et al. 2010. Fabrication of porous BaSnO3 hollow architectures using BaCO3@SnO2 core–shell nanorods as precursors. Appl. Surf. Sci. 257:197–202 [Google Scholar]
  130. Shin SS, Kim JS, Suk JH, Lee KD, Kim DW. 130.  et al. 2013. Improved quantum efficiency of highly efficient perovskite BaSnO3-based dye-sensitized solar cells. ACS Nano 7:1027–35 [Google Scholar]
  131. Kim DW, Shin SS, Lee S, Cho IS, Kim DH. 131.  et al. 2013. BaSnO3 perovskite nanoparticles for high efficiency dye-sensitized solar cells. ChemSusChem 6:449–54 [Google Scholar]
  132. Zhu L, Shao Z, Ye J, Zhang X, Pan X, Dai S. 132.  2016. Mesoporous BaSnO3 layer based perovskite solar cells. Chem. Commun. 52:970–73 [Google Scholar]
  133. Park J, Kim U, Char K. 133.  2016. Photoconductivity of transparent perovskite semiconductor BaSnO3 and SrTiO3 epitaxial thin films. Appl. Phys. Lett. 108:092106 [Google Scholar]
  134. Ohtomo A, Hwang H. 134.  2004. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427:423–26 [Google Scholar]
  135. Bristowe NC, Ghosez P, Littlewood PB, Artacho E. 135.  2014. The origin of two-dimensional electron gases at oxide interfaces: insights from theory. J. Phys. Condens. Matter 26:143201 [Google Scholar]
  136. Herranz G, Basletic M, Bibes M, Carretero C, Tafra E. 136.  et al. 2007. High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives. Phys. Rev. Lett. 98:216803 [Google Scholar]
  137. De Souza RA, Metlenko V, Park D, Weirich TE. 137.  2012. Behavior of oxygen vacancies in single-crystal SrTiO3: equilibrium distribution and diffusion kinetics. Phys. Rev. B 85:174109 [Google Scholar]
  138. Bjaalie L, Himmetoglu B, Weston L, Janotti A, Van de Walle GC. 138.  2014. Oxide interfaces for novel electronic applications. New J. Phys. 16:025005 [Google Scholar]
  139. Fan X, Zheng W, Chen X, Singh DJ. 139.  2014. 2DEGs at perovskite interfaces between KTaO3 or KNbO3 and stannates. PLOS ONE 9:e91423 [Google Scholar]
  140. Kajdos AP, Ouellette DG, Cain TA, Stemmer S. 140.  2013. Two-dimensional electron gas in a modulation-doped SrTiO3/Sr(Ti, Zr)O3 heterostructure. Appl. Phys. Lett. 103:082120 [Google Scholar]
  141. Chen YZ, Trier F, Wijnands T, Green RJ, Gauquelin N. 141.  et al. 2015. Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping. Nat. Mater. 14:801–6 [Google Scholar]
  142. Kozuka Y, Kim M, Bell C, Kim BG, Hikita Y, Hwang HY. 142.  2009. Two-dimensional normal-state quantum oscillations in a superconducting heterostructure. Nature 462:487–90 [Google Scholar]
  143. Jalan B, Stemmer S, Mack S, Allen SJ. 143.  2010. Two-dimensional electron gas in δ-doped SrTiO3. Phys. Rev. B 82:081103(R) [Google Scholar]
  144. Chambers SA, Kaspar TC, Prakash A, Haugstad G, Jalan B. 144.  2016. Band alignment at epitaxial BaSnO3/SrTiO3(001) and BaSnO3/LaAlO3(001) heterojunctions. Appl. Phys. Lett. 108:152104 [Google Scholar]
  145. Caviglia AD, Gariglio S, Cancellieri C, Sacepe B, Fete A. 145.  et al. 2010. Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 105:236802 [Google Scholar]
  146. Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N. 146.  et al. 2008. Electric-field-induced superconductivity in an insulator. Nat. Mater. 7:855–58 [Google Scholar]
  147. Ueno K, Nakamura S, Shimotani H, Yuan HT, Kimura N. 147.  et al. 2011. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat. Nanotechnol. 6:408–12 [Google Scholar]
  148. Reyren N, Thiel S, Caviglia A, Kourkoutis LF, Hammerl G. 148.  et al. 2007. Superconducting interfaces between insulating oxides. Science 317:1196–99 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error