1932

Abstract

Poisson's ratio had long been considered to be an intrinsic material property, confined within a narrow domain and governed solely by the geometry of interatomic bonds. Materials with designed heterogeneity allow for control over the Poisson's ratio. Poisson's ratios of any value within the thermodynamically admissible domain may be attained, including negative Poisson's ratio (termed auxetic). In this article, we discuss the role of Poisson's ratio in elasticity, two-dimensional and three-dimensional materials, phase transformations, underlying causes in the microstructure, and other negative physical properties.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070616-124118
2017-07-03
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/matsci/47/1/annurev-matsci-070616-124118.html?itemId=/content/journals/10.1146/annurev-matsci-070616-124118&mimeType=html&fmt=ahah

Literature Cited

  1. Ledbetter HM.1.  1973. Poisson's ratio for polycrystals. J. Phys. Chem. Solids 34:721–23 [Google Scholar]
  2. Greaves GN, Greer AL, Lakes RS, Rouxel T. 2.  2011. Poisson's ratio and modern materials. Nat. Mater. 10:823–37 [Google Scholar]
  3. Love AEH.3.  1944. A Treatise on the Mathematical Theory of Elasticity New York: Dover, 4th ed.. [Google Scholar]
  4. Bettenbouche N, Saunders GA, Lambson EF, Hönle W. 4.  1989. The dependence of the elastic stiffness moduli and the Poisson ratio of natural iron pyrites FeS2 upon pressure and temperature. J. Phys. D Appl. Phys. 22:670–75 [Google Scholar]
  5. Gibson LJ, Ashby MF, Schajer GS, Robertson CI. 5.  1982. The mechanics of two dimensional cellular solids. Proc. R. Soc. A 382:25–42 [Google Scholar]
  6. Almgren RF.6.  1985. An isotropic three dimensional structure with Poisson's ratio = −1. J. Elast. 15:427–30 [Google Scholar]
  7. Lakes RS.7.  1987. Foam structure with a negative Poisson's ratio. Science 235:1038–40 [Google Scholar]
  8. Glieck J.8.  1987. Anti-rubber. N. Y. Times April 14 [Google Scholar]
  9. Evans KE, Nkansah MA, Hutchinson IJ, Rogers SC. 9.  1991. Molecular network design. Nature 353:124 [Google Scholar]
  10. Milton G.10.  1992. Composite materials with Poisson's ratios close to −1. J. Mech. Phys. Solids 40:1105–37 [Google Scholar]
  11. Evans KE.11.  1991. Auxetic polymers: a new range of materials. Endeavor 15:4170–74 [Google Scholar]
  12. Alderson KL, Kettle AP, Evans KE. 12.  2005. Novel fabrication route for auxetic polyethylene. Part 1. Processing and microstructure. Polym. Eng. Sci. 45:568–78 [Google Scholar]
  13. Poisson SD.13.  1811. Traité de Mécanique Paris: Mme veuve Courcier [Google Scholar]
  14. Sokolnikoff IS.14.  1983. Theory of Elasticity Malabar, FL: Krieger [Google Scholar]
  15. Kolpakov AG.15.  1985. On the determination of the averaged moduli of elastic gridworks. Prikl. Mat. Mekh. 59:969–77 [Google Scholar]
  16. Prall D, Lakes RS. 16.  1996. Properties of a chiral honeycomb with a Poisson's ratio −1. Int. J. Mech. Sci. 39:305–14 [Google Scholar]
  17. Bornengo D, Scarpa F, Remillat C. 17.  2005. Evaluation of hexagonal chiral structure for morphing airfoil concept. J. Aerosp. Eng. 219:185–92 [Google Scholar]
  18. Martin J, Heyder-Bruckner J, Remillat C, Scarpa F, Potter K, Ruzzene M. 18.  2008. The hexachiral prismatic wingbox concept. Phys. Status Solid. B 245:570–71 [Google Scholar]
  19. Spadoni A, Ruzzene M, Scarpa F. 19.  2005. Global and local linear buckling behavior of a chiral cellular structure. Phys. Status Solid. B 242:695–709 [Google Scholar]
  20. Miller W, Smith CW, Scarpa F, Evans KE. 20.  2010. Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Compos. Sci. Technol. 70:1049–56 [Google Scholar]
  21. Spadoni A, Ruzzene M, Gonelli MS, Scarpa F. 21.  2009. Phononic properties of hexagonal chiral lattices. Wave Motion 46:435–50 [Google Scholar]
  22. Abramovitch H, Burgard M, Edery-Azulay L, Evans KE, Hoffmeister M. 22.  et al. 2010. Smart tetrachiral and hexachiral honeycomb: sensing and impact detection. Compos. Sci. Technol. 70:1072–79 [Google Scholar]
  23. Ha CS, Hestekin E, Li J, Plesha ME, Lakes RS. 23.  2015. Controllable thermal expansion of large magnitude in chiral negative Poisson's ratio lattices. Phys. Status Solid. B 252:71431–34 [Google Scholar]
  24. Theocaris PS, Stavroulakis GE, Panagiotopoulos PD. 24.  1997. Negative Poisson's ratio in materials with a star-shaped microstructure. A numerical homogenization approach. Arch. Appl. Mech. 67:4274–86 [Google Scholar]
  25. Wojciechowski KW.25.  1989. Two-dimensional isotropic systems with a negative Poisson ratio. Phys. Lett. A 137:60–64 [Google Scholar]
  26. Pozniak AA, Wojciechowski KW. 26.  2014. Poisson's ratio of rectangular anti-chiral structures with size dispersion of circular nodes. Phys. Status Solid. B 251:367–74 [Google Scholar]
  27. Bilski M, Wojciechowski KW. 27.  2016. Tailoring Poisson's ratio by introducing auxetic layers. Phys. Status Solid. B 253:1318–23 [Google Scholar]
  28. Grima JN, Evans KE. 28.  2000. Auxetic behavior from rotating squares. J. Mater. Sci. Lett. 19:1563–65 [Google Scholar]
  29. Grima JN, Alderson A, Evans KE. 29.  2005. Auxetic behaviour from rotating rigid units. Phys. Status Solid. B 242:561–75 [Google Scholar]
  30. Milton GW.30.  2013. Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots. J. Mech. Phys. Solids 61:1543–60 [Google Scholar]
  31. Grima JN, Evans KE. 31.  2006. Auxetic behavior from rotating triangles. J. Mater. Sci. 41:103193–96 [Google Scholar]
  32. Rothenburg L, Berlin AA, Bathurst RJ. 32.  1991. Microstructure of isotropic materials with negative Poisson's ratio. Nature 354:470–72 [Google Scholar]
  33. Gibson LJ, Ashby MF. 33.  1997. Cellular Solids Cambridge, UK: Cambridge Univ. Press 2nd ed. [Google Scholar]
  34. Miura K.34.  1980. Method of packaging and deployment of large membranes in space. Proc. IAF Congr. 31st, Pap. IAF-80-A31, Tokyo [Google Scholar]
  35. Miura K, Miyazaki Y. 35.  1990. Concept of the tension truss antenna. AIAA J. 28:61098–104 [Google Scholar]
  36. Schenk M, Guest SD. 36.  2013. Geometry of Miura-folded metamaterials. PNAS 110:93276–328 [Google Scholar]
  37. Javid F, Smith-Roberge E, Innes MC, Shanian A, Weaver JC, Bertoldi K. 37.  2015. Dimpled elastic sheets: a new class of non-porous negative Poisson's ratio materials. Sci. Rep. 5:18373 [Google Scholar]
  38. Yasuda H, Yang J. 38.  2015. Reentrant origami-based metamaterials with negative Poisson's ratio and bistability. Phys. Rev. Lett. 114:185502 [Google Scholar]
  39. Shan S, Kang SH, Zhao Z, Fanga L, Bertoldi K. 39.  2015. Design of planar isotropic negative Poisson's ratio structures. Extreme Mech. Lett. 4:96–102 [Google Scholar]
  40. Bowick M, Cacciuto A, Thorleifsson G, Travesset A. 40.  2001. Universal negative Poisson ratio of self-avoiding fixed-connectivity membranes. Phys. Rev. Lett. 87:148103 [Google Scholar]
  41. Lakes RS.41.  2001. A broader view of membranes. Nature 414:503–4 [Google Scholar]
  42. Hall LJ, Coluci VR, Galvao DS, Koslov ME, Zhang M. 42.  et al. 2008. Sign change of Poisson's ratio for carbon nanotube sheets. Science 320:504–7 [Google Scholar]
  43. Chen L, Liu W, Zhang W, Hu C, Fan S. 43.  2009. Auxetic materials with large negative Poisson's ratios based on highly oriented carbon nanotube structures. Appl. Phys. Lett. 94:253111 [Google Scholar]
  44. Grima JN, Winczewski S, Mizzi L, Grech MC, Cauchi R. 44.  et al. 2014. Tailoring graphene to achieve negative Poisson's ratio properties. Adv. Mater. 27:1455–59 [Google Scholar]
  45. Jiang JW, Park HS. 45.  2014. Negative Poisson's ratio in single-layer black phosphorus. Nat. Commun. 5:4727 [Google Scholar]
  46. Bertoldi K, Reis PM, Willshaw S, Mullin T. 46.  2010. Negative Poisson's ratio behavior induced by an elastic instability. Adv. Mater. 22:361–66 [Google Scholar]
  47. Wang YC, Lakes RS, Butenhoff A. 47.  2001. Influence of cell size on re-entrant transformation of negative Poisson's ratio reticulated polyurethane foams. Cell. Polym. 20:373–85 [Google Scholar]
  48. Friis EA, Lakes RS, Park JB. 48.  1988. Negative Poisson's ratio polymeric and metallic foams. J. Mater. Sci. 23:4406–14 [Google Scholar]
  49. Choi JB, Lakes RS. 49.  1992. Nonlinear properties of polymer cellular materials with a negative Poisson's ratio. J. Mater. Sci. 27:4678–84 [Google Scholar]
  50. Li D, Dong L, Lakes RS. 50.  2013. The properties of copper foams with negative Poisson's ratio via resonant ultrasound spectroscopy. Phys. Status Solid. B 250:101983–87 [Google Scholar]
  51. Gunton DJ, Saunders GA. 51.  1972. The Young's modulus and Poisson's ratio of arsenic, antimony, and bismuth. J. Mater. Sci. 7:1061–68 [Google Scholar]
  52. Haeri AY, Weidner DJ, Parise JB. 52.  1992. Elasticity of α-cristobalite: a silicon dioxide with a negative Poisson's ratio. Science 257:650–52 [Google Scholar]
  53. Keskar N, Chelikowsky JR. 53.  1992. Negative Poisson's ratios in crystalline SiO2 from first-principles calculations. Nature 358:222–25 [Google Scholar]
  54. Baughman RH, Shacklette JM, Zakhidov AA, Stafstrom S. 54.  1998. Negative Poisson's ratios as a common feature of cubic metals. Nature 392:6674362–65 [Google Scholar]
  55. Lethbridge ZAD, Walton RI, Marmier ASH, Smith CW, Evans KE. 55.  2010. Elastic anisotropy and extreme Poisson's ratios in single crystals. Acta Mater. 58:6444–51 [Google Scholar]
  56. Grima JN, Gatt R, Zammit V, Williams JJ, Alderson A. 56.  et al. 2007. Natrolite: a zeolite with negative Poisson's ratios. J. Appl. Phys. 101:086102 [Google Scholar]
  57. Sanchez-Valle C, Lethbridge ZAD, Sinogeikin SV, Williams JJ, Walton RI. 57.  et al. 2008. Negative Poisson's ratios in siliceous zeolite MFI-silicalite. J. Chem. Phys. 128:184503 [Google Scholar]
  58. Boppart H, Teindl A, Wachter P. 58.  1980. First observation of a negative elastic constant in intermediate valent TmSe. Solid State Commun. 35:483–86 [Google Scholar]
  59. Phan-Thien N, Kaihaloo BL. 59.  1994. Materials with negative Poisson's ratio: a qualitative microstructural model. J. Appl. Mech. 61:1001–4 [Google Scholar]
  60. Wojciechowski KW.60.  1995. Negative Poisson's ratio at negative pressures. Mol. Phys. Rep. 10:130–36 [Google Scholar]
  61. Caddock BD, Evans KE. 61.  1989. Microporous materials with negative Poisson's ratio. I. Microstructure and mechanical properties. J. Phys. D Appl. Phys. 22:1877–82 [Google Scholar]
  62. Evans KE, Caddock BD. 62.  1989. Microporous materials with negative Poisson's ratio. II. Mechanisms and interpretation. J. Phys. D Appl. Phys. 22:1883–87 [Google Scholar]
  63. Alderson KL, Evans KE. 63.  1992. The fabrication of microporous polyethylene having negative Poisson's ratio. Polymer 33:4435–38 [Google Scholar]
  64. Herakovich CT.64.  1985. Composite laminates with negative through-the-thickness Poisson's ratio. J. Compos. Mater. 18:447–55 [Google Scholar]
  65. Miki M, Morotsu Y. 65.  1989. The peculiar behavior of the Poisson's ratio of laminated fibrous composites. JSME Int. J. 32:67–72 [Google Scholar]
  66. Lees C, Vincent JFV, Hillerton JE. 66.  1991. Poisson's ratio in skin. Bio Med. Mater. Eng. 1:119–23 [Google Scholar]
  67. Buckmann T, Schittny R, Thiel M, Kadic M, Milton GW, Wegener M. 67.  2014. On three-dimensional dilational elastic metamaterials. New J. Phys. 16:033032 [Google Scholar]
  68. Ha CS, Plesha ME, Lakes RS. 68.  2016. Chiral three dimensional lattices with tunable Poisson's ratio. Smart Mater. Struct. 25:054005 [Google Scholar]
  69. Ha CS, Plesha ME, Lakes RS. 69.  2016. Chiral three-dimensional isotropic lattices with negative Poisson's ratio. Phys. Status Solid. B 253:71243–51 [Google Scholar]
  70. Cosserat E, Cosserat F. 70.  1909. Theorie des corps deformables Paris: Hermann et Fils [Google Scholar]
  71. Eringen AC.71.  1968. Theory of micropolar elasticity. Fracture 1 H Liebowitz 621–729 New York: Academic Press [Google Scholar]
  72. Bückmann T, Stenger N, Kadic M, Kaschke J, Frölich A. 72.  et al. 2012. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24:2710–14 [Google Scholar]
  73. Landau LD.73.  1965. Collected Papers of L.D. Landau D Ter Taar, 193–216 New York/London: Pergamon/Gordon and Breach [Google Scholar]
  74. McKnight REA, Moxon AT, Buckley A, Taylor PA, Darling TW, Carpenter MA. 74.  2008. Grain size dependence of elastic anomalies accompanying the alpha-beta phase transition in polycrystalline quartz. J. Phys. Condens. Matter 20:075229 [Google Scholar]
  75. Hirotsu S.75.  1990. Elastic anomaly near the critical point of volume phase transition in polymer gels. Macromolecules 23:903–5 [Google Scholar]
  76. Dong L, Stone DS, Lakes RS. 76.  2010. Anelastic anomalies and negative Poisson's ratio in tetragonal BaTiO3 ceramics. Appl. Phys. Lett. 96:141904 [Google Scholar]
  77. Dong L, Stone DS, Lakes RS. 77.  2010. Softening of bulk modulus and negative Poisson's ratio in barium titanate ceramic near the Curie point. Philos. Mag. Lett. 90:23–33 [Google Scholar]
  78. Li D, Jaglinski TM, Stone DS, Lakes RS. 78.  2012. Temperature insensitive negative Poisson's ratios in isotropic alloys near a morphotropic phase boundary. Appl. Phys. Lett 101:251903 [Google Scholar]
  79. Babee S, Shim J, Weaver JC, Chen ER, Patel N, Bertoldi K. 79.  2013. 3D soft metamaterial with negative Poisson's ratio. Adv. Mater. 25:365044–49 [Google Scholar]
  80. Burns S.80.  1987. Negative Poisson's ratio materials. Science 238:551 [Google Scholar]
  81. Lakes RS.81.  1987. Response: Negative Poisson's ratio materials. Science 238:551 [Google Scholar]
  82. Lakes RS.82.  1986. Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22:55–63 [Google Scholar]
  83. Spadoni A, Ruzzene M. 83.  2012. Elasto-static micropolar behavior of a chiral auxetic lattice. J. Mech. Phys. Solids 60:74741–53 [Google Scholar]
  84. Rueger Z, Lakes RS. 84.  2016. Cosserat elasticity of negative Poisson's ratio foam: experiment. Smart Mater. Struct. 25:054004 [Google Scholar]
  85. Weiner JH.85.  1983. Statistical Mechanics of Elasticity New York: Wiley [Google Scholar]
  86. Timoshenko SP.86.  1983. History of Strength of Materials New York: Dover [Google Scholar]
  87. Lakes RS.87.  1991. Deformation mechanisms of negative Poisson's ratio materials: structural aspects. J. Mater. Sci. 26:2287–92 [Google Scholar]
  88. Lakes RS.88.  1996. Cellular solid structures with unbounded thermal expansion. J. Mater. Sci. Lett. 15:475–77 [Google Scholar]
  89. Lakes RS.89.  2007. Solids with tunable positive or negative thermal expansion of unbounded magnitude. Appl. Phys. Lett. 90:221905 [Google Scholar]
  90. Mary TA, Evans JSO, Vogt T, Sleight AW. 90.  1996. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 272:90–92 [Google Scholar]
  91. Evans JSO, Mary TA, Sleight AW. 91.  1997. Negative thermal expansion materials. Physica B 241:311–16 [Google Scholar]
  92. Nye JF.92.  1976. Physical Properties of Crystals Oxford, UK: Clarendon [Google Scholar]
  93. Lakes RS.93.  2001. Extreme damping in composite materials with a negative stiffness phase. Phys. Rev. Lett. 86:2897–900 [Google Scholar]
  94. Lakes RS, Lee T, Bersie A, Wang YC. 94.  2001. Extreme damping in composite materials with negative stiffness inclusions. Nature 410:565–67 [Google Scholar]
  95. Jaglinski T, Kochmann D, Stone D, Lakes RS. 95.  2007. Materials with viscoelastic stiffness greater than diamond. Science 315:620–22 [Google Scholar]
  96. Thompson JMT.96.  1982. `Paradoxical’ mechanics under fluid flow. Nature 296:135–37 [Google Scholar]
  97. Lakes RS.97.  2012. Stable singular or negative stiffness systems in the presence of energy flux. Philos. Mag. Lett. 92:226–34 [Google Scholar]
  98. Lynden-Bell D, Wood R. 98.  1968. The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure in stellar systems. MNRAS 138:495–525 [Google Scholar]
  99. Lynden-Bell D.99.  1999. Negative specific heat in astronomy, physics, and chemistry. Physica A 263:293–304 [Google Scholar]
  100. Pumphrey RJ, Gold T. 100.  1947. Transient reception and the degree of resonance of the human ear. Nature 160:124–25 [Google Scholar]
  101. Gold T.101.  1948. Hearing. II. The physical basis of the action of the cochlea. Proc. R. Soc. B 135:492–98 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070616-124118
Loading
/content/journals/10.1146/annurev-matsci-070616-124118
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error